Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report”.
UBC BOTANICAL GARDEN RENEWAL

CIVL 446 (2014) - Group 6:

Emma Brown ()
Haney Wang ()
Della Anggabrata ()

David Chen ()
Zachary Bailey ()
Rocky Zhang ()
EXECUTIVE SUMMARY

PROJECT HIGHLIGHTS AND SCOPE
The Group 6 UBC Botanical Garden (UBCBG) Renewal Project intends to deliver a project that will help UBCBG achieve its full potential by educating and connecting the community with the beautiful and rare collection at the Garden. The scope of our project will include a detailed design of a greenhouse café and conceptual designs of the remaining three components. The three engineering disciplines selected for this project are project management, structural, and geotechnical. Since project management is typically an area that is imperative for the success of a project, we have chosen it as the lead discipline.

BENEFITS TO THE GARDEN
The design goals that were targeted in the scope of our projects guided the design decision. As a result, the project proposed delivers a series of benefits to the garden including increased revenue, increased learning opportunities, as well as enhanced capacity for research.

PROJECT DESIGN COMPONENTS
The project management is the primary discipline of this project. The following designs are delivered in this report:

- A phased conceptual design vision for UBCBG
- A site logistics plan and construction timeline constructed on MS Project
- The cost estimation of the Greenhouse Café generated using the RS Means Data
- A resource allocation plan for the construction of the Greenhouse Café
- A 3D Building Integrated Model (BIM) constructed in Revit
- A 4D model assembled for presentation purposes

The structural system of the building will be a combination of steel and wood. The following designs are delivered in this report:

- An analysis of the gravity loads from the roof and steel truss system in RISA 2D
- The structural gravity design system for the Greenhouse Café
- The environmental study on the green roof and corresponding green roof design

The geotechnical study is integrated into the design of the project. The following designs are delivered in this report:

- A site stratigraphy and soil classification analysis
- A design of a foundation system as well as a typical footing detail
- An analysis on the serviceability under static and seismic conditions

PROJECT IMPLEMENTATION
A proposed implementation plan is detailed in the report including a site logistics plan. The scheduling of the completion of Phase 1 of the Garden has been estimated to be 103 working days based on an accelerated construction schedule. The submission of this report signifies the first step towards the implementation plan for our vision of the UBC Botanical Garden.

Emma Brown
Project Manager
April 4, 2014
CONTENTS

1 Introduction ___ 1
 1.1 Purpose__ 1
 1.2 Project Description ___ 1
 1.3 Scope __ 3

2 Project Management __ 3
 2.1 Integrated Project Delivery (IPD) __ 3
 2.2 Project Conceptual Phasing __ 4
 2.3 Site Logistics Plan ___ 6
 2.4 Detailed Design Implementation Plan ______________________________________ 7
 2.5 Resource Allocation ___ 10

3 Greenhouse Café Design __ 10
 3.1 Architectural Inspiration _____________________________________ __________ 11
 3.2 Structural Design ___ 13
 3.3 Geotechnical Design ___ _______ 17
 3.4 Environmental Consideration__ 22

4 Cost Analysis ___ 23

5 Conclusion __ 25

Bibliography __ 26

APPENDIX A – Structural Design Calculation

APPENDIX B – Geotechnical Design Calculation

APPENDIX C – Square Foot Estimate Data
1 INTRODUCTION

This report outlines a four-phase Relaxing and Learning project encompassing project management, structural and geotechnical disciplines to benefit the University of British Columbia’s Botanical Garden (UBCBG or Garden). The main focus of the project is the design of the Greenhouse Café, which embodies the natural surrounding environment; the café will be self-sustaining and generate vital revenue for the Garden’s operations.

1.1 Purpose

The UBCBG, dating back to 1916, is a world-class garden and center for plant research that curates a collection of over 1,200 plants and aims to “assemble, curate and maintain a documented collection of temperate plants for the purposes of research, conservation, education, community outreach and public display” (UBC Botanical Garden, 2014). Visiting the Garden is a beautiful, invigorating, and educational experience; however, in recent years it has had low admissions and has not been able to generate an adequate amount of revenue. Some of the major obstacles of the UBCBG include outdated facilities, poor signage, lack of attractions, and inadequate path circulation. Although many different solutions could be used to improve the Garden, the available funding limits feasible options. Due to limited funding, a solution involving incremental improvements that enhance visitor experience while generating revenue will maximize benefits for the Garden. The purpose of this report is to present the Relaxing and Learning project that will address the obstacles that the UBCBG is facing, in order to allow the Garden to reach its full potential.

1.2 Project Description

The garden revitalization project has four main components; the Greenhouse Café, adventure/educational loops, a pedestrian walkway over Marine Drive, and renovation or
expansion of the current conservatory. This report primarily focuses on the detailed design of the Greenhouse Café, but also includes a conceptual plan for all four components.

The Greenhouse Café infrastructure has been designed to complement the natural environment of the Garden while simultaneously attracting more visitors to the Botanical Garden. The design uses a natural timber and green roof aesthetic to integrate the Café into its surrounding and will become a renowned destination for tourists to dine at while visiting Vancouver.

The VanDusen Garden Café has set the standard with a similar restaurant which has seen approximately a 25% increase in visitors, revenue and memberships after one year (City of Vancouver, 2014). Such an increase at the UBCBG will ensure that the operations and maintenance will be self-supported and allow for expenditures for other developmental projects.

The Greenhouse Café will be constructed in a sustainable manner in order to be energy and carbon neutral by employing green resource allocation and an efficient construction-phasing schedule. The Greenhouse Café will be self-sustained with water and will produce as much energy as it uses by applying ecological technology such as catch basins, photovoltaic cells, natural light, geothermal heating, and grey water treatment and recycling. Such technology will guarantee lower operating costs, and qualify the Café for money-saving incentives, like tax rebates and zoning allowances.

This Café will undoubtedly enhance the profile of the Garden in its diversity while being inviting for younger guests. Such a development will become a landmark for environmental enthusiasts and fine diners of all demographics.

The adventure/educational loops will make the visitors’ experience more interactive. Then the overhead pedestrian walkway will make the Garden more accessible and visible. Finally, the
renovation or expansion of the conservatory will create more growing space and attract more plant researchers.

1.3 Scope
Three engineering disciplines are addressed in this report; project management, structural, and geotechnical. Project management is crucial in ensuring the success of a project that is delivered on time, on budget, and with exceptional quality; therefore, project management has been chosen as the lead engineering discipline for this project. For project management a conceptual phasing has been done for all four project components, which are the Greenhouse Café, conservatory renovation/expansion, overhead walkway and adventure loops. For the Greenhouse Café, more detailed project management practices have been outlined, in addition to the design of one structural element and one geotechnical element.

2 PROJECT MANAGEMENT
Project management is an important component of any project, and has been planned in detail for this project. Included in this report is the method of project delivery, conceptual phasing for all four project component, detail construction sequencing for the Greenhouse Café, and discussion of resource allocation.

2.1 Integrated Project Delivery (IPD)
An integrated project delivery (IPD) method will be used for this project. This method eliminates many problems that are inherent in traditional delivery methods, such as an inability to fully coordinate the project, the owner being at risk to the contract for design errors, and the assumption that cheaper is beneficial. IPD aligns project objectives with interests of key participants, and relies on participation, transparency, and continuing dialog of all trades and consultants. A significant advantage of IPD is that all parties to be involved in the project are
assembled as early as possible in order to provide collective expertise to the project even before designing begins. IPD also incorporates a 4D building model, which further enhances the quality of the project design and implementation. The graphic below depicts the organizational breakdown of this project.

![Organizational Chart](image)

Figure 1: Organizational Chart

2.2 Project Conceptual Phasing

The project development at the UBCBC proposed by our team consists of a staged development that will cater to the growing needs of the Garden through incremental change. The construction of the Greenhouse Café in Stage 1 of the development is expected to be followed by an increase in usage and thus may lead to potential expansions and upgrades. Our design team has proposed a 4-stage development for the future of the Garden in order to optimize the visitor experience and Garden revenue. The main initiative of this conceptual phasing is to create a complete experience for the general public and attract visitors.

2.2.1 **Stage 1: Create a Destination**

The construction of the Greenhouse Café is the primary component of this design report. The driving motivation is to create a welcoming destination capable of increasing revenues while
providing indoor space for Garden use. This stage consists of the site works, design, and construction of the Greenhouse Café.

2.2.2 Stage 2: Create an Experience
The existing visitor map of the Garden consists of the general layout and the names of the individual gardens. There is a lack of direction and information given in the brochure. The design team proposes to implement a system of educational adventure loops. This is a low cost addition to the Garden that will help drive interest and a sense of exploration in visitors. The educational adventure loops consist of a series of marks trails and tours through the Garden targeted at seasons, themes, rare flora, and visitors’ interests. These loops allow the curators of the Garden to educate the public with minimal labor and staffing commitment. The loops also provide visitors with a reason to return to the Garden and explore different areas.

2.2.3 Stage 3: Improve Access
With the construction of the Greenhouse Café, there will be a necessity to improve access to the East side of the Garden. Once visitors have entered the Garden, it is not convenient to cross SW Marine Drive by foot. Stage 3 proposes to construct an ecologically considerate overhead walkway spanning over SW Marine Drive. This walkway will be constructed to enhance signage, which will attract more patrons to the Garden, while simultaneously improving access. Improvements to Stadium Road are also proposed to create a destination for the UBCBG.

2.2.4 Stage 4: Upgrade Existing Infrastructure
With the expected increase in revenue generated from the Stage 1 to Stage 3 improvements, existing infrastructure upgrades will be made to complete the facelift of the Garden. A Conservatory expansion is proposed in order to renovate the existing facility to accommodate more space for plants and attract researchers to the facility.
2.3 Site Logistics Plan

The proposed Greenhouse Café will be located adjacent to the existing amphitheater on land that is currently used as a maintenance yard for UBC operations, which has existing access off of Stadium Road. The area is moderately graded with the main obstructions being trees that surround the existing yard. The main entrance and exit of the site will continue to be the paved driveway currently south of Stadium Road. During construction, the proposed site redevelopment area will be fenced off. Since the Greenhouse Café footprint is much smaller than the area of land being redeveloped, temporary site offices and equipment can be stored on site, which will minimize delays to traffic using Stadium Road and the residents of the neighboring communities. The site plan in Figure 2 illustrates the building location and the redevelopment area. Details of the construction are outlined in the construction scheduling Gantt Chart in the following section of this report. Section 2.4.1 presents a summary of the construction timeline.
2.4 Detailed Design Implementation Plan

The implementation plan of the Greenhouse Café consists of several stages from permitting, to site works, to building construction and finishing. The accelerated construction schedule be completed within 103 working days of breaking ground. The anticipated start of construction is May 1st 2014 with the earliest finish date on September 22nd 2014. The proposed construction schedule (Section 2.4.1) and includes primary actions: Site Mobilization, Site Grading and Utilities, Foundations, Column Erection, Electrical and Mechanical, Heating and Ventilating, Roofing, Glazing, Finishing, and Landscaping. Certain assumptions were made in order to simplify construction and thus minimizing construction time, cost, and complications. Table 1 summarizes some of the considerations in the scheduling of the labor hours.

<table>
<thead>
<tr>
<th>Table 1 Construction Considerations</th>
<th>ASSUMPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE WORKS</td>
<td>Anticipation of soil contamination as a result from repurposing of an old maintenance yard will result in longer site works due to the necessity of removing contaminated soil from the site.</td>
</tr>
<tr>
<td>UTILITIES</td>
<td>The Greenhouse Café is assumed to be connected to the utilities previously available at the maintenance yard.</td>
</tr>
<tr>
<td>FOUNDATIONS</td>
<td>Due to the small footprint of the building and simple foundation plan with basic reinforcing, it is not anticipated that foundation construction will require longer hours than standard practice.</td>
</tr>
<tr>
<td>COLUMN ERECTION</td>
<td>Simple beam to column connections in a modular system allow for simpler erection of structural members.</td>
</tr>
<tr>
<td>ROOF INSTALLATION</td>
<td>Installation of a prefabricated roofing system will result in a shorter installation time than conventional roof installation. Along with sufficient site storage area, the prefabricated sections can be moved to site well in advance of the installation.</td>
</tr>
</tbody>
</table>
2.4.1 Construction Timeline and Gantt Chart

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Construction</td>
<td>103 days</td>
<td>Thu 5/1/14</td>
<td>Mon 8/22/14</td>
<td></td>
</tr>
<tr>
<td>General Conditions</td>
<td>24 days</td>
<td>Thu 5/1/14</td>
<td>Tue 6/3/14</td>
<td></td>
</tr>
<tr>
<td>Obtain building permits and road use permits</td>
<td>14 days</td>
<td>Thu 5/1/14</td>
<td>Tue 5/20/14</td>
<td></td>
</tr>
<tr>
<td>Preliminary coordination</td>
<td>2 wks</td>
<td>Wed 5/21/14</td>
<td>Tue 6/3/14</td>
<td>2</td>
</tr>
<tr>
<td>Coordination and QA of construction materials</td>
<td>4 days</td>
<td>Thu 5/1/14</td>
<td>Tue 5/6/14</td>
<td></td>
</tr>
<tr>
<td>Mobilize on Site</td>
<td>8 days</td>
<td>Wed 5/21/14</td>
<td>Fri 5/30/14</td>
<td>2</td>
</tr>
<tr>
<td>Install temporary power</td>
<td>2 days</td>
<td>Wed 5/21/14</td>
<td>Tue 5/22/14</td>
<td></td>
</tr>
<tr>
<td>Install temporary water service</td>
<td>2 days</td>
<td>Wed 5/21/14</td>
<td>Tue 5/22/14</td>
<td></td>
</tr>
<tr>
<td>Set up site office</td>
<td>3 days</td>
<td>Fri 5/23/14</td>
<td>Tue 5/27/14</td>
<td>6, 7</td>
</tr>
<tr>
<td>Set line and grade benchmarks</td>
<td>2 days</td>
<td>Wed 5/28/14</td>
<td>Thu 5/29/14</td>
<td>8</td>
</tr>
<tr>
<td>Prepare site - lay down yard and temporary fencing</td>
<td>1 day</td>
<td>Fri 5/30/14</td>
<td>Fri 5/30/14</td>
<td>9</td>
</tr>
<tr>
<td>Site Grading and Utilities</td>
<td>21 days</td>
<td>Mon 6/2/14</td>
<td>Mon 6/30/14</td>
<td>9</td>
</tr>
<tr>
<td>Clear and grub site</td>
<td>3 days</td>
<td>Mon 6/2/14</td>
<td>Wed 6/4/14</td>
<td>8, 10</td>
</tr>
<tr>
<td>Construct site access and temporary storage</td>
<td>2 days</td>
<td>Thu 6/5/14</td>
<td>Fri 6/6/14</td>
<td>12, 10</td>
</tr>
<tr>
<td>Rough grade site (cut and fill)</td>
<td>1 wk</td>
<td>Mon 6/9/14</td>
<td>Fri 6/13/14</td>
<td>13</td>
</tr>
<tr>
<td>Connecter of UBC Utilities, install storm drainage</td>
<td>2 wks</td>
<td>Mon 6/14/14</td>
<td>Fri 6/25/14</td>
<td>14</td>
</tr>
<tr>
<td>Perform final site grading</td>
<td>2 wks</td>
<td>Tue 6/17/14</td>
<td>Mon 6/30/14</td>
<td>15FF+1 day</td>
</tr>
<tr>
<td>Foundations</td>
<td>17 days</td>
<td>Tue 7/1/14</td>
<td>Wed 7/23/14</td>
<td>16</td>
</tr>
<tr>
<td>Excavate foundations</td>
<td>1 wk</td>
<td>Tue 7/1/14</td>
<td>Mon 7/7/14</td>
<td>16</td>
</tr>
<tr>
<td>Form pad footings and spread foundations</td>
<td>2 days</td>
<td>Tue 7/8/14</td>
<td>Wed 7/9/14</td>
<td>18</td>
</tr>
<tr>
<td>Pour foundations</td>
<td>3 days</td>
<td>Thu 7/10/14</td>
<td>Mon 7/14/14</td>
<td>19</td>
</tr>
<tr>
<td>Cure foundations</td>
<td>7 days</td>
<td>Tue 7/15/14</td>
<td>Wed 7/23/14</td>
<td>20</td>
</tr>
<tr>
<td>Strip forms</td>
<td>1 day</td>
<td>Thu 7/10/14</td>
<td>Thu 7/10/14</td>
<td>19FF+1 day</td>
</tr>
<tr>
<td>Task Description</td>
<td>Duration</td>
<td>Start Date</td>
<td>Finish Date</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>Structural Framing</td>
<td>5 days</td>
<td>Thu 7/11/14</td>
<td>Thu 7/17/14</td>
<td>22</td>
</tr>
<tr>
<td>Erect steel columns, beams and joints</td>
<td>1 wk</td>
<td>Fri 7/11/14</td>
<td>Thu 7/17/14</td>
<td>22</td>
</tr>
<tr>
<td>Erect timber columns, beams and joint</td>
<td>1 wk</td>
<td>Fri 7/11/14</td>
<td>Thu 7/17/14</td>
<td>22</td>
</tr>
<tr>
<td>Carpentry Work</td>
<td>15 days</td>
<td>Fri 7/18/14</td>
<td>Thu 8/7/14</td>
<td>25</td>
</tr>
<tr>
<td>Install exterior sheathing and metal stud</td>
<td>3 wks</td>
<td>Fri 7/18/14</td>
<td>Thu 8/7/14</td>
<td></td>
</tr>
<tr>
<td>Roofing Installation</td>
<td>12 days</td>
<td>Fri 8/8/14</td>
<td>Mon 8/25/14</td>
<td>26</td>
</tr>
<tr>
<td>Install pre fabricated roof</td>
<td>5 days</td>
<td>Fri 8/8/14</td>
<td>Thu 8/14/14</td>
<td></td>
</tr>
<tr>
<td>Install Green Roof</td>
<td>7 days</td>
<td>Fri 8/8/14</td>
<td>Mon 8/25/14</td>
<td>29</td>
</tr>
<tr>
<td>Set rooftop equipment</td>
<td>1 wk</td>
<td>Fri 8/8/14</td>
<td>Thu 8/21/14</td>
<td>29</td>
</tr>
<tr>
<td>Window wall and exterior glazing installation</td>
<td>20 days</td>
<td>Fri 7/18/14</td>
<td>Thu 8/14/14</td>
<td>25</td>
</tr>
<tr>
<td>Install window wall aluminum and glass</td>
<td>2 wks</td>
<td>Fri 7/18/14</td>
<td>Thu 7/31/14</td>
<td>25</td>
</tr>
<tr>
<td>Install interior clad walls and drywall</td>
<td>1 wk</td>
<td>Fri 7/18/14</td>
<td>Thu 7/24/14</td>
<td>25</td>
</tr>
<tr>
<td>Install interior doors hardware</td>
<td>1 wk</td>
<td>Fri 7/25/14</td>
<td>Thu 7/31/14</td>
<td>34</td>
</tr>
<tr>
<td>Building Finishes</td>
<td>20 days</td>
<td>Fri 8/1/14</td>
<td>Thu 8/28/14</td>
<td></td>
</tr>
<tr>
<td>Paint walls and woodwork</td>
<td>2 wks</td>
<td>Fri 8/1/14</td>
<td>Thu 8/14/14</td>
<td>35</td>
</tr>
<tr>
<td>Complete interior and exterior sod and plantings</td>
<td>2 wks</td>
<td>Fri 8/15/14</td>
<td>Thu 8/28/14</td>
<td>37</td>
</tr>
<tr>
<td>Electrical</td>
<td>8 days</td>
<td>Thu 7/23/14</td>
<td>Mon 8/4/14</td>
<td></td>
</tr>
<tr>
<td>Pull wire in conduit and set area transformers</td>
<td>4 days</td>
<td>Thu 7/24/14</td>
<td>Tue 7/29/14</td>
<td></td>
</tr>
<tr>
<td>Make electrical terminations for HVAC equipment</td>
<td>2 days</td>
<td>Wed 7/30/14</td>
<td>Thu 7/31/14</td>
<td>40</td>
</tr>
<tr>
<td>Install light fixtures - test and clean</td>
<td>1 wk</td>
<td>Thu 7/24/14</td>
<td>Wed 7/30/14</td>
<td></td>
</tr>
<tr>
<td>Heating and Ventilating - AC</td>
<td>30 days</td>
<td>Thu 7/31/14</td>
<td>Wed 9/10/14</td>
<td>33</td>
</tr>
<tr>
<td>Set equipment in mechanical room</td>
<td>3 days</td>
<td>Fri 8/1/14</td>
<td>Tue 8/5/14</td>
<td>33</td>
</tr>
<tr>
<td>Install duct in building chase</td>
<td>3 days</td>
<td>Wed 8/6/14</td>
<td>Fri 8/8/14</td>
<td>44,33</td>
</tr>
<tr>
<td>Set HVAC trim and test and balance system</td>
<td>2 wks</td>
<td>Mon 8/11/14</td>
<td>Fri 8/22/14</td>
<td>45,41</td>
</tr>
<tr>
<td>Final Clean-up</td>
<td>4 days</td>
<td>Fri 8/29/14</td>
<td>Wed 9/3/14</td>
<td></td>
</tr>
<tr>
<td>Remove debris from building and do final clean-up</td>
<td>4 days</td>
<td>Fri 8/29/14</td>
<td>Wed 9/3/14</td>
<td>38,42</td>
</tr>
<tr>
<td>Complete Final Inspections</td>
<td>14 days</td>
<td>Wed 9/3/14</td>
<td>Mon 9/22/14</td>
<td>48</td>
</tr>
<tr>
<td>Perform architect’s inspection</td>
<td>1 day</td>
<td>Thu 9/4/14</td>
<td>Thu 9/4/14</td>
<td>48</td>
</tr>
<tr>
<td>Perform local building agency inspection</td>
<td>1 day</td>
<td>Fri 9/5/14</td>
<td>Fri 9/5/14</td>
<td>50</td>
</tr>
<tr>
<td>Obtain Certificate of occupancy</td>
<td>7 days</td>
<td>Mon 9/8/14</td>
<td>Tue 9/16/14</td>
<td>51</td>
</tr>
<tr>
<td>Issue final completion documents</td>
<td>1 day</td>
<td>Wed 9/17/14</td>
<td>Wed 9/17/14</td>
<td>52</td>
</tr>
<tr>
<td>Perform Fire Marshal’s inspection</td>
<td>1 day</td>
<td>Thu 9/18/14</td>
<td>Thu 9/18/14</td>
<td>53</td>
</tr>
</tbody>
</table>
2.5 Resource Allocation

The majority of the construction resources for the Greenhouse Café will be sourced locally. Several manufacturers around British Columbia have been located who produce glulam beams and architecturally finished products from pine beetle wood. Utilizing these products will help minimize the wasted wood from British Columbia’s pine beetle natural disaster that has been occurring over the last decade. The large glazed walls of the restaurant and greenhouse will use double glazed panes filled with monatomic gases to increase the insulation properties of the large beautiful greenhouse walls. In compliance with LEED outlines our building’s concrete in the foundation and shear walls will contain roughly 40% of supplementary cementitious material and use recycled, crushed concrete as aggregate (BC Ready-Mixed Concrete Association, 2013).

3 GREENHOUSE CAFÉ DESIGN

The Greenhouse Café is the initial improvement to the Garden, aiming to attract more visitors and increase revenue. The Greenhouse Café will have a café at the centre of the building, a greenhouse at the perimeter of the building, and a green roof. A 4D model of the building was created to improve the design process. This section also includes a detailed design of one structural and one geotechnical element of the building.
3.1 Architectural Inspiration

The main objectives of the Greenhouse Café design are to develop in-house attractions, while considering environmental sustainability. The core philosophy of the design is to make the building more passive and efficient through natural lighting, while incorporating interesting architecture. Much like a sculpture, the building started out as a simple cylindrical shape and was further molded by the needs of the Botanical Garden. Early on the project design was guided by the purpose of the project until certain restraints, such as the available area was contemplated. Once the functionality of the structure was considered, the design was revised to incorporate a greenhouse around the perimeter of the structure, surrounding the Café in the centre of the building. Digital rendering, as shown in Figure 4 on the following page, allowed the final elements to be fine-tuned to complement the primary structure. The model of the building effectively turned the creative design process into an iterative procedure until all of our functional targets were met. Vague idealizations began to give way to material selections, interior design, and room layouts, which resulted in a more sophisticated 3D model rather than a traditional architectural plan. The building will showcase both innovative sustainable technologies and modern multi-cultural architecture to the community and tourism industry.
Figure 4: Greenhouse Cafe Rendering and Elevation Views
3.1.1 Enclosure System
The glass curtain wall system of the Greenhouse Café consists of two layers of glazing separated
by a spacer. The spacers create an air cavity between the panes, which mitigate heat loss and
provides a highly insulating building envelope. The glass is sealed together with a vapour barrier
gasket to make the enclosure completely waterproof.

3.1.2 Interior System
The heating and ventilation system of the Café area is largely passive. Vents are located in the
bottom and top of the structure. Hot air rising throughout the structure and being vented at the
top creates a negative pressure that draws cooler air in at the bottom. In the winter months,
sunlight shining through the glazing will store thermal mass in the concrete floors. At night and
in the evening, this heat will be released and circulate through the structure. The sloped roof
allows the air to flow evenly without collecting in the center of the building, promoting natural
ventilation. The central Café area will have a number of removable interior partition walls so that
they can be shifted if necessary, providing space for special events.

3.2 Structural Design
Structural design of the Greenhouse Café was made in close collaboration with the architectural
and geotechnical design. The building elements are selected and designed to accommodate the
architectural concept and resolve geotechnical constraints.

3.2.1 Structural Loads
The structural loads considered in our design include specified snow load, specified dead load,
and specified live load. Lateral load analysis is not part of the design, therefore, the wind load
and earthquake loads are not considered. The specified snow load, S, is determined to be 1.64
kPa for Vancouver; the specified dead load, D, above deck is calculated to be 0.8 kPa; and the
specified live load, \(L \), is 1.0 kPa as detailed in the National Building Code of Canada, NBCC (National Research Council of Canada, 2010).

3.2.2 Design Weight Bearing Components

The structural calculations were completed using stained Douglas Fir; however, the construction will ideally use pine-beetle lumber, which is not specified in the current revision of the NBCC. The green roof will be supported by steel decking, which transfers load to the foundation through a load path within wooden truss, girder, and column.

To design and size the structural elements, the governing load was selected from the worst (highest) load combination of cases outlined in Table 4.1.3.2.A of NBCC (National Research Council of Canada, 2010). The wind load was considered negligible on the factored load. The multiple columns provide a redundant design, which facilitates large bearing capacity and ensures a large factor of safety. While calculating the factored load, it is observed that the snow load is greater than the live load, therefore the governing equation is:

\[
\text{Factored load} = 1.25D + 1.5S + 0.5L
\]

Deck Design

The steel deck is supported by the wooden truss, which evenly spreads the load across the span of the Café. The truss layout demands a minimum deck span of 3.3 m, which will provide sufficient load bearing capacity. The calculated factored load demand on the deck is 4.0 kPa, which is satisfied by steel deck P2436 type 22 with bearing capacity of 4.8 kPa and unit weight of 2.88 lb/sf (Canam Group, 2013). Under service conditions, deflection of the steel deck is within the allowable maximum deflection of L/360 (National Research Council of Canada, 2010). Therefore, the steel deck P2436 type 22 is acceptable.
Truss Design

The green roof of the Greenhouse Café is a symmetrically sloped surface supported by a system of truss bays which are triangles and projected from the center of structure. Each truss carries loads from its corresponding tributary areas. The factored load demand on truss is 4.33 kPa.

For truss modeling, the point load at each joint was also calculated by tributary areas. By a RISA 2D model (see Appendix A), member forces were calculated. The member specification then was determined from the Stud Wall Selection Tables (National Wood Council, 2010).

Figure 5: Truss Layout Plan

Figure 6: Typical Truss
Girder Design
The point loads applied on girders were determined by calculating factored load from the truss as shown in the RISA model (see Appendix A). The point loads are 10 kN, 81 kN, and 59 kN in central column, interior and exterior girders, respectively while considering the truss self-weight.

Glulam is commonly used for intermediate and long-span bending applications. This is due to the wide range of sizes, lengths and shapes available (National Wood Council, 2010). Our design features long girders spanning 5 m and 10 m. Therefore, glulam is our primary bending member consideration.

From the Beam Selection Table of Wood Design Manual, the lightest members with satisfying moment and shear resistance were sought. Glulam Spruce-Pine 20f-E 130x608mm was selected for interior girder and Glulam Spruce-Pine 20f-E 315x608 selected for exterior girder (National Wood Council, 2010). By deflection check, all girder materials selected are satisfactory.

Column Design
The factored load from the green roof, deck, truss and girder applied to column was calculated to be 4.34 kPa. The column load bearing was then calculated by tributary area method, followed by material selection as summarized in Table 2.

<table>
<thead>
<tr>
<th>COLUMN LOCATION</th>
<th>FACTORED LOAD</th>
<th>EFFECTIVE LENGTH</th>
<th>COLUMN</th>
<th>LOAD RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL</td>
<td>326 kN</td>
<td>4 m</td>
<td>D.Fir-L Select Structural 241x241mm</td>
<td>545 kN</td>
</tr>
<tr>
<td>INTERIOR</td>
<td>217 kN</td>
<td>4 m</td>
<td>S-P-F No.1 241x241mm</td>
<td>343 kN</td>
</tr>
<tr>
<td>EXTERIOR</td>
<td>190 kN</td>
<td>4 m</td>
<td>S-P-F No.2 241x241mm</td>
<td>226 kN</td>
</tr>
</tbody>
</table>
3.3 Geotechnical Design

A geotechnical analysis was conducted to design effective foundations to support the UBCBG Greenhouse Café while complying with the applicable standards, including the International Building Code, Canadian Foundation Engineering Manual, and UBC’s personal Standards. The structural loads calculated in the preceding section are essential inputs for the foundation design.

3.3.1 Soil Stratigraphy

Soil stratigraphy was determined using data from a set of test holes taken at Agronomy Road and West Mall, which is 900 m away from UBCBG. The soil within UBC area would have undergone similar geological experience; therefore, the soil stratigraphy is expected to not vary significantly over this distance so that the provided borehole logs should give relevant information. The eight borehole depths vary between 9 m and 12 m with ground elevation at approximately 80 m above sea level. The water table is 2 m below surface (GeoPacific Consultants, 2013). The overview of estimated soil stratigraphy is shown in Figure 7.

![Figure 7: Soil Stratigraphy at Proposed Site](image_url)
The geotechnical analysis is based on a simplified soil stratigraphy model shown in Figure 8 with typical values of soil properties (Budhu, 2007). The silty sand layer is assumed to be fairly dense and have elasticity modulus of 20 MPa (Geotechdata, 2013).

3.3.2 Shallow Foundation Design

As the Greenhouse Café is a typical one-storey building that will be constructed on compacted silty sand (Glacial Till), a simple square footing of 1.0x1.0 m placed underneath each column will be adequate for most loads. However, as the central footing sustains the greatest load demands, its base area is increased to 1.2x1.2 m. All footing bases are 0.35 m thick at a depth of 1.2 m to satisfy the local frost line boundary located at 0.20 m depth as well as the water table located at 2.0 m depth (Easkes, 2014). The bearing capacity calculation is based on Allowable Stress Design (ASD) using a safety factor of 3.0 and Load and Resistance Factor Design (LRFD) with resistance factor of 0.5. The specification of reinforced square footing is shown in Figure 9 with results summarized in Table 3.
Table 3 Summary of Shallow Foundation Design

<table>
<thead>
<tr>
<th></th>
<th>CENTRAL FOOTING</th>
<th>INTERIOR FOOTINGS</th>
<th>EXTERIOR FOOTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSION (MM X MM)</td>
<td>1200x1200</td>
<td>1000 x 1000</td>
<td>1000 x 1000</td>
</tr>
<tr>
<td>FACTORED DEMAND (KPA)*</td>
<td>234</td>
<td>221</td>
<td>191</td>
</tr>
<tr>
<td>ASD BEARING CAPACITY (KPA)</td>
<td>276</td>
<td>243</td>
<td>243</td>
</tr>
<tr>
<td>LRFD BEARING CAPACITY (KPA)</td>
<td>288</td>
<td>248</td>
<td>248</td>
</tr>
<tr>
<td>DISTORTION SETTLEMENT (MM)</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DIFFERENTIAL SETTLEMENT</td>
<td>41/100000</td>
<td>2/3125</td>
<td>7/25000</td>
</tr>
</tbody>
</table>

* Calculated as per column load demand specified in section 3.2 Structural Design
3.3.3 Foundation Plan
Each square footing is placed beneath each column to support the loads of the structure and green roof as specified in Figure 10.

![Figure 10: Shallow Foundation Plan](image)

3.3.4 Liquefaction Assessment
Due to at least four glaciations during Pleistocene, silty sand including silty sand and gravel (Glacial Till) layer at depth up to 3 m has undergone extremely high geological pressure and thus is very compact, stiff, and has high bearing capacity (Ministry of Environment, 2014). The sand and gravel layer, located at greater than 3.0 m depth, has also undergone the same extreme geological experience as the upper layers; therefore it is also very compact and stiff. Based on this analysis, liquefaction is not expected to occur in the proposed site even though the sand layer is saturated and may have low fines content.
3.3.5 Design Standards
Below is the outline of applicable standard requirements along with the design compliance.

UBC - In order to comply with the UBC Construction Standards, all earthworks including the site classification factor for the soils shall be determined by a qualified Geotechnical Engineer for further on-site investigation (University of British Columbia, 2014).

European Committee for Standardization and Canadian Foundation Engineering Manual - The expected settlement for serviceability is 3-4 mm which satisfies the limiting value of 25 mm (European Committee for Standardization, 1994). The worst expected differential (angular) settlement of design is 2/3125 which is less than the allowable maximum δ/L ratio of 1/250 for open steel and reinforced concrete frames structure (Budhu, 2007).

International Building Code - The applicable geotechnical design requirements prescribed in the International Building Code as well as the compliance of actual design are outlined in Table 4 below (International Code Council, 2012).

| Table 4 Design Compliance (International Code Council, 2012) |
|-------------|-----------------|-----------------|
| CODE | REQUIREMENTS | COMPLIANCE |
| 1809.2 | Shallow foundations shall be built on undisturbed soil, compacted fill material or controlled low-strength material. | Footings are placed within compacted silty sand layer that has high bearing capacity. |
| 1809.4 | The minimum depth of footings below the undisturbed ground surface shall be 12 in. (305 mm). The minimum width of footings shall be 12 in. (305 mm). | Depth of footing is 1200 mm. Width of smallest footing is 1000 mm. |
| 1809.5 | Foundations and other permanent supports of buildings and structures shall be protected from frost by one or more of the following: | The footings are placed below the local frost line at 200 mm depth. |
more of the following methods:

1. Extending below the frost line;
2. Accordance with ASCE 32; or
3. Erecting on solid rock.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1809.6</td>
<td>Footings on granular soil located such that the lower edges of adjoining footings shall not have a differential slope steeper than 30° with the horizontal, unless the material supporting the higher footing is braced or retained or otherwise laterally supported in an approved manner or a greater slope has been properly established by engineering analysis.</td>
<td>The footings are constructed to be at same elevation, within silty sand (Glacial Till) layer. Due to its high bearing capacity, differential settlement of footings is expected to be insignificant and less than 30°.</td>
</tr>
<tr>
<td>1809.7</td>
<td>One-storey building: minimum footing width of 12 in. (300 mm) and thickness of footing is 6 in. (150 mm).</td>
<td>The smallest designed footing is 1000 mm wide and 350 mm thick.</td>
</tr>
</tbody>
</table>

3.4 Environmental Consideration

The Greenhouse Café is utilizing the most advanced resources in sustainable engineering practices. This design decision gives the Café an operational advantage because of lowered hydroelectric and water management bills.

Additionally, the Café will make practice of the recent market of timber products from the Pine Beetle disaster in BC’s forests. This will help minimize the cleanup this natural disaster has ensued on the province. The pine-beetle timber as a construction material additionally stores carbon when harvested, furthermore many of these rising manufacturers invest part of their profit to reforestation projects to ensure the longevity of our local pine forests and the production industry it generates.
Many of the materials were sourced locally, which helps the economy in British Columbia and decreases transportation costs while simultaneously lowering the impact of such transport on the environment.

The first green roof in human history was built in 7th century B.C. in Babylon (Iraq) by the king of Babylon for his wife. In ancient times, green roofs were mainly for aesthetic purpose and better insulation. They were not associated with environment benefits until 1977 when Germany started formally studying green roof technology. Since then the technology has being gaining popularity in Europe and throughout the world (Rodriguez, 2006).

The concept of environmental protection has been increasingly integrated into building design and construction. To minimize the negative impacts to the environment, cities around the world are promoting sustainable building practices to achieve harmony with natural environments, not only aesthetically. As a result, building structures and interfaces are being configured to be more natural. Complementarily, green roofs make concrete building less destructive to the environment.

4 COST ANALYSIS

In order to generate an accurate cost estimate of the Greenhouse Café a square foot method estimate was compiled using the RS Means Online program and database. Our estimate took into consideration location, green construction materials, time of construction, and use of the building as a restaurant, size, and general frame type of the building.
Figure 11: Square Foot Estimate Parameters
The estimate also included reserves for standard restaurant equipment (range, freezers, bar, seating and tables, etc.), green roof, water recycling equipment, heat exchangers, contractor fees, and a higher than usual architectural fee due to the intricate design. Architectural service fees are usually around 10% (The Royal Architecture Institute of Canada, 2009).

Figure 12: Square Foot Estimate
Taking all of the resources into consideration, the square foot method generated a total cost of $2,345,000.00. This cost does not take into account the extent of glazing, costly pine beetle timber or the interior greenhouse in our design. We estimate that this will add roughly $1.2M to the total cost for a total of around $3.6M for the total greenhouse and café space.
5 CONCLUSION

The cost of the Greenhouse Café was estimated at $3.6M using the RS means online database.

Construction Management:
Integrated project delivery method allows the design team to collaborate with one another early in the design process minimizing design conflicts and delays. The project management considered a conceptual phased development for the Garden in the long term as well as a site logistics plan and a construction schedule for the Greenhouse Café. The result is a construction schedule of 103 working days. A 4D BIM model aided this process and allowed for the iterative design approach. Local resource allocation makes such a fast-tracked schedule feasible.

Structural:
The structural design for this project focuses on gravity system determination without considering lateral loads and seismic loads. All calculations and analysis were conducted under the idealized loading condition. However, even with fewer factors to consider, the multi-edged footprint, the extraordinary-shaped green roof and environmental soundness still provides design excitement and challenges for structural analysis. Accordingly, truss network was set in radially to accommodate roof shape; wood was used for all load bearing components except the deck. Overall, the structure is aesthetically pleasant, functional and environmentally sounds.

Geotechnical
Based on the analysis of the soil stratigraphy, from the closest geotechnical conditions accessible, our design team determined that square shallow foundations beneath the columns were the optimized design. The footings are sized to be 1.2x1.2 m at the centre and 1.0x1.0 m elsewhere with a thickness of 0.35 m below each column. The foundations are placed at 1.2 m below the surface. The conservative footing design complies with the UBC’s Standards, Canadian Foundation Engineering Manual, and International Building Code.

City of Vancouver. (2014). *VanDusen*. Retrieved from City of Vancouver:

http://www.env.gov.bc.ca/soils/landscape/1.3geology.html

http://www.botanicalgarden.ubc.ca/mission

http://www.technicalguidelines.ubc.ca/technical/structural_design_snow_loads.html##e
APPENDIX A – STRUCTURAL DESIGN CALCULATION

Snow Load

Snow Load, S, was calculated based on Article 4.1.6.2 of the NBCC 2010.

\[S = I_S S_3 \left(C_b C_w C_s C_a \right) + S_r \]

\[\therefore S = 1.0 \times \left[1.8 \times \left(0.8 \times 1.0 \times 1.0 \times 1.0 \right) + 0.2 \right] = 1.64 \text{ kPa} \]

Calculate Dead Load & Live Load

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
<th>Thickness</th>
<th>Unit Weight (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>Sedum Album</td>
<td>4”</td>
<td>6</td>
</tr>
<tr>
<td>Growing Medium</td>
<td>Organic and mineral Additives</td>
<td>2”</td>
<td>8 (WC30-40%)</td>
</tr>
<tr>
<td>Root barrier filter</td>
<td>60% recycled compound</td>
<td>0.3”</td>
<td>1</td>
</tr>
<tr>
<td>Drainage & retaining layer</td>
<td>Plastic drain mat with cone</td>
<td>1.5”</td>
<td>0.8</td>
</tr>
<tr>
<td>Moisture protection layer</td>
<td>Recycled polypropylene</td>
<td>0.3”</td>
<td>0.2</td>
</tr>
<tr>
<td>Separation barrier</td>
<td>Plastic sheet</td>
<td>0.2”</td>
<td>0.3</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>Extruded polystyrene foam</td>
<td>4”</td>
<td>0.6</td>
</tr>
<tr>
<td>Total dead load above deck</td>
<td></td>
<td></td>
<td>16.9</td>
</tr>
<tr>
<td>Structural deck</td>
<td>Canam Steel deck P-2436</td>
<td>0.036”</td>
<td>2.43</td>
</tr>
<tr>
<td>Uniformly distributed live load</td>
<td></td>
<td></td>
<td>1 kPa</td>
</tr>
</tbody>
</table>

Factored load = **1.25D + 1.5S + 0.5L** (Table 4.1.3.2.A of NBCC 2010)

Deck design

The truss layout requires deck with a maximum single span of 3.3m with satisfying load bearing capacity. **The factored load on deck** = 1.25 * 0.8 + 1.5 * 1.64 + 0.5 * 1.0 = 4kPa

From Canam steel deck catalogue, use the lightest option P2436 type 22:

- Deck unit weight = 2.88 psf

Truss Design

Each truss takes load from above by respective tributary areas. The factored load taken by each truss is 4.33 kPa including the green roof, deck and ceiling weight:

The factored load on truss = 1.25 * 1.1 + 1.5 * 1.64 + 0.5 * 1.0 = 4.33 kPa

Point loads on joints:

In our truss design, the truss takes the roof load at each joint connecting with the deck. For truss modeling, the point load each joint takes are calculated by tributary areas.
Joint	1	2	3	4	5	6	7	8	9
Force (kN) | 0.56 | 4.76 | 9.1 | 13.9 | 18.2 | 22.9 | 27.3 | 32 | 17.8

Truss member determination

From modeling result, members are selected Wood Design Manual 2010 (WDN), Stud Wall Selection Tables based on factors that govern:

Final Member

<table>
<thead>
<tr>
<th>Section</th>
<th>Controlling Member</th>
<th>Shape</th>
<th>Length (m)</th>
<th>Weight (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chords</td>
<td>M17</td>
<td>D.Fir-L 38x89mm SS</td>
<td>40</td>
<td>0.7</td>
</tr>
<tr>
<td>Verticals</td>
<td>M26</td>
<td>D.Fir-L 38x184mm SS</td>
<td>29</td>
<td>1.1</td>
</tr>
<tr>
<td>Diagonals</td>
<td>M27</td>
<td>D.Fir-L 38x140mm SS</td>
<td>32</td>
<td>0.88</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2.65</td>
</tr>
</tbody>
</table>

Girder Design

Loads
The point load on central column is 9.1 kN and 79.3 kN
on interior girder and 58.1 kN on exterior girder. Plus truss self-weight taken by three points in proportion of its tributary areas. The point loads are as follows:

- Central column: \(9.1 + 2.65 \times \frac{(12/83)}{} = 9.5 \text{ kN}\)
- Interior girder: \(79.3 + 2.65 \times \frac{(40/83)}{} = 81 \text{ kN}\)
- Exterior girder: \(58.1 + 2.65 \times \frac{(31/83)}{} = 59 \text{ kN}\)

Bending moment
- Interior girder: \(M = Pa = 81 \times 5/3 = 135 \text{ kNm}\)
- Exterior girder: \(M = Pa = 59 \times 10/3 = 197 \text{ kNm}\)

Bending moment resistance
From the Beam Selection Table of WDN, select the lightest members with greater moment resistance and shear resistance.

- Interior girder: Glulam Spruce-Pine 20f-E 130 x 608 mm
- Exterior girder: Glulam Spruce-Pine 20f-E 315 x 608 mm

Check deflection
\[
\Delta_{max} = \frac{Pa \times (3L^2 - 4a^2)}{24EI} \quad \text{CAN/CSA O86 limits L/180 deflection}
\]
- Interior girder: \(\Delta_{max} = 14 \text{ mm} < \text{allowable (acceptable)}\)
- Exterior girder: \(\Delta_{max} = 30 \text{ mm} < \text{allowable (acceptable)}\)

Column Design
Factored load for column is:
\[
1.25D + 1.5S + 0.5L = 1.25 \times 1.1022 + 1.5 \times 1.64 + 0.5 \times 1.0 = 4.34 \text{ kPa}
\]

Factored compressive load
- P (central) = 4.34 x 6.25 x 12 = 325.5 kN
- P (interior) = 4.34 x 50 = 217 kN
- P (exterior) = 4.34 x 43.8 = 190 kN

Select column
From the column selection table of WDM, the lightest wood columns are selected as follows:
- Central column: D.Fir-L Select Structural 241x241mm Pr = 545 kN @ L = 4 m
- Interior column: S-P-F No.1 241x241mm Pr = 343 kN @ L = 4 m
- Exterior column: S-P-F No.2 241x241mm Pr = 226 kN @ L = 4 m
APPENDIX B – GEOTECHNICAL DESIGN CALCULATION

GEOTECHNICAL ENGINEERING DESIGN CALCULATION SHEET

<table>
<thead>
<tr>
<th>Subject</th>
<th>Foundation design of the greenhouse café at the UBC Botanical Garden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Calculation of 1.2x1.2m Footing at the Centre of Café</td>
</tr>
</tbody>
</table>

INPUT

- **Input Values:**
 - **Gamma Sat (gams)** = 18.00 kN/m³
 - **Gamma Dry (gammad)** = 16.00 kN/m³
 - **Friction Angle (phi)** = 30.00 degrees
 - **GWT Location (z)** = 2.00 m
 - **Depth of Footing (df)** = 1.20 m
 - **Length (L)** = 1.20 m
 - **Base (b)** = 1.20 m
 - **Thickness (t)** = 0.35 m
 - **Shortest distance between footings (L)** = 10.00 m
 - **Friction Angle Radians (phir)** = 0.52 rad
 - **Factor of Safety (Fs)** = 3.00
 - **Resistance Factor (Fr)** = 0.50
 - **Modulus of Elasticity (G)** = 20,000 kPa
 - **Poissons Ratio (pois)** = 0.45
 - **Influence factor (I)** = 0.20
 - **Design Lifetime (time)** = 50 years
 - **Factored Applied Load (p)** = 322 kN
 - **Factored Weight of Footing (w)** = 18.12 kN
 - **Factored Applied Stress (qapplied)** = 234.11 kPa

Calculation of Bearing Capacity

Case 1

\[\text{sq} = 1 + \left(\frac{b}{l} \right) \tan(\text{phir}) \]

\[\text{dq} = \begin{cases} 1 + \left(\frac{2\tan(\text{phir})}{(1 - \sin(\text{phir}))^2} \right) \left(\frac{df}{b} \right)^{-1} & \text{if} \left(\frac{df}{b} > 1 \right) \\ 1 + \left(\frac{2\tan(\text{phir})}{(1 - \sin(\text{phir}))^2} \right) & \text{otherwise} \end{cases} \]

\[\text{Nq} = \exp(\pi \tan(\text{phir})) \left(\tan\left(\frac{45\pi}{180} + \frac{\text{phir}}{2} \right) \right)^2 \]

\[\text{wq} = \begin{cases} \left(\frac{z}{df} \right) + \left(\frac{\text{gams} - 9.8}{\text{gams}} \right) \left(1 - \left(\frac{z}{df} \right) \right) & \text{if} \left(\text{case} = \text{Case 3} \right) \\ 1 & \text{otherwise} \end{cases} \]

\[\text{Ngamma} = 0.1054 \exp(9.6 \times \text{phir}) \]

\[\text{sgamma} = 1 - 0.4 \left(\frac{b}{l} \right) \]

\[\text{wgamma} = \begin{cases} \frac{\text{gams} - 9.8}{\text{gams}} & \text{if} \left(\text{case} = \text{Case 3} \right) \\ \frac{z - df}{b} + \left(\frac{\text{gams} - 9.8}{\text{gams}} \right) \left(1 + \frac{df}{b} - \left(\frac{z}{b} \right) \right) & \text{otherwise} \end{cases} \]

\[\text{sc} = 1 + 0.2 \left(\frac{b}{l} \right) \]

\[\text{dc} = \begin{cases} 1 + \left(0.33 \times \left(\frac{df}{b} \right)^{-1} \right) & \text{if} \left(\frac{df}{b} > 1 \right) \\ 1 + \left(0.33 \times \frac{df}{b} \right) & \text{otherwise} \end{cases} \]

Check: Shallow Foundation Criterion

\[\text{chk_sf} = \begin{cases} \text{OK} & \text{if} \left(\frac{df}{b} < 2.5 \right) \\ \text{Not OK} & \text{otherwise} \end{cases} \]

Ultimate Bearing Capacity of Footing (Quc)

\[Quc = \text{gammad} \times \text{df} \times (\text{Nq} - 1) \times \text{sq} \times \text{dq} \times \text{wq} + 0.5 \times \text{gams} \times \text{b} \times \text{Ngamma} \times \text{sgamma} \times \text{wgamma} \]

ASD Calculation

Allowable Bearing Capacity Sand (qas)

\[qas = \left(\frac{\text{Quc}}{\text{Fs}} \right) + \text{gams} \times \text{df} \]

Check Allowable Stress Design (chk_asd)

\[\text{chk_asd} = \begin{cases} \text{OK} & \text{if} \left(\frac{\text{Quc}}{\text{Fs}} \right) + \text{gams} \times \text{df} \leq \text{Qas} \\ \text{NOT OK} & \text{otherwise} \end{cases} \]

LFRD Calculation

Ultimate Gross Bearing Capacity Sand (Qults)

\[Qults = \text{Quc} + \text{fr} \times \text{gams} \times \text{df} \]

Check LFRD (chk_lfrd)

\[\text{chk_lfrd} = \begin{cases} \text{OK} & \text{if} \left(\frac{\text{Qults}}{\text{Fs}} \right) \leq \frac{\text{gams} \times \text{df}}{\text{Fr}} \times \text{Ngamma} \times \text{sgamma} \times \text{wgamma} \\ \text{NOT OK} & \text{otherwise} \end{cases} \]

Calculation of Settlement

Effective Vertical Stress at footing level (\(\sigma_v\))

\[\sigma_v = \text{gammad} \times \text{df} \]

Correction factor for depth (C1)

\[C1 = 1 - 0.5 \times \frac{\sigma_v}{\text{gammad}} \]

Correction factor for secondary creep (C2)

\[C2 = 1 - 0.2 \log(\text{time} / 0.1) \]

Correction factor for foundation shape (C3)

\[C3 = 1 - 0.3 \times \frac{\text{b}}{\text{L}} - 0.1 \times \frac{\text{b}}{\text{L}} \]

Settlement due to Distortion in Sand Calculation

\[S = \frac{\text{Qapplied} \times \text{b} \times I_e}{\text{E}} \times \text{C1} \times \text{C2} \times \text{C3} \]

Check Allowable Settlement (chk_settle)

\[\text{chk_settle} = \begin{cases} \text{OK} & \text{if} \left(\frac{S}{\text{L}} \right) < 25, \text{OK} \\ \text{NOT OK} & \text{otherwise} \end{cases} \]

Differential Settlement Calculation

Differential Settlement (S_dif)

\[S_dif = S / \text{L} \]

Check Allowable Differential Settlement (chk_setdif)

\[\text{chk_setdif} = \begin{cases} \text{OK} & \text{if} \left(\frac{S_dif}{0.004} \right) \leq \text{OK} \\ \text{NOT OK} & \text{otherwise} \end{cases} \]

Date: March 19, 2014
Designed by: DA
Reviewed by: HW
Group: Team 6
Course: CIVL 446 Engineering Design and Analysis II
Title: Foundation Design of the Greenhouse Café at the UBC Botanical Garden
Page: Calculation of 1.0x1.0m Interior Footing

INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Sat</td>
<td>(\gamma_{sat} = 18.00 \text{kN/m}^3)</td>
</tr>
<tr>
<td>Gamma Dry</td>
<td>(\gamma_{dry} = 16.00 \text{kN/m}^3)</td>
</tr>
<tr>
<td>Friction Angle</td>
<td>(\phi = 30.00 \text{ degrees})</td>
</tr>
<tr>
<td>GWT Location</td>
<td>(z = 2.00 \text{ m})</td>
</tr>
<tr>
<td>Depth of Footing</td>
<td>(d_f = 1.20 \text{ m})</td>
</tr>
<tr>
<td>Length</td>
<td>(L = 1.00 \text{ m})</td>
</tr>
<tr>
<td>Base</td>
<td>(b = 1.00 \text{ m})</td>
</tr>
<tr>
<td>Thickness</td>
<td>(t = 0.35 \text{ m})</td>
</tr>
<tr>
<td>Shortest distance between footings</td>
<td>(L = 5.00 \text{ m})</td>
</tr>
<tr>
<td>Friction Angle</td>
<td>(\phi = 30.00 \text{ degrees})</td>
</tr>
<tr>
<td>Resistance Ratio</td>
<td>(R = 0.50 \text{ rad})</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>(E = 20,000 \text{kPa})</td>
</tr>
<tr>
<td>Poissons Ratio</td>
<td>(v = 0.20)</td>
</tr>
<tr>
<td>Design Lifetime</td>
<td>(t = 50 \text{ years})</td>
</tr>
<tr>
<td>Factored Applied Load</td>
<td>(p = 210 \text{kN})</td>
</tr>
<tr>
<td>Factored Weight of Footing</td>
<td>(w = 10.50 \text{kN})</td>
</tr>
<tr>
<td>Factored Applied Stress</td>
<td>(Q_{\text{applied}} = 220.50 \text{kPa})</td>
</tr>
</tbody>
</table>

Calculation of Bearing Capacity

<table>
<thead>
<tr>
<th>Case</th>
<th>(\text{sq})</th>
<th>(\text{dq})</th>
<th>(\text{N}_{\text{q}})</th>
<th>(\text{N}_{\gamma})</th>
<th>(\text{sc})</th>
<th>(\text{dc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>(1+\left(\frac{b}{l}\right)\tan(\phi))</td>
</tr>
<tr>
<td>Case 2</td>
<td>(1+\left(\frac{b}{l}\right)\tan(\phi))</td>
</tr>
<tr>
<td>Case 3</td>
<td>(1+\left(\frac{b}{l}\right)\tan(\phi))</td>
</tr>
</tbody>
</table>

Ultimate Bearing Capacity of Footing

\(Q_{\text{uc}} = \gamma_{dry} d_f (N_{\text{q}}-1) \text{sq} \cdot \text{dq} \cdot \text{N}_{\gamma} \cdot \text{sc} \cdot \text{dc} \) = 663.44 kPa

ASD Calculation

Allowable Bearing Capacity Sand

\(Q_{\text{as}} = (Q_{\text{uc}})/(Fs) + \gamma_{dry} d_f \) = 242.75 kPa

Check Allowable Stress Design

\(\text{chk}_{\text{asd}} \) = OK

LFRD Calculation

Ultimate Gross Bearing Capacity Sand

\(Q_{\text{ults}} = Q_{\text{uc}} + \gamma_{dry} d_f \) = 247.75 kPa

Check LFRD

\(\text{chk}_{\text{lfrd}} \) = OK

Calculation of Settlement

Eff. Vertical Stress at footing level

\(\sigma_{\text{eff}} = \gamma_{dry} d_f \) = 19.20 kPa

Correction factor for depth

\(C_1 = 1 - \left(0.5 \cdot \frac{d_f}{b}\right) \cdot \left(\frac{G_{\text{as}}}{G_{\text{us}}}\right) \) = 0.95

Correction factor for secondary creep

\(C_2 = 1 + 0.2 \cdot \text{log}(t/0.1) \) = 1.54

Correction factor for foundation shape

\(C_3 = 1 - 0.03 \cdot \frac{l}{b} \) = 1.00

Settlement due to Distortion in Sand Calculation

\(S_{\text{dist}} = \frac{Q_{\text{applied}} \cdot b \cdot C_1 \cdot C_2 \cdot C_3}{E} \) = 3.24 mm

Check Allowable Settlement

\(\text{chk}_{\text{settle}} \) = OK

Differential Settlement Calculation

\(S_{\text{dif}} = \frac{Q_{\text{applied}} \cdot b \cdot C_1 \cdot C_2 \cdot C_3}{E} \) = 0.0068

Check Allowable Differential Settlement

\(\text{chk}_{\text{setdif}} \) = OK

Date: March 15, 2014

Designed by: DA

Group: Team 6

Reviewed by: HW

5 | APPENDIX

GEOTECHNICAL ENGINEERING DESIGN CALCULATION SHEET
INPUT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Sat (gams)</td>
<td>18.00</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Gamma Dry (gamd)</td>
<td>16.00</td>
<td>kN/m³</td>
</tr>
<tr>
<td>Friction Angle (φ)</td>
<td>30.00</td>
<td>degrees</td>
</tr>
<tr>
<td>GWT Location (z)</td>
<td>2.00</td>
<td>m</td>
</tr>
<tr>
<td>Depth of Footing (df)</td>
<td>1.20</td>
<td>m</td>
</tr>
<tr>
<td>Base (b)</td>
<td>1.00</td>
<td>m</td>
</tr>
<tr>
<td>Thickness (t)</td>
<td>0.35</td>
<td>m</td>
</tr>
<tr>
<td>Shortest distance between footings (L)</td>
<td>10.00</td>
<td>m</td>
</tr>
<tr>
<td>Friction Angle Radians (φ_r)</td>
<td>0.52</td>
<td>rad</td>
</tr>
<tr>
<td>Factor of Safety (Fs)</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>Resistance Factor (Fr)</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity (E)</td>
<td>20,000</td>
<td>kPa</td>
</tr>
<tr>
<td>Poissons Ratio (ν)</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Design Lifetime (time)</td>
<td>50</td>
<td>years</td>
</tr>
<tr>
<td>Factored Applied Load (p)</td>
<td>180</td>
<td>kN</td>
</tr>
<tr>
<td>Factored Weight of Footing (w)</td>
<td>10.50</td>
<td>kN</td>
</tr>
<tr>
<td>Factored Applied Stress (Q_applied)</td>
<td>190.50</td>
<td>kPa</td>
</tr>
</tbody>
</table>

Calculation of Bearing Capacity

Case

- **Case 1**: df < 2.5
- **Case 2**: df ≥ 2.5
- **Case 3**: df ≥ 2.5 and (gams - 9.8) / gams ≤ 0.5

Calculation of Settlemen

Eff. Vertical Stress at footing level (q_vz):

- q_vz = (Qus/Fs) + gams * df

Check Allowable Stress Design (chk_asd):

- OK

LFRD Calculation

Ultimate Gross Bearing Capacity Sand (Qults):

- Qults = Qus * Fr + gams * df

Check LFRD (chk_lfrd):

- OK

Settlement Calculation

Effective Settlement (S):

- S = (Qus * I / E) * C1 * C2 * C3

Check Allowable Settle (chk_settle):

- OK

Differential Settlement Calculation

Effective Settlement (S_df):

- S_df = S / L

Check Allowable Differential Settlement (chk_settle):

- OK

Date: March 15, 2014

Designed by: DA

Group: Team 6

Reviewed by: HW
APPENDIX C – SQUARE FOOT ESTIMATE DATA

The following figures are the cost tables associated with the additional features chosen for a “Green Restaurant” setting. Most of these costs are due to kitchen equipment but also include features such as green roofs, heat exchangers and bar seating.
Step 3: Building Additives (optional)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
<th>Unit</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerators, prefabricated, walk-in, 7'-6" high, 6' x 6'</td>
<td>$239.81</td>
<td>S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10' x 10'</td>
<td>$188.85</td>
<td>S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12' x 14'</td>
<td>$168.62</td>
<td>S.F.</td>
<td>10.00</td>
<td>$1,686.2</td>
</tr>
<tr>
<td>12' x 20'</td>
<td>$147.38</td>
<td>S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commission Fees, sustainable commercial construction, min max</td>
<td>$0.26</td>
<td>S.F.</td>
<td>9780</td>
<td>$2,542.80</td>
</tr>
<tr>
<td>Energy Modelling Fees, commercial buildings to 10,000 SF</td>
<td>$11,968.00</td>
<td>Each</td>
<td>1.00</td>
<td>$11,968.00</td>
</tr>
<tr>
<td>Greater than 10,000 SF add</td>
<td>$0.04</td>
<td>S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Bldg Cert Fees for comm construction project reg</td>
<td>$979.20</td>
<td>Project</td>
<td></td>
<td>$979.20</td>
</tr>
<tr>
<td>Photovoltaic Pwr Sys, grid connected, 20 kW (~2400 SF), roof</td>
<td>$258,393.20</td>
<td>Each</td>
<td>1.00</td>
<td>$258,393.20</td>
</tr>
</tbody>
</table>

Step 3: Building Additives (optional)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
<th>Unit</th>
<th>Quantity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Modelling Fees, commercial buildings to 10,000 SF</td>
<td>$11,968.00</td>
<td>Each</td>
<td>1.00</td>
<td>$11,968.00</td>
</tr>
<tr>
<td>Greater than 10,000 SF add</td>
<td>$0.04</td>
<td>S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Bldg Cert Fees for comm construction project reg</td>
<td>$979.20</td>
<td>Project</td>
<td></td>
<td>$979.20</td>
</tr>
<tr>
<td>Photovoltaic Pwr Sys, grid connected, 20 kW (~2400 SF), roof</td>
<td>$258,393.20</td>
<td>Each</td>
<td>1.00</td>
<td>$258,393.20</td>
</tr>
<tr>
<td>Green Roofs, 6" soil depth, w/ treated wd edging & sedum mats</td>
<td>$119.99</td>
<td>S.F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10' Soil depth, with treated wood edging & sedum mats</td>
<td>$13.66</td>
<td>S.F.</td>
<td>10000</td>
<td>$136,600.00</td>
</tr>
<tr>
<td>Solar Domestic HW, closed loop, add on sys, ext heat exchanger</td>
<td>$9,367.35</td>
<td>Each</td>
<td>1.00</td>
<td>$9,367.35</td>
</tr>
<tr>
<td>Drainback, hot water system, 120 gal tank</td>
<td>$12,386.78</td>
<td>Each</td>
<td>1.00</td>
<td>$12,386.78</td>
</tr>
<tr>
<td>Draindown, hot water system, 120 gal tank</td>
<td>$12,767.18</td>
<td>Each</td>
<td>1.00</td>
<td>$12,767.18</td>
</tr>
</tbody>
</table>