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EXECUTIVE SUMMARY

How is the University of British Columbia (UBC) able to offer a system that helps consumers
choose more Climate-Friendly menu items? From a global perspective, food systems are an
enormous driver of climate change and contribute to more than one-third (34%) of global
greenhouse gas (GHG) emissions, which represent 17.9 billion tonnes of carbon dioxide
equivalents (CO2eq) (Crippa et al., 2021). Other estimates suggest that the food system is
responsible for one-quarter (26%) of global GHG emissions, representing 13.6 billion tonnes of
CO2eq (Poore & Nemecek, 2018). This brings a range of opportunities for actions to mitigate the

effect of food systems on the climate.

The Climate-Friendly Food Systems (CFFS) labelling project at UBC takes action to inform the UBC
community of the climate impact information of menu items they purchase every day at UBC
Food Services (UBCFS). The label provides an opportunity for the campus community to make
informed purchasing decisions that can promote a Climate-Friendly Food System. This research
report was prepared by the CFFS data analyst, supervised by a member of the CFFS Action Team.
This report is focused on the data analysis and the back-end implementation of the CFFS
Labelling pilot and is complementary to the report on the communication and definition side

prepared by the CFFS communication and engagement coordinator.

The CFFS Labelling pilot is part of the bold actions taken by UBC in response to the Climate Action
Plan (CAP) 2030 scope 3 emission reduction goal. The CFFS Action Team has been formed to
accelerate transitions toward a Climate-Friendly Food System and advance the CAP 2030
food-related actions and priorities. This project is part of the SEEDS Sustainability Program
research collaboration to develop, pilot, and evaluate UBC’s first Climate-Friendly Food Label that
aims to evaluate the climate impact of menu items sold at UBCFS outlets and operationalize the
CFFS food label to inform Climate-Friendly menu choices. The research includes developing a
methodology and framework that assesses GHG emissions and other CFFS attributes for menu
items at UBCFS. It also evaluates perceptions and the impacts of the Climate-Friendly Food Label

on awareness, knowledge, and purchasing decisions.

This project utilized a combination of literature review, discussion with peer institutions, and
assessment of the feasibility in the UBC’s context to decide the methodology. The primary data

sources (recipes and sales data) were extracted from the UBCFS inventory management system,


https://planning.ubc.ca/sustainability/sustainability-action-plans/climate-action-plan-2030/cap-2030-targets-and-actions-food-systems
https://planning.ubc.ca/sustainability/sustainability-action-plans/climate-action-plan-2030/cap-2030-targets-and-actions-food-systems

Optimum Control (OC). The data on carbon, nitrogen, and water footprint factors came from

external secondary data sources.

The main deliverable of the project is the evaluation framework that conducts the evaluation
process of recipes automatically once GHG emission factors have been assigned to each
ingredient, and is updated to incorporate additional attributes and adapt to the expansion of the
CFFS Label. The evaluation framework is able to read the primary data automatically and output
the total GHG emissions, nitrogen footprint, and water footprint of each menu item. To
determine the cut-offs for the levels of the label according to GHG emissions, we established a
2019 UBCFS GHG emission baseline and set cut-offs in accordance with the CAP 2030 GHG scope

3 50% reduction goal for food systems.

To help the transition to a Climate-Friendly Food System, we suggest that one way to mitigate the
total food system emissions is to reduce the amount of meat and dairy consumption and replace
them with plant-based protein products without compromising nutritional value. In addition, to
improve the accuracy and specificity of current labels, we recommend UBC lead the engagement
process and the establishment of a Pacific Northwest/Canadian-specific footprint factors

database by conducting research collaboratively with peer institutions.

Keywords: climate label, Climate-Friendly, reproducible data analysis, GHG, nitrogen, water use,

food systems
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1. INTRODUCTION

1.1 RESEARCH CONTEXT & TOPIC

Roughly 26% of global total GHG emissions (13.7 billion tons of CO2eq) generated by human
activities were contributed by the food supply chain (Poore & Newecek, 2018). A range from 10.8
and 19.1 billion tonnes of CO2-equivalent (CO2e) emissions per year representing between 21%
to 37% of global total emissions has been reported by The Intergovernmental Panel on Climate
Change (IPCC) Special Report on Climate Change and Land report.* According to Hannah Ritchie?:
“Food emissions are around 25% to 30% from food. Around one-third, if we include all

agricultural products.”

This brings a range of opportunities for climate action to mitigate the effect of food systems on
the environment. In December 2019, UBC joined organizations and governments around the
world to declare a climate emergency and renewed its commitment to sustainability, including a
commitment to the CAP 2030 (an update from a 2020 plan) to accelerate UBC’s climate actions.
As part of the CAP 2030, food was identified as an area of opportunity under scope 3 (indirect)

emissions.

The purpose of the CFFS Action Team is to serve as engaged experts from the existing UBC Food
System Project (UBCFSP) Steering Committee. The CFFS Action Team is responsible for the
ideation, coordination, and development of student-led research, initiatives, and interdisciplinary
collaborations that can accelerate transitions towards a climate-friendly food system and advance
UBCFSP's mission and priorities. In response to UBC’s CAP 2030, the CFFS Action Team aims to
achieve a 50% GHG emission reduction associated with food systems by 2030 compared to 2019,
starting with the development of a Food System Resilience & Climate Action Strategy, with
support for campus-wide climate food labelling, and a toolkit to encourage more sustainable

dietary choices and habits.

This project researches how to implement and operationalize the CFFS Label across campus by
developing a back-end evaluation framework for the climate impact of menu items and

implementing a label that indicates the impact of food sold at UBCFS. The main objective is

! Mbow, C. et al. Food Security in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation,
Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019). Rosenzweig, C., Mbow, C.,
Barioni, L. G., Benton, T. G., Herrero, M., Krishnapillai, M., ... & Portugal-Pereira, J. (2020). Climate change responses benefit from a global food
system approach. Nature Food, 1(2), 94-97.

2 Ritchie, H., & al. (2021). How much of global greenhouse gas emissions come from food? Our world in data (2021).


https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s43016-020-0031-z&casa_token=xQAzcPgWZGUAAAAA:T8paSDmWlNgFo3K-H9n6lkvV6BJqsDBGU2PIHeZEt4i0SPJKNbYIjS4WfUs78Bdvj2xGqYsXRaqAZbsRL38
https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s43016-020-0031-z&casa_token=xQAzcPgWZGUAAAAA:T8paSDmWlNgFo3K-H9n6lkvV6BJqsDBGU2PIHeZEt4i0SPJKNbYIjS4WfUs78Bdvj2xGqYsXRaqAZbsRL38

constructing an evaluation framework for analyzing the recipes and ingredients to provide a
composite metric that informs customers about the food’s climate impact. The evaluation
framework will incorporate a range of attributes that indicate aspects of the definition of CFFS for
food products. The definition work and the additional attributes can be found in the
complementary report developed by the CFFS Communications and Engagement Coordinator.
Along with other education and engagement materials, the label will indicate and incorporate a
range of CFFS attributes to give a comprehensive view of the food’s climate impact that students

purchase at UBCFS.

1.2 RESEARCH RELEVANCE

In order to mitigate GHG emissions and other climate impacts of the food system, various actions
from the food production and consumption side are necessary. As a major food provider at the
UBC campus, UBCFS contributed to a large proportion of the total GHG emissions from food
systems through students’ daily meals. The action of providing students with the GHG emission
information of the menu items they purchase every day could help to educate and influence their
purchasing behavior in a more climate-friendly way (Brunner et al., 2018). The CFFS Label is a
clear and efficient presentation to indicate the climate impact information of menu items, thus

helping students make purchasing choices that take the climate impacts into consideration.

1.3 PROJECT PURPOSE, GOALS, AND OBIJECTIVES

This project aims to operationalize the CFFS Label by constructing an evaluation framework for
analyzing the climate impact of menu items sold at UBCFS outlets. This includes creating a
reproducible data analysis framework for calculating recipes’ GHG emissions; establishing a food
GHG emissions baseline for the UBC Vancouver campus; deciding cut-offs for the CFFS Label; and
further integrating additional CFFS attributes into the framework and establishing corresponding

UBCEFS baselines to decide label cut-offs.



2. METHODOLOGY |

2.1 RESEARCH METHODOLOGY AND METHODS

This project utilized a combination of literature review, discussion with peer institutions, and
assessment of the feasibility in the UBC’s context, such as available data and department
support, to decide the methodology that best met the goals and objectives of this research.
Methods were also determined through discussion with researchers from the University of
Michigan, Université Laval, and the University of Victoria who are working on similar climate food

labelling projects.

The research methods include primary and secondary data collection; evaluating recipes’ GHG
emissions; developing an external data analysis framework; constructing a UBC GHG emission
baseline; deciding label cut-offs; and incorporating additional attributes. Detailed explanations

are provided below.

2.2 DATA COLLECTION

2.2.1 PrimARY DaTA COLLECTION

The raw recipe data for menu items sold at UBC food venues was extracted from the inventory
management system Optimum Control (OC) of UBC by the FMIS Administrator of UBCFS. Due to
system and administration restrictions, the data extraction was conducted manually instead of
using database queries. Recipe data was extracted in XML file format, and each file contained
one aspect of the recipe information, such as raw ingredients, preprocessed recipes used, and
unit conversion information. The evaluation framework was designed in accordance with this

data structure.

In Phase 1 at Mercante, in order to establish a 2019 GHG emissions baseline, the sales and
recipes data for all products sold at Mercante between January 1 and December 31, 2019 were
extracted from OC. Then, in the next two iterations of the CFFS Labelling pilot which expands to
Open Kitchen, the sales and recipes data for all products sold at UBC’s three major student
residence dining (i.e., Open Kitchen, Feast, and Gather) between September 1, 2019 and
February 28, 2020 were extracted to calculate the UBCFS GHG emission, nitrogen, and water

footprint baseline.


http://graham.umich.edu/media/files/campus-course-reports/Sustainable%20Food%20Labeling%20Final%20Report.pdf
http://graham.umich.edu/media/files/campus-course-reports/Sustainable%20Food%20Labeling%20Final%20Report.pdf

2.2.2 SeconpARY Data CoLLECTION

The GHG emission factor data comes from three main sources, in the following order of

preference:

e First, we used the World Resources Institute (WRI)’s Cool Food Calculator emission factors for
most of the food groups. It provides GHG emission data based on life-cycle assessments for
major food categories in the North American region from research conducted from January
2015 to December 2018. These represented the factors used in the large majority of our

ingredients® (94.76%).

e Second, we used the GHG emission data from The Big Climate Database, published by
CONCITO (Denmark’s green think tank), as a supplementary data source for food categories
that are not in the Cool Food Calculator such as salt and vinegar. It provides GHG emission
data based on life-cycle assessments for major food categories in Denmark. These

represented 1.68% of total ingredients.

e Last, for some items that don’t have emission factors available, we calculated their emission
factors manually by approximating their ingredients using recipes stored in OC or recipes

found online. These represented 3.56% of total ingredients.

The GHG emission factors for the rest of the ingredients extracted from OC such as water,
beverage, sauce, packaged food, kitchen supplies etc. was assumed to be zero either by the
research assumption or the unavailability to estimate. See Appendix B for detailed source of data

on GHG emission factors for each food category.

Note that the food groups were slightly adjusted from the Cool Food Calculator for better
assignment of GHG emission factors on ingredients procured by UBCFS. For example, the GHG
emission factors for more general-level food groups (i.e., fruits) were used for assigning
ingredients that were not specified as less general food groups (i.e., apples, bananas, berries) and
were renamed as "other" (i.e., other fruits) in the GHG emission factors list. See Appendix B for

detailed food categories and emission factors.

® Edible ingredients that have been evaluated only, excluding water, beverages, sauces whose emission factors are
assumed zero and packaged food whose emission factors are unable to be estimated. Also excluding non-edible
items that show up in the ingredients list extraction, such as human labor and kitchen supplies.


https://www.wri.org/research/tracking-progress-toward-cool-food-pledge
https://denstoreklimadatabase.dk/en

During Phase 3 of the CFFS Labeling implementation at Open Kitchen between March and April
2022, the label also incorporates the nitrogen and water footprint for each menu item to produce
a composite metric. The nitrogen footprint factor data was provided by the Food Label Toolkit
from Leach et al. (2016) and the water footprint factors (including freshwater and stress-weighed
water use) were sourced from Poore and Newecek (2018). The footprint factors for nitrogen and
water were also slightly adjusted and calculated for each food category present in the GHG
emission factors list to avoid assigning footprint factors multiple times, thus improving the
efficiency of the evaluation framework and label implementation. See Appendix B and C for

detailed nitrogen and water footprint factors.

2.3 ASSUMPTIONS
To make the process of recipe evaluation consistent, accurate, and structured, several

assumptions were made when evaluating the environmental footprints.

e The same GHG emission factor was assigned to different forms (puree, sliced, chopped, etc.)

of the same raw ingredient.

e The same GHG emission factors were applied to different varieties of the same ingredient

(i.e., red and yellow onions).

® GHG emissions are for the raw ingredients, and the final weight of serving takes into account
loss or addition of weight during the cooking process (e.g. water evaporation in beef vs. water

absorption in pasta) or loss from cutting out inedible parts (prepping stage).

® GHG emissions from the cooking process were ignored, because we had no knowledge of a

standard, feasible method to calculate them.

e The GHG emission factor for water is zero.

® GHG emissions from the cooking process were ignored, because they are captured under
Scope 1 (natural gas) & Scope 2 (electricity) emissions - i.e. for building energy supply. So

distinct from the food (Scope 3) item

e The GHG emission factor for water is assumed zero.



e We ignored the water use in the prepping and cooking process for the water footprint

calculation because we have no reliable way of estimating it for different dishes.

e We excluded the GHG emissions from sauces and dressings with unknown recipes (bought in

bulk) that have no dominant ingredients.

e For prep recipes that have no standard unit information, the weight of the preps are the sum

of the weight of all ingredients that they used.

e The nitrogen footprint and water footprint factors of some dairy categories (i.e. butter,
yogurt, and cream) that are not specified in the source footprint data, are estimated as the
nitrogen/water footprint factor of milk multiplied by the corresponding ratio of their GHG
factor to milk. For example, the GHG emission factor ratio of butter to milk is 5.12. Then the
nitrogen footprint factor of butter is estimated by multiplying 5.12 by the nitrogen footprint

factor of milk.

e For vegan food categories whose nitrogen and water footprint factors are not specified in the
source footprint data, their nitrogen and water footprint factors are the average of the

footprint factors of all available vegan food categories.

e For animal food categories whose nitrogen and water footprint factors are not specified in
the source footprint data, their nitrogen and water footprint factors are the average of the

footprint factors of all available animal food categories.

2.4 EVALUATION OF MENU ITEMS

The GHG emissions of each menu item are calculated by summing up the weight of every raw
ingredient multiplied by their respective emission factors. Ingredients' emission factors are
assigned according to their category in the Cool Food Calculator, which provides data about the

amount of GHGs emitted to the environment during the entire life cycle of a menu item.

For example, the process flowchart for calculating the GHG emissions of a bacon sandwich is
shown in Figure 1 below. First, we get the raw ingredient (item) information and then categorize
each item into the food categories in the GHG Emission Factors List. See Appendix B for all food
categories and associated GHG emission factors. Next, we assign the GHG emission factors based

on the food category for each item and calculate the amount of GHG emissions in grams for each



item used in this recipe. For recipes that use pre-processed recipes (preps), such as the garlic
butter made of garlic and butter in this example, we calculate a GHG emission factor for this prep

based on the items used and then calculate the total amount of GHG emissions in grams for this

prep.
Food Category & Prep Recipes & GHG Emissions GHG Emissions
Raw Ingredient GHG Emission Factors in GHG Emission Factors in By Ingredient in Per Serving in
(kg GHGe)/(kg Food) (kg GHGe)/(kg Food) grams grams

e Wheat/Rye 182.7 g
Bread 120g 16225 sl
Cheese 50g %h;laosf 4?;?' ?52eg |

Pork 983.15
Bacon 100g 93%15 GHGeg e
1904.84 g

> Other Vegetables 25.145g GHGe/serving

Lettuce 509 0.5029 Do |
Tomatoes 3466 g _—
0.6932 GHGe

Garlic Butter 30g ___ 23366149
7.7887 GHGe

Other Vegetables
0.5029

Figure 1: Flowchart for Calculating the GHG Emissions of a Bacon Sandwich

Lastly, we sum up all the GHG emissions of each item or prep and use this sum and the food
group (i.e., lunch/dinner, breakfast, or desserts/snacks) to determine the label color for the
Summer Pilot (Phase 1). For Phase 2 and 3 of the CFFS Labelling pilot which evaluated menu
items based on per 100g standard, the weight and total GHG emissions for each dish were also
calculated by summing up the weight and GHG emissions for each ingredient and then calculated
the GHG emissions per 100g of food. The calculation of the nitrogen footprint and water

footprint per 100g for each menu item follows the same process with the resective footprints.

2.5 EVALUATION FRAMEWORK

The evaluation of menu items is an automatic process that is conducted by an evaluation
framework, a workflow documented in Python on Jupyter notebooks that calculates the GHG
emission of menu items in an efficient and structured way. It reads the .xml files exported from

OC and does most of the calculating process. See Appendix A for the code that constructed the



evaluation framework. The process flowchart for the whole evaluation process is shown in Figure

2:

Extract
Optimum
Control Recipes

}

1. Data
Preprocessing

Y

2. Data

4. Automated

Cleaning Information and Calculation

Cool Food GHG
Emission
Factors

Other
Quantitative
Factors (e.g.

water use)

O Within OC
(O Data Source/Output
(O Automatic Process

(O Manual Process

Weighting Data For
Process Nutrislice

T

Cut-off for
Levels of Label

Figure 2: Evaluation Framework Flowchart

This flowchart presents the main steps and components that make up the whole evaluation

process. And the color of each box indicates where this step takes place, or which system or

software is associated with it. For a box that has two colors, it means it is associated with two

systems or can happen in either place.

The first step is extracting raw ingredients and recipe data from the UBCFS inventory

management system. Before feeding these raw data into the automated calculation process, it

requires preprocessing and cleaning these data by listing and adjusting units for all ingredients

and assigning them with associated GHG emission factors, which are from several external data

sources such as the Cool Food Calculator. Data extraction from OC and preprocessing represent

the largest time requirements every time new recipes need evaluation. Besides GHG emissions,

the framework is also able to calculate the total nitrogen and water footprint and per 100g of

food for each menu item. After these data gets processed in the automated calculation

step/evaluation framework, it will output the environmental footprint of each menu item, and

then we weigh these results with other qualitative attributes to have a weighted metric of the

overall climate impact of each menu item. Lastly, we use the baseline data to decide the cut-offs

for the three levels of labels, and the results can be shown on the Nutrislice, which is the online


https://ubc.nutrislice.com/menu/

platform where students can see nutrition facts and also the climate label of the food they buy at

UBCFS.

2.6 BASELINE AND LABEL CUT-OFFS

For the Summer Pilot (Phase 1) of the CFFS Label launched at Mercante and the following Fall
Pilot (Phase 2) launched at the Open Kitchen, we decided to use the traffic light system to
categorize foods by their climate impact into high, medium, and low levels, corresponding to the
colors of red, yellow, and green. It would allow easy interpretation for customers to see the
food’s emission level by looking at the colors. See Figure 3 for the design and meaning of the

labels implemented during the Summer Pilot (Phase 1).

To determine the cut-off levels of the label according to the GHG emissions of menu items, we
decided to establish a UBCFS GHG emission baseline that represents the average GHG emissions
per dish before the label is launched. In this way, we can set cut-offs in accordance with the 50%
UBC CAP 2030 GHG reduction goals for food systems. This requires utilizing the sales and recipe
data during a period and then calculating the average GHG emissions per dish. For Phase 1, we
decided to have separate sets of cut-offs for different meal groups (i.e., lunch/dinner, breakfast,
desserts/snacks) due to the disparity in serving size and main ingredients inspired by the

methodology by WRI.

The methods for determining cut-offs for the three levels of the label for the Summer Pilot

(Phase 1) are shown below:

® Green: These food items have below-average GHG emissions compared to other food items
sold within the same meal category (i.e., lunch/dinner, breakfast, or desserts/snacks) and
have low enough emissions to achieve UBC’s 50% reduction target in food-related GHG

emissions.

e Yellow: These food items have below-average GHG emissions compared to other food items
sold within the same meal category (i.e., lunch/dinner, breakfast, or desserts/snacks) but
higher emissions than what is necessary to achieve UBC’s 50% reduction target in

food-related GHG emissions.

e Red: These food items have above-average GHG emissions compared to other food items sold

within the same meal category (i.e., lunch/dinner, breakfast, or desserts/snacks). Food with



red labels would drive the average GHG emissions higher, thus impeding the process for UBC

in achieving the 50% reduction target in food-related GHG emissions.
{ ‘J - Most Climate-Friendly. The best option!
Somewhat Climate-Friendly. A good option.

Least Climate-Friendly. Less good option.

Figure 3: Phase 1 Traffic Light Labelling System

For Phases 2 and 3, due to the large variety and quantity of meal categories offered by the Open
Kitchen, we calculated the GHG emissions per 100g of food for each menu item so that their
environmental impacts are comparable between different meal categories no matter the serving
size. Correspondingly, the UBCFS GHG emission baseline was also calculated based on per 100g
of food to decide label cut-offs for Phase 2 and 3. The methods for determining cut-offs for the

three levels of the label for the Fall Pilot (Phase 2) are shown below:

e Green: These food items have below-average GHG emissions per 100g and have low enough

emissions to achieve UBC’s 50% reduction target in food-related GHG emissions.

e Yellow: These food items have below-average GHG emissions per 100g but have higher
emissions than what is necessary to achieve UBC’s 50% reduction target in food-related GHG

emissions.

e Red: These food items have above-average GHG emissions per 100g of food. Food with red
labels would drive the average GHG emissions per 100g higher, thus impeding the process for

UBC in achieving the 50% reduction target in food-related GHG emissions.

See Figure 4 below for the design and meaning of the labels during the Fall Pilot (Phase 2).



W
.
@

The Best Option! A Good Option A Less Good Option

Figure 4: Phase 2 Traffic Light Labelling System

For Phase 3 of the CFFS Label, we decided to shift from the traffic-light system to a single label
indicating foods that are Climate-Friendly based on a composite metric including GHG emissions,
nitrogen footprint, and stress-weighted water use and weigh each attribute equally. See Figure 5

below for the design of the label during the Spring Pilot (Phase 3).

Figure 5: Phase 3 Single Icon Labelling System

The new methodology includes the calculation of a baseline for nitrogen and water footprint per
100g for UBCFS using 2019 recipes and sales data similar to the GHG emissions baseline. To get a
composite metric that measures and weighs the three attributes equally, we divided the GHG
emissions, nitrogen footprint, and stress-weighed water use per 100g of food by their
corresponding baseline for each menu item. Then we average the three ratios of footprint to
baseline to get the standardized metric. For the cut-off deciding which menu item gets the CFFS

Label, we chose the threshold of 0.5 that is in accordance with the 50% UBC CAP 2030 GHG



reduction goals for food systems. A menu item with the CFFS Label means that this menu item

has at least a 50% lower environmental footprint per 100 grams than other items.

2.7 SENSITIVITY ANALYSIS AND DAILY ALLOWANCE VALUE (DV)

To decide between the GHG-only metric and the composite metric on evaluating menu items, we
conducted a sensitivity analysis by comparing the labelling results based on the GHG-only metric
versus combining GHG, nitrogen, and water use (freshwater or stress-weighed water use) per
100g of food. It allowed us to see whether the incorporation of nitrogen and water footprints
substantially changed which items got the label. Specifically, we compared the labeling results in

the following steps:

1. The number of items that all 4 attributes (GHG, Nitrogen, Freshwater, Stress-weighed water)

result in the same "color" of impact.

2. The number of items that all 3 attributes (GHG, Nitrogen, and freshwater) result in the same

"color" of impact.

3. The number of items that all 3 attributes (GHG, Nitrogen, and stress-weighed water) result in

the same "color" of impact

4. The number of green, yellow, and red items using the GHG-only metric and the composite

metric (GHG, nitrogen, and stress-weighed water use)

5. The number of items that changed label color after incorporating nitrogen and water

footprints (i.e., red in GHG-only -> yellow in composite metric)

In addition, to provide students with more CFFS attribute information behind the composite label
and the food they purchase at UBCFS for suggesting climate-friendly menu choices, we estimated
a Daily Allowance Value (DV) of GHG emissions, nitrogen, and water footprints based on a
"climate-friendly" healthy diet for a day (Leach et al., 2016). Then we can show students the
percentage of footprints compared to the DV by consuming 100g of food they purchase. This

information can be added to the Nutrislice menu item descriptions in the future.

2.8 ADDITIONAL ATTRIBUTES
Besides GHG emissions, the evaluation framework also considers the incorporation of new

additional attributes for Phase 2 and 3 to produce a more comprehensive CFFS Label. The



additional attributes were the metrics to define a Climate-Friendly Food System by the CFFS
Action Team, which were developed based on aspects of climate change mitigation and

adaptation.

The potential additional attributes are land use, nitrogen pollution, water use, and local, which
were developed from the CFFS definition research conducted by the CFFS Communication and
Engagement Coordinator. To decide which additional attribute should be incorporated, we
evaluated these attributes based on the availability of data, UBCFS's tracking ability/capacity for
qualitative attributes, their impact on climate change mitigation and adaptation strategies, and

evaluation survey results.


https://sustain.ubc.ca/sites/default/files/seedslibrary/VOL_500_Climate-Friendly%20Food%20Systems%20at%20UBC_FinalReport.pdf

3.1 SUMMER PILOT (PHASE 1)

The Summer Pilot (Phase 1) for the operationalization of the CFFS Label took place at the
Mercante, one of the UBCFS retail venues that remained open during the summer of 2021. The
evaluation only focused on the GHG emissions of the menu items, most of which are pizzas that
have almost the same serving size. The total GHG emission for each menu item, calculated by the

evaluation framework, is shown in Figure 6:

PASTA|Lasagne 3.261
PI1ZZA|Salsiccia 3.137
PIZZA|Pesto 2.303
FERTUREPIZZA|Prosciutto Bianca 2.116
PIZZA|Prosciutto 2.051
PIZZA|Bianca 2.028
PIZZA|Pesto Pollo 1.869
Pizza-Promo Blueberry 1.712
PIZZA|Ortalana 1.436
PIZZA|Margherita 1.397
PASTA|Tortellini 1.340
PIZZA|Plant Base Chorizo 0.876
PIZZA|Beyond Squash 0.802
PIZZA|Marinara Anacardio 0.774
BAKE|Tiramisu 0.752
PIZZA|Beyond BBQ 0.674
SAND|BKFST|Colazione 0.581
BAKE|Dolce Panino 0.102

0 1 2 3
GHG Emissions (Kg) Per Serving

Note: the GHG emission results are based on 2021 data

Figure 6: GHG Emissions (Kg) Per Serving (Phase 1)

The corresponding CFFS Label is available to students on the menu boards and also on Nutrislice.

See Figure 7 for the actual look of labels on display.



Made-to-order traditional
Italian pizzas cooked in our
fiery-hot stone hearth oven

PROSCIUTTO E RUCOLA @ 13.5

Tomato, prosciutto, arugula, bocconcini and basil

Fresh, hearty and authentic
Italian entrées perfect for
those rainy days on campus

,.:/' ’E.‘A

LASAGNA BOLOGNESE @& 9.55

Fresh lasagna sheets, béchamel and a traditional ragu bolognese

PIZZA BIANCA @

Bocconcini, mozzarella, gorgonzola, parmesan and chevre cheese

ORTOLANA @

Basil, mozzarella, bocconcini, arugula, artichokes and pickled tomato B

ALLA SALSICCIA @&

Chorizo, tomato, basil, oregano and mozzarella

AL PESTO @&

Pesto, prosciutto cotto, mozzarella, gorgonzola, artichokes
and pickled tomato

PESTO POLLO @

Pesto, roasted chicken, mozzarella, artichokes and pickled mushroom
MARGHERITA @&

Classic tomato, basil and bocconcini

VEGAN FEATURE & v @1

Ask your server about today’s feature

TORTELLINI @& 1.85
Ask your server about our chef creations.

COLAZIONE  Soft poached egg with ham on English muffin @8 4.45

served ys until 10:30am

LCI

TIRAMISU @& 55
Ladyfingers, espresso, liqueurs, cacao, egg and mascarpone cream

Desserts

Figure 7: CFFS Label on Menu Board (Phase 1)

The evaluation framework also calculated the GHG emissions per 100g of the product for each
item. This gives another point of view for comparing the climate impact of the recipes. Although
there are a few products that have high per 100 gram GHG emissions, which indicates that they
may use a lot of high-emission ingredients, their respective total emissions are low due to the
small serving size. For example, the GHG emission per 100g of Colazione is 538g, which is higher
than the Salsiccia pizza (529g/100g), but the total GHG emission per serving of Colazione is about
only % of the GHG emissions of a Salsiccia pizza. To make the label easier for interpretation by the
customer and align with the goal of reducing total GHG emissions, we chose to assign labels

based on total GHG emissions per serving of the products instead of per 100g, see Figure 8.
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PASTA|Lasagne
PIZZA|Salsiccia
PIZZA|Pesto

FERTUREPIZZA|Prosciutto Bianca

PIZZA|Prosciutto
PIZZA|Bianca
PIZZA|Pesto Pollo
Pizza-Promo Blueberry
PIZZA|Ortalana
PIZZA|Margherita
PASTA|Tortellini
PIZZA|Plant Base Chorizo
PIZZA|Beyond Squash
PIZZA|Marinara Anacardio
BAKE|Tiramisu
PIZZA|Beyond BBQ
SAND|BKFST|Colazione
BAKE|Dolce Panino

3.261
3.137
2.303
2.116
2.051
2.028
1.869
1.712
1.436
1.397
1.340
0.876
0.802
0.774
0.752
0.674
0.581
0.102

B GHG Emission (Kg) / 100g GHG Emission (Kg) / Serving

Note: the GHG emission results are based on 2021 data

Figure 8: GHG Emissions (Kg) Per Serving vs. Per 100g (Phase 1)

The label cut-offs for the Summer Pilot (Phase 1) are shown in Figure 9. GHGs are evaluated
based on meal categories (lunch/dinner, breakfast, or desserts/snacks). Menu items are
categorized as green, yellow, or red, depending on whether they have below or above average
GHG emissions compared to other food items sold at Mercante within the same meal category.
The categories also consider if food items have low enough emissions to achieve UBC’s food

emissions targets.

Red
(GHGe Kg/Serving)

Yellow
(GHGe Kg/Serving)

Green
(GHGe Kg/Serving)

Lunch/Dinner N |
1.037 2.075

Breakfast | |
0.291 0.581

Desserts/Snacks I |
0.365 0.729

Figure 9: Phase 1 Label Cut-offs



3.2 FALL PILOT (PHASE 2)

The Fall Pilot (Phase 2) for the operationalization of the CFFS Label continued at Mercante and
also expanded to Open Kitchen, which is one of the three major UBCFS residence dining halls
open during the 2021-2022 academic year. Due to the increased variety and quantity of food
groups offered by Open Kitchen, we decided to assign the CFFS Label based on the amount of
GHG emissions per 100 grams of food. This allows us to compare the GHG emissions of foods
with different serving sizes and ingredient components using a single set of thresholds. The
weight, GHG emissions per serving of food, and GHG emissions per 100 grams of food were

calculated by the evaluation framework for assigning labels.

To determine the label cut-offs, we updated the UBCFS GHG emissions baseline using 2019 sales
and recipes data. See Table 1 for the estimated baseline for each student residence dining room

and UBCFS in total:

Location 19-20 Baseline GHG Emissions UBC 19-20 GHG Baseline
Open Kitchen 462.81g/per 100g
Totem 311.25g/per 100g
360.25g/per 100g
Gather 306.96g/per 100g
Mercante 416.71g/per 100g

Table 1: UBC 19-20 GHG Emissions Baseline (Phase 2)

The label cut-offs for the Fall Pilot (Phase 2) are shown in Figure 10 below. By comparing the mean
and medium GHG emissions per 100g of menu items offered at Open Kitchen during the 2021-2022
academic year, we can see that the mean GHG emissions per 100g (369.3g CO2eq) is above the
baseline GHG emissions. Therefore, applying the CFFS Label on menu items would likely reduce the
average GHG emissions if the label is effective in reducing the purchase of red label menu items. The
median GHG emissions per 100g is 232.1g CO2eq, roughly halfway in between the 2 cut-off points
that lie in the yellow range. Thus, the label cut-offs would make the quantity of menu items that are

labeled as green, yellow, and red approximately the same.



Green Yellow Red

(GHGe g/100g) (GHGe g/100g) (GHGe g/100g)
Label Cut-offs INI—— |
180.12 T 360.25 T
Open Kitchen 21-22
GHG Emissions Median = 232.1 Mean = 369.3

Figure 10: Phase 2 Label Cut-offs

The plots in Figure 11 show the distribution of total GHG emissions and GHG emissions per 100g
of menu items at Open Kitchen during the 2021-2022 academic year. The plots also indicate the

mean and median GHG emissions per dish and per 100g of food.

GHG Emission (g) / 100g GHG Emission (g)
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GHG Emission (g) / 100g GHG Emission (g) / Dish
Red line (mean): 369.3g/100g Red line (mean): 986.2g/dish
Black line (median): 232.1g/100g Black line (median): 693.7g/dish

Figure 11: GHG Emissions (g) Per Serving vs. Per 100g (Phase 2)

3.3 SPRING PILOT (PHASE 3)

The Spring Pilot (Phase 3) for the operationalization of the CFFS Label continued at Open Kitchen
after evaluating the effects of the CFFS Label on students' behavior during the Fall Pilot (Phase 2).
This time, the CFFS research teams decided to simplify the label system by only applying the CFFS
Label to menu items that fit the criteria of climate-friendliness. While we keep evaluating the
footprints of menu items on a per 100g basis, we incorporated the nitrogen and water footprints
into consideration after the sensitivity analysis and produced a composite label metric to decide
which menu item gets the CFFS Label assigned. The steps 1-3 of the sensitivity analysis allow us

to see which attribute should be incorporated by checking the number of items that the



combination of attributes (GHG, Nitrogen, and Water) results in the same "color" of impact. See

Table 2 for the results of the sensitivity analysis steps 1-3:

Attributes Combination Count Percentage
GHG, Nitrogen, Freshwater, Stress-weighed Water 175 28.69%
GHG, Nitrogen, Freshwater 215 35.25%
GHG, Nitrogen, Stress-weighed Water 214 35.08%

Table 2: Sensitivity Analysis 1-3 Results

The above results suggest that choosing between freshwater and stress-weighed water use
results in more consistency in the "color" of impact. And we chose the stress-weighed water use
because it takes water scarcity into account. Therefore, the composite metric includes the three
attributes: GHG, nitrogen, and stress-weighed water use. The results of the sensitivity analysis

steps 4-5 are shown in Table 3 below:

Metric-Color Count
GHG-Red 158
GHG-Yellow 204
GHG-Green 248
Composite-Red 189
Composite-Yellow 175
Composite-Green 246

Table 3: Label Counts in GHG-only and Composite Metric

According to Table 3, the distribution of label colors is balanced under both the GHG-only and the
composite metric. And Table 4 indicates that the total number of menu items that changed color

after incorporating nitrogen and water footprints is small (13.93%).

GHG -> Composite Count

Red -> Yellow 7




Red -> Green 2
Yellow -> Green 16
Green -> Yellow 20

Green -> Red 0

Yellow -> Red 40

Total Changed 85 (13.93%)

Table 4: Label Change in GHG-only and Composite Metric

The estimated UBC 19-20 baseline for GHG emissions, nitrogen footprint, and water footprints

per 100g of food for the composite metric is shown in Table 5 below:

Attribute UBC 19-20 Baseline
GHG Emissions 381.13 g/per 100g*
Nitrogen 4.21 g/per 100g
Fresh Water 47.16 L/per 100g
Stress-weighed Water 1501.2 L/per 100g

Table 5: UBC 19-20 GHG, Nitrogen, Water Footprints Baselines (Phase 3)

Using the estimated baseline above and calculating a composite metric for each menu item,
there are about one-third (246) of the menu items classified as Climate-Friendly (green in the

composite label). Almost the same proportion of green labels as in the Fall Pilot (Phase 2).

The estimation of the Daily Allowance Value (DV) for each attribute in the composite metric is
calculated using the 50% of UBC 19-20 Baseline to define as Climate-Friendly. The estimated DV is
based on a standard healthy diet from the Food Label Toolkit by Leach et al. (2016), which is set
as 2200 calories per day, see Table 6 for detailed food components of the healthy diet and Table 7

for corresponding DV for each CFFS attribute calculated:

* The estimated UBC 19-20 GHG emissions baseline in Phase 3 is updated as many preps get units estimated after
analyzing the newly-extracted open kitchen data for phase 3, thus the units information database expanded. Many
old recipes in 2019 also used these preps so they were included in the Phase 3 baseline estimation but excluded in
Phase 2 (Phase 2's baseline is a rough estimate that only included menu items that didn't use preps with odd units).



Food Component Grams Per Day
Chicken 40
Pork 20
Beef 20
Milk 280
Cheese 30
Eggs 30
Fish 30
Grains 120
Rice 40
Fruits 220
Beans 40
Potatoes 100
Vegetables 200
Nuts 10
Oils 20
Total 1200

Table 6: Standard Healthy Diet (2200 Calories Per Day). Source: Food Label Toolkit by Leach et al. (2016)

Attribute Daily Allowance Value (DV)
GHG Emissions 3037.98g
Nitrogen 41.73g
Fresh Water 434.11L
Stress-weighed Water 11730.57L

Table 7: Daily Allowance Value (DV)




4. DISCUSSION

From the above analysis, we can see that foods that contain ruminant meat and dairy products
(i.e. beef, lamb, cheese, etc.) tend to have high GHG emissions, nitrogen and also water
footprints per serving, and in particular per 100g. This suggests one way to lower the climate
impact of the food system is by reducing the amount of ruminant meat and dairy consumption
and switching to plant-based protein products (i.e., beans, tofu, etc.). For example, the difference
between the Salsiccia Pizza (the pizza with the highest GHG emissions at Mercante with chorizo,
tomato, basil, oregano, and mozzarella) and the Beyond BBQ Pizza (the pizza with the lowest
GHG emissions at Mercante with beyond meat crumble, chipotle BBQ sauce, arugula, and
mushrooms) is 2,463 grams of CO2eq, which is equivalent to the emissions from an
11.96-kilometer drive in an average passenger vehicle (average of 206g CO2 emissions per km

driven, Canada Energy Regulator, 2019).

The evaluation framework is tailored for what UBC has in place, such as the inventory
management system OC and Nutrislice. It maximized the efficiency of implementing and
evaluating the CFFS Label at UBCFS outlets and various associated displaying platforms to utilize
the opportunity of reaching thousands of customers daily with reliable information collected for
analysis. The systemized workflow from implementation to evaluation allows the rapid
adjustment of the label for better influence on the Climate-Friendly purchasing behavior of
customers. On the other hand, the specificity of the evaluation framework to UBCFS’s
organization and systems may limit the expansion of the CFFS Label to other institutions and
places whose recipe management systems are different or there’s no systemized way of storing
the recipes' data. While the basic methodologies and supporting data can be transferred, the
efficiency of expanding the CFFS Label to those places is limited and adjustments to the
framework should be considered based on the amount and data structure of the recipes for

evaluation.

In addition, the manual process involved in the evaluation process allows for better accuracy and
flexibility in adjusting the labelling methodologies and incorporating more comprehensive
considerations in evaluating the climate impact of some menu items. While it sacrifices the
efficiency and automaticity of the framework and may limit the expansion to larger scale

implementation of the CFFS Label.



There are additional limitations of the evaluation framework. First, there are several processed
products and packaged foods that are directly purchased from external suppliers, such as sauces,
dressings, snacks, etc. Therefore, the evaluation can only approximate their GHG emission factors

by estimating the proportions of the ingredients contained in these products.

Secondly, emissions from bucket items such as "parfait," "salad bar," and "build your own"
represent an average with a lot of variances since they are customized by the client at the retail
venue. The recipes for these products recorded in the system use the estimated average amount

for each composition that customers may choose.

Thirdly, there is human dependence on matching items with associated emission factors.
Although manually matching takes less time and is more accurate, this may raise some problems
if the label is expanded to more food venues and thus human work will take more time. Besides,
the information for ingredients stored in OC is incomplete for some items, such as the unit

information and conversion data, which needs to be adjusted and inserted manually.

Lastly, the relevance of this methodology and effort rests on the effectiveness of the label in
educating and ultimately changing consumer choice among the UBC population eating food sold
on campus. Establishing these methods has been the result of countless meetings and
engagement with stakeholders and experts from the UBC community and beyond.
Implementation and fine-tuning of the methodology has taken more than 1000 hours of work
and does not take into account the time committed by the stakeholders who gave feedback and
provided valuable data. These aspects need to be taken into account and compared to the
effectiveness of improving the climate friendliness of food eaten at UBC primarily through
supply-side solutions, i.e., the food procured and offered at UBC—which includes UBCFS and

multiple other venues.



5. RECOMMENDATIONS ‘

The steps outlined below could be taken for future development and expansion of the CFFS
Labelling pilot to improve the evaluation framework and make it more resilient and suitable for

expanded operations.

5.1 SHORT-TERM RECOMMENDATIONS (< 3 MONTHS)

Data Analysis Aspect:

e Integrate the CFFS attribute weighing process into the evaluation framework to automate the

process.

e Conduct research on introducing biodiversity as a new CFFS attribute for evaluating menu

items.
Operational Work Aspect:

e Display the carbon, nitrogen, and water footprint DV and/or percentile per dish and/or per

100g of food on Nutrislice menu item descriptions.

e Evaluate the benefit of displaying the CFFS Label on the Nutrislice Platform with the

all-inclusive dining services.

e Evaluate the possibility and interest of adding new attributes to the CFFS Label calculation.

5.2 MID-TERM RECOMMENDATIONS (< 6 MONTHS)

Data Analysis Aspect:

Improve the recording and tracking of food information stored in the inventory management

system and reduce the amount of missing data for ingredients and recipes.

e Incorporate the climate footprint data for ingredients into the inventory management system

if feasible to embed the calculation process within the system.

e Streamline the process of data extraction from UBCFS and data output to display CFFS Label

information on Nutrislice.

e Conduct research on the GHG emissions from the cooking process for improved reporting and

evaluation of menu items.



e Conduct research on the water use footprint from the prepping and cooking process for

improved reporting and evaluation of menu items.
Operational Work Aspect:

e Implement the CFFS Label at all student residence dining halls managed by UBCFS.

e Have other research to support the expansion of the CFFS Label to other food outlets at UBC

5.3 LONG-TERM RECOMMENDATIONS (< 1 YEAR)

Data Analysis Aspect:

e UBC can lead the engagement process to build a Pacific Northwest/Canadian specific GHGe,
nitrogen, and water footprint factors database by conducting research together with peer

institutions. This can also help to improve the accuracy and specificity of current labels.

e Collaborate closely with peer institutions to have a standardized method of menu item
evaluation and labeling criteria across different universities and institutions in North America
(e.g, Oxford’s Health Behaviors team at the Livestock, Environment and People (LEAP)

project).
Operational Work Aspect:

e Evaluate the possibility of adding the CFFS Label to UBC delivery menus.

e Expand the CFFS Label implementation to other UBC campuses (i.e., UBC Okanagan).


https://eats.ubc.ca/

6. CONCLUSION

In conclusion, the CFFS Label evaluation framework is a resilient approach to conducting the
evaluation process in an efficient and structured way that meets the needs for the future
expansion of the CFFS Label across UBCFS. However, there are a few limitations in the current
framework due to the tailored design of the framework to UBCFS and the manual reliance on
cleaning, assigning, and extracting data. The recommendation for the next steps is to streamline
the extraction process and improve the tracking of ingredient information in the systems. It will
require more time, resourcing, and close coordination between associated departments to
produce a comprehensive CFFS Label that indicates all-around information on the climate impact

of menu items sold by UBCFS.
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APPENDICES

APPENDIX A [CODE FOR EVALUATION FRAMEWORK]

Climate-Friendly Food Systems (CFFS) Labelling Project

The University of British Columbia

Created by Silvia Huang, CFFS Data Analyst

Part |: Data Preprocessing

Set up and Import Libraries
#pip install -r requirements.txt

import numpy as np

import pandas as pd

import pdpipe as pdp

import matplotlib.pyplot as plt
import glob

import os

import csv

from itertools import islice

from decimal import Decimal

import xml.etree.ElementTree as et
from xml.etree.ElementTree import parse
import openpyxl

import pytest

# Set the root path, change the the current working directory into the project folder
path = "/Users/silvia/cffs-label"
os.chdir(path)

# Enable reading data table in the scrolling window if you prefer
#pd.set option("display.max rows", None, "display.max columns", None)

Load Data Files

Set Data File Path

# Select data file path for the chosen venue and time range where the recipes data stored

filepath list = glob.glob(os.path.join(os.getcwd(), "data", "raw", "OK 21-22", "*.oc"))
filepath_list

['/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_06182021_0938.oc',
‘/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_06232021_0918.oc',
' /Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_ 06182021 _0918.oc’,
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_06232021_11l4l.oc',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export 06182021 _100l.cc',
' /Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_06232021_1155.0c’,
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_ 06182021 0927.cc',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_ 06232021 _0956.oc’,
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR Export 06232021 1202.cc',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_06232021_111l.0c',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export 06182021 0933.cc',
'/users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_06232021_1150.0c',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export 06232021 095l.cc',
' /Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_ 06182021_1033.0c',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_ 06182021 1007.oc',
'/users/silvia/cffs-label/data/raw/OK 21-22/IPR Export 06182021 0944.cc',
'/Users/silvia/cffs-label/data/raw/OK 21-22/0K Oct 22 Request.oc',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export 06182021 1026.cc',
'/Users/silvia/cffs-label/data/raw/OK 21-22/IPR_Export_ 06232021_0944.oc']

Import Items List

# Read items.xml files in the filepath list and construct a dataframe
ItemId = []

Description = []

CaseQty = []

CcaceUOM = []

PakQty = []

PakUOM = []

InventoryGroup = []

for filepath in filepath_list:



path = filepath + '/items.xml
if os.path.isfile(path):

xtree = et.parse(path)
Xroot = xtree.getroot()

for item in xtree.iterfind('Item'):

ItemId.append({item.at

trib['id'])

Description.append(item.findtext('Description'))
CaseQty.append(item.findtext( 'CaseQty'))
CaseUOM.append(item. findtext('CaseUoM'))
PakQty.append(item.findtext (' 'PakOty'))
PakUOM.append(item.findtext ('PakuoM'))
InventoryGroup.append(item.findtext('InventoryGroup'))

Items = pd.DataFrame({'ItemId': I

'CaseUOM' :
) .drop_duplic

temId, 'Description':
CaseUOM, 'Pakgty': PakQty,

ates()

Items.reset_index(drop=True, inplace=True)

Description, 'CaseQty': CaseQty,

'PakuUoM': PakuUOM, 'InventoryGroup':

PakQty PakuOM InventoryGroup

Items
Itemid Description CaseQty CaseUOM

0 14271 APPLES GRANNY SMITH  113.000 ea 1.000

1 1-4971 ARTICHOKE 1/4 SALAD CUT TFC 6.000 LG CAN 2.500

2 |-2305 BACON PANCETTA 1.000 Kg 1.000

3 1-1207 BAGUETTE FRENCH 24.000 each 1.000

4 |-17203 BALSAMIC GLAZE 2.000 bottle 2.000
593 1-18915 SPRING ROLL VEG 48.000 ea 1.000
594 |-4803 SQUASH SPAGHETTI 36 LBS US 35.000 b 1.000
595 [-28907 STEAMED BUN BBQ PORK 60.000 ea 1.000
596 1-28920 STICKY RICE WRAP 16.000 bag 3.000
597 1-61420 TOFU FIRM MEDIUM 12.000 pak 454.000

598 rows x 7 columns

Items.shape

(598, 7)
Items.dtypes

yat(01: ItemId object
Description object
CcaseQty object
CaseUOM object
PakQty object
PakuoM object
InventoryGroup object

dtype: object

# Sa
path
Item

ve the dataframe to csv
= os.path.join(os.getcwd(),
s.to _csv(path, index = False,

Import Ingredients List

"data", "preprocessed",

header = True)

CcT PRODUCE
Kg PRODUCE
Kg MEAT
CcT BREAD

L FOOD - GROCERY

ea FOOD - GROCERY
Ib PRODUCE
each FOOD - GROCERY
each FOOD - GROCERY

g FOOD - GROCERY

"Items_List.csv'")

# Read ingredients.xml files in the filepath list and construct a dataframe

Ingr
Conv
InvF
Qty
Reci
Uom

for

edientId = []
ersion = []
actor = []
=B

pe ]

=kl

filepath in filepath_list:

path = filepath + '/Ingredients.xml'

if os.path.isfile(path):
xtree = et.parse(path)
Xroot = xtree.getroot()
for x in xtree.iterfind('

IngredientId.append(x.attrib['ingredient'])

Ingredient'):

Conversion.append(x.attrib[ 'conversion'])
InvFactor.append(x.attrib['invFactor'])

Qty.append(x.attrib[’

qty'])

InventoryGroup}



Recipe.append(x.attrib[ 'recipe’'])
Uom.append(x.attrib[ 'uom'])

Ingredients = pd.DataFrame({'IngredientId': IngredientId,

'oty': Oty,'Uom': Uom,

'Conversion': Conversion,

'InvFactor’': InvFactor,'Recipe': Recipe}).drop duplicates()

Ingredients.reset_index(drop=True, inplace=True)

Ingredients
Ingredientid Qty Uom Conversion InvFactor Recipe
0 P-18746 1.000 Kg 1.00000000 1.0000 P-10241
1 1-3388 1.000 L 1.00000000 0.3058 P-10496
2 1-4660 2.270 Kg 2.20462000 0.6942 P-10496
3 1-3451 2.560 L 1.00000000 1.2800 P-13933
4 1-4679 1.000 BUNCH 1.00000000 0.0063 P-18318
5377 P-26143 170.000 g 0.00100000 1.0000 R-62022
5378 P-26225 140.000 g 0.00220462 1.0000 R-62022
5379 P-50428 3.000 g 1.00000000 1.0000 R-62022
5380 P-56712 180.000 g 0.00100000 1.0000 R-62022
5381 P-56927 90.000 g 0.00100000 1.0000 R-62022
5382 rows x 6 columns
Ingredients.shape
(5382, 6)
Ingredients.dtypes
IngredientId object
Qty object
Uom object
Conversion object
InvFactor object
Recipe object

dtype: object

# Save the dataframe to csv
path = os.path.join(os.getcwd(), "data", "preprocessed",
Ingredients.to_csv(path, index = False, header = True)

Import Preps List
# Read preps.xml files in the filepath list and construct a dataframe
PrepId = []
Description = []
PakQty = []
PakuoM = []

InventoryGroup = []

for filepath in filepath list:
path = filepath + '/Preps.xml'
if os.path.isfile(path):
Xtree = et.parse(path)
Xroot = xtree.getroot()
for x in xtree.iterfind('Prep'):
PrepId.append(x.attrib['id'])
Description.append(x.findtext( 'Description'))
PakQty.append(x.findtext('PakQty'))
PakUOM.append(x.findtext('PakUOM'))
InventoryGroup.append(X.findtext('InventoryGroup'))

Preps = pd.DataFrame({'PrepId': Prepld, 'Description': Description,
'PakQty': PakQty, 'PakuoM':PakUOM, 'InventoryGroup':
Preps.reset_index(drop=True, inplace=True)
Preps
Prepld Description PakQty PakUOM InventoryGroup
0 P-55516 BAKED|Lasagna|Spin Mushroom 5.550 Kg
1 P-54666 BAKED|Pasta|Chicken Alfredo 6.176 Kg

"Ingredients_List.csv")

InventoryGroup}).drop duplicates()



Prepld Description PakQty PakUOM InventoryGroup
2 P-54664 BAKED|Pasta|Chorizo Penne 7.360 Kg
3 P-56502 BAKED|Pasta|Shrimp Pesto 5760 Kg
4 P-56433 BATCH|Shrimp Remoulade 1.600 Kg
748 P-47418 MIX|Cheese 2.000 Kg PREP
749 P-42317 ROASTED|Spaghetti Squash 1.400 Kg
750 P-56927 SAUTE|Cauliflower Rice 1.000 Kg
751 P-56887 YIELD|Grated Pear 800.000 g
752 P-46509 YIELD|Lettuce bun 3.000 PTN
753 rows x 5 columns
[18]: Preps.shape
(753, 5)
19]: Preps.dtypes
PrepId object
Description object
PakQty object
PakuoM object
InventoryGroup object
dtype: object
# Save the dataframe to csv
path = os.path.join(os.getcwd(), "data", "preprocessed", "Preps_List.csv")

Preps.to_csv(path, index = False, header = True)

Import Products List

# Read products.xml files in the filepath list and construct a dataframe

Prod

Id =[]

Description = []
SalesGroup = []

for filepath in filepath_ list:
path = filepath + '/Products.xml'
if os.path.isfile(path):

Xtree = et.parse(path)

Xroot = xtree.getroot()

for x in xtree.iterfind('Prod’'):
ProdId.append(x.attrib['id'])
Description.append(x.findtext( 'Description'))
SalesGroup.append(x.findtext( 'SalesGroup'))

Products = pd.DataFrame({'ProdId': Prodld,

‘Description': Description,

Products.reset_index(drop=True, inplace=True)

In [22]: | Prod

A oWwN

453

454

455

456

457

ucts

Prodid
R-61778
R-61780
R-61749
R-50859

R-50788

R-57815
R-61679
R-56802
R-57810

R-57811

Description

ALF|Flatbread|4 Cheese
ALF|Flatbread|Apple & Pancetta
ALF|Flatbread|BBQ Chicken
ALF|Flatbread|Bruschetta

ALF|Flatbread|Caprese

SQR|Tofu Sofrito Quesadilla +1
SQR|Tofu Sofrito Quesadilla +2
SQR|Vegan Lettuce Wrap
SQR|Vegan Lettuce Wrap +1

SQR|Vegan Lettuce Wrap +2

458 rows x 3 columns

SalesGroup

OK -
OK -
OK -
OK -

OK -

AL FORNO
AL FORNO
AL FORNO
AL FORNO

AL FORNO

OK - SQUARE MEAL

OK - SQUARE MEAL

OK - SQUARE MEAL

OK - SQUARE MEAL

OK - SQUARE MEAL

‘SalesGroup': SalesGroup}).drop duplicates()



Products.shape

(458, 3)

Products.dtypes

ProdId object
Description object
SalesGroup object

dtype: object

# Save the dataframe to csv
path = os.path.join(os.getcwd(), "data", "preprocessed", "Products_ List.csv")
Products.to_csv(path, index = False, header = True)

Import Conversions List

# Read conventions.xml files in the filepath list and construct a dataframe
Conversionid = []

Multiplier = []

ConvertFromQty = []

ConvertFromUom = []

ConvertToQty = []

ConvertToUom = []

for filepath in filepath list:
path = filepath + '/Conversions.xml'
if os.path.isfile(path):
Xtree = et.parse(path)
Xroot = xtree.getroot()
for x in xtree.iterfind('Conversion’):
ConversionId.append(x.attrib["id'])
Multiplier.append(x.attrib[ 'multiplier'])
ConvertFromQty.append(x.find( 'ConvertFrom').attrib[ 'gty'])
ConvertFromUom.append(x.find( 'ConvertFrom').attrib[ 'uom'])
ConvertToQty.append(x.find('ConvertTo').attrib[ 'gty'])
ConvertToUom. append(x.find( 'ConvertTo').attrib[ 'uom'])

Conversions = pd.DataFrame({ 'ConversionId': ConversionId, 'Multiplier’': Multiplier, 'ConvertFromQty': ConvertFromQty,
'ConvertFromUcm': ConvertFromUom, 'ConvertToQty': ConvertToQty, 'ConvertToUom': ConvertToUom}
)} .drop_duplicates()

Conversions.reset index(drop=True, inplace=True)

Conversions

Conversionid Multiplier ConvertFromQty ConvertFromUom ConvertToQty ConvertToUom

(4] 1.00000000 1.0000 XXX 1.0000 L
1 0.87719298 1.0000 1.14L 11400 (g
2 0.66666667 1.0000 1.56L 1.5000 L
3 0.57142857 1.0000 175L 1.7500 L
4 0.50000000 1.0000 2L 2.0000 L
291 1-3634 0.32258065 1.0000 Thsp 3.1000 g
292 1-3390 0.22222222 1.0000 tsp 4.5000 g
293 1-3390 0.07407407 1.0000 Thsp 13.5000 g
294 1-3390 0.00462963 1.0000 cup 216.0000 g
295 1-25492  0.00495050 1.0000 ea 202.0000 g

296 rows x 6 columns

In [28] Conversions.shape

(296, 6)

Conversions.dtypes

ConversionId object
Multiplier object
ConvertFromQty object
ConvertFromUom object
ConvertToQty object
ConvertToUom object

dtype: object




0]: # Save the dataframe to csv
path = os.path.join(os.getewd(), "data", "preprocessed", "Conversions_List.csv")
Conversions.to_csv(path, index = False, header = True)

Data Summary

# Summary of raw data imported for evaluation
datasum = pd.DataFrame([Items.shape, Preps.shape, Ingredients.shape, Products.shape, Conversions.shape],
columns = ['count', 'columns'],

index = ['Items', 'Preps', 'Ingredients', 'Products', 'Conversions'])
datasum
t[317: count columns
Items 598 F4
Preps 753 5
Ingredients 5382 6
Products 458 3
Conversions 296 6



Climate-Friendly Food Systems (CFFS) Labelling Project

The University of British Columbia

Created by Silvia Huang, CFFS Data Analyst

Part Il: Data Cleaning

Set up and Import Libraries
#pip install -r reguirements.txt

import numpy as np

import pandas as pd

import pdpipe as pdp

import matplotlib.pyplot as plt
import glob

import os

import csv

from itertools import islice

from decimal import Decimal

import xml.etree.ElementTree as et
from xml.etree.ElementTree import parse
import openpyxl

import pytest

from datetime import datetime

# Set the root path, change the the current working directory into the project folder
path = "/Users/silvia/cffs-label”
os.chdir(path)

# Enable reading data table in the scrolling window if you prefer
#pd.set_option("display.max rows'", None, "display.max columns", None)

Import Preprocessed Datasets

# Read Items List.csv
Items = pd.read_csv(os.path.join(os.getcwd(), "data", "preprocessed", "Items List.csv"))
Items.dtypes

ItemId object
Description object
CaseQty float64d
CaseUOM object
PakQty float64
PakuoM object
InventoryGroup object

dtype: object

Items.head()

Itemid Description CaseQty CaseUOM PakQty PakuOM InventoryGroup
0 1-4271 APPLES GRANNY SMITH 113.0 ea 1.0 CcT PRODUCE
1 1-4971 ARTICHOKE 1/4 SALAD CUT TFC 6.0 LG CAN 2.5 Kg PRODUCE
2 1-2305 BACON PANCETTA 1.0 Kg 1.0 Kg MEAT
3 11207 BAGUETTE FRENCH 24.0 each 1.0 CcT BREAD
4 117203 BALSAMIC GLAZE 2.0 bottle 2.0 L FOOD - GROCERY

Ttems.shape

(598, 7)

# Read Ingredients List.csv
Ingredients = pd.read csv(os.path.join(os.getcwd(), "data", "preprocessed", "Ingredients List.csv"))
Ingredients.dtypes

IngredientId object
oty float64
Uem object
Conversion float64



InvFactor float64
Recipe object
dtype: object
[9]: Ingredients.head()

Ingredientid Qty Uom Conversion InvFactor Recipe
0 P-18746 1.00 Kg 1.00000 1.0000 P-10241
1 1-3388 1.00 L 1.00000 0.3058 P-10496
2 1-4660 2.27 Kg 2.20462 0.6942 P-10496
3 1-3451 2.56 L 1.00000 1.2800 P-13933
4 1-4679 1.00 BUNCH 1.00000 0.0063 P-18318

10]: Ingredients.shape

10]: (5382, 6)

# Read Preps List.csv
Preps = pd.read_csv(os.path.join(os.getcwd(),
Preps.dtypes

"data", "preprocessed", "Preps_List.csv"))

PrepId object
Description object
PakQty float64
PakuoM object
InventoryGroup object
dtype: object

12]: Preps.head()

Prepld Description PakQty PakUOM InventoryGroup
0 P-55516 BAKED]|Lasagna|Spin Mushroom 5.550 Kg NaN
1 P-54666 BAKED|Pasta|Chicken Alfredo 6.176 Kg NaN
2 P-54664 BAKED|Pasta|Chorizo Penne 7.360 Kg NaN
3 P-56502 BAKED|Pasta|Shrimp Pesto 5.760 Kg NaN
4 P-56433 BATCH|Shrimp Remoulade 1.600 Kg Nal
Preps.shape
[13]: (753, 5)

# Read Product List.csv
Products = pd.read csv(os.path.join(os.getcwd(), "data", "preprocessed", "Products_List.csv"))

Products.dtypes

ProdId object
Description object
SalesGroup object

dtype: object

Products.head()

Products.shape

(458, 3)

Conversions = pd.read csv(os.path
Conversions.dtypes

ConversionId object
Multiplier floaté4d
ConvertFromQty floaté4
ConvertFromUom object
ConvertToQty float64

0 57: Prodid Description SalesGroup
0 R-81778 ALF|Flatbread|4 Cheese OK - AL FORNO
1 R-61780 ALF|Flatbread|Apple & Pancetta OK - AL FORNO
2 R-81749 ALF|Flatbread|BBQ Chicken OK - AL FORNO
3 R-50859 ALF|Flatbread|Bruschetta OK - AL FORNO
4 R-50788 ALF|Flatbread|Caprese OK - AL FORNO

.join(os.getcwd(),

"data",

"preprocessed", "Conversions_List.csv"))




ConvertToUom
dtype: object

object

Conversions.head()

187 Conversionld Multiplier

0 NaN
1 NaN
2 NaN
3 NaN
a4 NaN

ConvertFromQty ConvertFromUom
1.000000 1.0 XXX
0.877193 1.0 1.14L
0.666667 1.0 1.5L
0.571429 1.0 175L
0.500000 10 2L

Conversions.shape

(296, 6)

1.00
114
1.50
178

2.00

ConvertToQty ConvertToUom

L

L

Update Conversion List

# Add the specific conversion info from the newly-processed data to a unit conversion database

Update_Conv = pd.read_csv(os.path.join(os.getcwd(),

Update_Conv

out[20] Conversionld

0 1-1028  0.008333 10 cT 120.0
1 1-1034 0.008333 10 GT: 120.0
2 1-1035  0.010000 10 CcT 100.0
3 1-10605 0.008850 1.0 cT 113.0
4 1-1126  0.006667 1.0 CcT 150.0
310 P-32664 0.016393 1.0 each 61.0
3 P-55707 0.005405 10 PTN 185.0
312 P-55709 0.005405 1.0 PTN 185.0
313 P-62293 0.005405 10 PTN 185.0
314 P-62023 0.008452 10 ROLL 155.0
315 rows x 6 columns
Ir 21]: for index, row in Update_Conv.iterrows():
Id = Update_Conv.loc[index, 'ConversionId']
Conversions.drop(Conversions[Conversions['ConversionId'] == Id].index,

"data", "cleaning",

"update",

Multiplier ConvertFromQty ConvertFromUom ConvertToQty ConvertToUom

In [22]: frames = [Conversions, Update Conv]
Conversions = pd.concat(frames).reset index(drop=True,

Conversions
313 Conversionid
0 NaN
1 NaN
Zz NaN
3 NaN
4 NaN
585 P-32664
586 P-55707
587 P-55709
588 P-62293
589 P-62023

Multiplier
1.000000
0.877193
0.666667
0.571429

0.500000

0.016393
0.005405
0.005405
0.005405

0.006452

590 rows x 6 columns

ConvertFromQty ConvertFromUom

1.0
1.0
1.0
1.0
1.0

XXX
1.14L
15L
175L

2L

each
PTN
PTN
PTN
ROLL

"conv_UpdateConv.csv"))

inplace = True)

inplace=False).drop duplicates()

ConvertToQty ConvertToUom

1.00
114
1.50
1.75
2.00

61.00
185.00
185.00
185.00

155.00

15

L



path = os.path.join(os.getcwd(), "data", "cleaning", "Conversions_added.csv")
Conversions.to_csv(path, index = False, header = True)

Create Unit Converter
# Import standard unit conversion information and construct a dataframe
Std_Unit = pd.read_csv{os.path.join(os.getcwd(), "data", "external", "standard conversions.csv"))

Std_Unit.head()

Multiplier ConvertFromQty ConvertFromUom ConvertToQty ConvertToUom

0 4.92890 1 tsp 4.92890 ml
1 14.78700 1 Tbsp 14.78700 ml
2 946.35000 1 qt 946.35000 mi
3 47317625 1 pt 47317625 ml
4 28.34950 1 oz 28.34950 g

# Seperate uoms that converted to 'ml' or ‘g’
liquid_unit = std_Unit.loc[Std_Unit[ 'ConvertToUom'] == 'ml', 'ConvertFromUom'].tolist()

solid unit = Std Unit.loc[Std Unit[ 'ConvertToUom'] == 'g', 'ConvertFromUcm'].tolist()

27]1:  # Construct a standard unit converter
def std_converter(gty, uom):

if uom in Std Unit[ 'ConvertFromUom'].tolist():
multiplier = std Unit.loc[Std_Unit['ConvertFromUom'] == uom, 'Multiplier']
Qty = float(gty)*float(multiplier)
Uom = Std Unit.loc[Std Unit|['ConvertFromUom'] == uom, 'ConvertToUom'].values[0]

else:
oty = gty
Uom = uom

return (Qty, Uom)

# Test the std converter
#assert std converter(0.25,'lb') == (113.398, 'g')

# Construct a unit converter for specific ingredients
spc_cov = list(filter(None, Conversions['ConversionId'].tolist()))

def spc_converter(ingre, qty, uom):
if uom in liquid unit + solid unit:
return std converter(qty, uom)
elif ingre in spc_cov:
conversion = Conversions.loc[ (Conversions['ConversionId'] == ingre) & (Conversions['ConvertFromUom'] == uom)
& (Conversions['ConvertToUom'] == 'g'})]
multiplier = conversion['Multiplier']
if multiplier.empty:
return std_converter(gty, uom)
else:
Oty = float(qgty)/float(multiplier)
Uom = conversion['ConvertToUom'].values[0]
return (Qty, Uom)
else:
return std converter(gty, uom)

In [30]: | # Test the spc converter
#assert spc converter('I-1120', 1, 'CTr') == (50, 'g')

Items with Non-standard Units

# Filter out the items whose unit information is unknown
col names = list(Ingredients.columns.values)
Items_Nonstd = []

for index, row in Ingredients.iterrows():
Ingre = Ingredients.loc[index, 'IngredientId']
Uom = Ingredients.loc[index, 'Uom']
if Uom not in ['g', 'ml'] and Uom not in liguid_unit + solid unit and Ingre.startswith('I') and Ingre not in Conversi
Dict = {}
Dict.update(dict(row))
Items_Nonstd.append(Dict)

Items_Nonstd = pd.DataFrame(Items_Nonstd, columns = col names)
Items_Nonstd.drop_duplicates(subset=[ 'IngredientId'], inplace=True,)

Items_Nonstd

Qut[31]: Ingredientld Qty Uom Conversion InvFactor Recipe



path = os.path.join(os.getcwd(), "data", "cleaning",

"Items_Nonstd.csv")
Items_Nonstd.to_csv(path, index = False, header = True)

Clean Preps Units

Preps['Stdoty’] = np.nan
Preps['stdUom'] = np.nan

# Convert uom into 'g' or 'ml' for each prep using the unit converter

for index in Preps.index:
Prepld = Preps.loc[index, 'PrepId']
Oty = Preps.loc[index, 'PakOty']
Uom = Preps.loc[index, 'PakUOM']

Preps.loc[index, 'sStdQty'] = spc_converter(PrepId, Qty, Uom)([0]
Preps.loc[index, 'StdUom'] = spc_converter(PrepId, Qty, Uom)[1]

35] Preps

Prepld Description PakQty PakUOM

0 P-55516 BAKED|Lasagna|Spin Mushroom 5.550 Kg

1 P-54666 BAKED|Pasta|Chicken Alfredo 6.176 Kg

2 P-54664 BAKED|Pasta|Chorizo Penne 7.360 Kg

3 P-56502 BAKED|Pasta|Shrimp Pesto 5760 Kg

4 P-56433 BATCH|Shrimp Remoulade 1.600 Kg
748 P-47418 MIX|Cheese 2.000 Kg
749 P-42317 ROASTED|Spaghetti Squash 1.400 Kg
750 P-56927 SAUTE|Cauliflower Rice 1.000 Kg
751 P-56887 YIELD|Grated Pear 800.000 g
752 P-48509 YIELD|Lettuce bun 3.000 PTN

753 rows x 7 columns

# Save cleaned preps list to file

path = os.path.join(os.getcwd(), "data", "cleaning"”,

Preps.to_csv(path, index = False, header = True)

Get Preps with Nonstandard Unit

col_names = list(Preps.columns.values)
Preps_Nonstd = []

for index, row in Preps.iterrows():
StdUom = Preps.loc[index, 'StdUom']
if S5tdUcom not in ['g', 'ml’]:
Dict = {}
Dict.update(dict(row))
Preps_Nonstd.append(Dict)

InventoryGroup

NaN
NaN
NaN
NaN

NaN

PREP
NaN
NaN
NaN

NaN

StdQty StdUom

5550.000000
6176.000000
7360.000000
5760.000000

1600.000000

2000.000000
1400.000000
1000.000000

800.000000

449.999978

"Preps_Unit Cleaned.csv")

Preps_Nonstd = pd.DataFrame(Preps_Nonstd, columns = col_names)

Preps_Nonstd

Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom

0 P-51230 WINGS|Sauce Mix|ratio 1.0 srvg

NaN

1.0

srvg

39]:  # Filter out preps with nonstandard uom but have information already
Manual PrepU = pd.read csv(os.path.join(os.getcwd(),

col_names = list(Preps_Nonstd.columns.values)
Preps_Nonstd_na = []

for index, row in Preps_Nonstd.iterrows():
PrepTd = Preps_MNonstd.loc[index, 'Prepld’]

if PrepTd not in Manual_PrepU[ 'Prepld'].values:

Dict = {}
Dict.update(dict(row))
Preps_Nonstd_na.append(Dict)

"data",

"cleaning”, "update",

"Preps UpdateUom.csv"))



Preps_Nonstd = pd.DataFrame(Preps_Nonstd na, columns = col_names)
Preps_Nonstd

97]: Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom

path = os.path.join(os.getcwd(), "data", "cleaning", "Preps_NonstdUom.csv")
Preps_Nonstd.to_csv(path, index = False, header = True)

New Items

# Load current Items List with assigned Emission Factors Category ID
Ttems_Assigned = pd.read_csv(os.path.join(os.getcwd(), "data", "mapping", "Items_List_Assigned.csv"))
Items Assigned.head()

Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup
0 |-57545 1 CHUCK FLAT BONELESS FZN 3.30 Kg 1.0 Kg MEAT
1 1-10869 1 BEEF STIRFRY COV FR 5.00 Kg 10 Kg MEAT
2 17064 1 BEEF OUTSIDE FLAT AAA 1.00 Kg 1.0 Kg MEAT
3 1-37005 i BEEF MEATBALLS 4.54 Kg 1000.0 g MEAT
4 1-37002 1 BEEF INSIDE ROUND SHAVED 9.00 Kg 1000.0 g MEAT

n [(42]: Ttems_Assigned.shape

£r427: (1993, 8)

Get the List of New ltems

# Filter new items by itemID that not in the database and output them in a dataframe
col_names = list(Items.columns.values)
New_Ttems List = []

for index, row in Items.iterrows():
ItemId = Ttems.loc[index,'TtemId']
if ItemId not in Items_Assigned['TtemId'].values:
Dict = {}
Dict.update(dict(row))
New_Items_List.append(Dict)

New_Items = pd.DataFrame(New_Items_List, columns = col_names)

New_Ttems.insert(l, "CategoryID", '')
New_Items

Itemld CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup

‘n [45]: New_ Items.shape

(0, 8)

# Store the list of new items into .csv file

if not New_Items.empty:
path = os.path.join(os.getcwd(), "data", "mapping”, "new items", str(datetime.date(datetime.now()))+" New_Items.csv")
New_Ttems.to_csv(path, index = False, header = True)

Data Summary

datasum = pd.DataFrame([New_Items.shape, Preps_Nonstd.shape, Items_Nonstd.shape],
columns = ['count', 'columns'],

index = ['New_Items', 'Preps Nonstd', 'Items_Nonstd'])
datasum
count columns
New_ltems 0 8
Preps_Nonstd 0 7
Items_Nonstd 0 6
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Climate-Friendly Food Systems (CFFS) Labelling Project
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Part lll: Update Information and Mapping

Set up and Import Libraries

#pip install -r requirements.txt

import numpy as np

import pandas as pd

import pdpipe as pdp

import matplotlib.pyplot as plt
import glob

import os

import csv

from itertools import islice

from decimal import Decimal

import xml.etree.ElementTree as et
from xml.etree.ElementTree import parse
import openpyxl

import pytest

from datetime import datetime

# Set the root path, change the the current working directory into the project folder
path = "/Users/silvia/cffs-label"
os.chdir(path)

# Enable reading data table in the screlling window if you prefer
#pd.set_option("display.max rows", None, "display.max columns", None)

Import Preprocessed Datasets

Preps = pd.read csv(os.path.join(os.getcwd(), "data", "cleaning”, "Preps_Unit Cleaned.csv"))
Preps.head()

Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom
0 P-55516 BAKED|Lasagna|Spin Mushroom 5.5650 Kg NaN 5550.0 g
1 P-54666 BAKED|Pasta|Chicken Alfredo 6.176 Kg NaN 6176.0 g
2 P-54664 BAKED|Pasta|Chorizo Penne 7.360 Kg NaN 7360.0 g
3 P-56502 BAKED|Pasta|Shrimp Pesto 5.760 Kg NaN 5760.0 o]
4 P-56433 BATCHI|Shrimp Remoulade 1.600 Kg NaN  1600.0 e]

ghge_factors = pd.read csv(os.path.join(os.getcwd(), "data", "external", "ghge_factors.csv"))
ghge_factors.head()

Category ID Food Category Active Total Supply Chain Emissions (kg CO2 [ kg food)
0 1 beef & buffalo meat 41.3463
1 2 lamb/mutton & goat meat 41.6211
2 3 pork (pig meat) 9.8315
3 4 poultry (chicken, turkey) 4.3996



Category ID Food Category Active Total Supply Chain Emissions (kg CO2 [ kg food)

4 5 butter 11.4316

nitro factors = pd.read csv(os.path.join(os.getcwd(), "data", "external"”, "nitrogen factors.csv"))
nitro_factors.head()

73 Category ID Food Category g N lost/kg product
0 1 beef & buffalo meat 320.50
13 2 lamb/mutton & goat meat 23115
2 3 pork (pig meat) 132.80
3 4  poultry (chicken, turkey) 116.80
a 5 butter 100.35
water_factors = pd.read_csv(os.path.join(os.getcwd(), "data", "external", "water_ factors.csv"))

water_factors.head()

Category ID Food Category Freshwater Withdrawals (L/[FU) Stress-Weighted Water Use (L/FU)
0 1 beef & buffalo meat 1677.200 61309.000
1 2 |lamb/mutton & goat meat 461.200 258.900
2 3 pork (pig meat) 1810.300 54242700
2} 4 poultry (chicken, turkey) 370.300 333.500
4 5 butter 1010.176 50055.168

# Load current Items List with assigned Emission Factors Category ID
Items_Assigned = pd.read csv(os.path.join(os.getcwd(), "data", "mapping"”, "Items_List Assigned.csv"))
Ttems_Assigned.head()

Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup

0 [-57545 1 CHUCK FLAT BONELESS FZN 3.30 Kg 10 Kg MEAT

1 1-10869 1 BEEF STIRFRY COV FR 5.00 Kg 1.0 Kg MEAT

2 1-7064 1 BEEF OUTSIDE FLAT AAA 1.00 Kg 1.0 Kg MEAT

3 1-37005 1 BEEF MEATBALLS 4.54 Kg 1000.0 g MEAT

4 1-37002 1 BEEF INSIDE ROUND SHAVED 9.00 Kg 1000.0 g MEAT
Import Update Info

# Import 1list of prep that need convert uom to standard uom manually
Manual PrepU = pd.read csv(os.path.join(os.getcwd(), "data", "cleaning", "update", "Preps_UpdateUom.csv"))
Manual_PrepU.head()

107]: Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom
0 P-54697 LEMON|Wedge 1/8 8.0 each PREP 84.0 g
1 P-35132 MARINATED|Lemon & Herb Chx 185.0 ea PREP 240500 g
2 P-51992 YIELD|Bread|Sourdough 5/8 36.0 slice NaN 1620.0 g
3 P-26234 BATCH]|Roasted Garlic Bread 16.0 ea PREP 1280.0 g
4 P-26170 GRILLED|NaanBread 1.0 ea PREP 125.0 g

# Select the file path for new items list with category id
New_Items_Added = pd.read_csv(os.path.join(os.getcwd(), "data", "mapping", "new items added", "New_TItems_Added_10.csv"))
New_Items_Added

Itemid CategorylD Description CaseQty CaseUOM PakQty PakuOM InventoryGroup
0 1113791 24 BAR GF NANAIMO 3X3 WRAPPED 12 cT 1.00 CcT BAKED GOODS
1 1-63679 24 BUTTERHORNS EACH 1 ea 1.00 ea BAKED GOODS
2 1-31545 24 CAKE CARROT CARM STACK 48 slice 1.00 slice BAKED GOODS
3 1-1057 24 CAKE CHOC TRIPLE TIGER 12X16IN 2 SHEET 1.00 SHEET BAKED GOODS
4 |-60871 24 CAKE SHEET CHOC LAYER 12X16IN 2 SHEET 1.00 SHEET BAKED GOODS
5 [|-29698 24 CHEESECAKE 2" MINI 40 ea 1.00 ea BAKED GOODS



Itemld CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup

6 1-1392 24 COOKIE GF GINGER VEGAN 12 cT 1.00 CcT BAKED GOODS

7 1-63680 24 POPPYHORNS 1 ea 1.00 ea BAKED GOODS

8 1-1250 24 PRETZEL PIZZA EACH 1 ea 1.00 CcT BAKED GOODS

9 1-3771 65 YERBA MATE TEA ORG TRADITIONAL 6 Ib 1.00 b BEVERAGE
10 111790 55 JUICE APPLE 100% UNSWT TETRA 40 PTN 1.00 PTN BEVERAGE
11 1-19634 24 LOAF FRENCH BREAD 1 ea 1.00 LOAF BREAD
12 1-2309 3 HAM FESTIVE 1 Kg 1.00 Kg DELI & PREPARED MEAT
13 1-3125 21 CEREAL RICE KRISPIE SQ 6 ea 1.00 ea FOOD - GROCERY
14 1-37470 22 CORN HOMINY 6 LG CAN 2835.00 g FOOD - GROCERY
156 [-19540 54 FENUGREEK LEAVES DRY 454 g 1.00 g FOOD - GROCERY
16 1-3397 31 OLIVE RIPE BLACK SLCD 6 LG CAN 2.84 L FOOD - GROCERY
17 1-3506 58 SAUCE BBQ SMOKEY TFC 2 JUuG 378 L FOOD - GROCERY
18 1-3540 58 SAUCE SAMBAL OELEK 3 jar 3500.00 L FOOD - GROCERY
19 1-3110 20 TOFU EXTRA FIRM GREEN 42 pak  350.00 g FOOD - GROCERY
20 1-2949 37 TOMATO SAN MARZANO LA REGINA 6 LG CAN 100.00 floz FOOD - GROCERY
21 1-37475 a0 PASTE ACHIOTE 110 g 1.00 a FOOD - GROCERY
22 |-36996 59 SANDWICH BACON, CHEDD & TOMATO 1 ea 1.00 ea FOOD - GROCERY
23 1-36999 59 SANDWICH CASATA FALAFEL 1 ea 1.00 ea FOOD - GROCERY
24 |1-36998 59 SANDWICH CHICKEN CRANCHERRY 1 ea 1.00 ea FOOD - GROCERY
25 |-36995 &2 SANDWICH EGG SALAD 1 ea 1.00 ea FOOD - GROCERY
26 1-37000 59 SANDWICH HAM & CHEESE 1 ea 1.00 ea FOOD - GROCERY
27 1-36997 {12} SANDWICH SALMON SALAD 1 ea 1.00 ea FOOD - GROCERY
28 1-38987 59 WRAP BREAKFAST HAM & CHEESE 1 ea 1.00 ea FOOD - GROCERY
29 1-38988 59 WRAP BREAKFAST MEDITERRANEAN 1 ea 1.00 ea FOOD - GROCERY
30 |-3912 18 BURGER VEGGIE 44CT FZN a4 GT 1.00 cT MEAT
k4 1-3852 3 PORK BUTT SHLDR BNLS N/NFR 1 Kg 1.00 Kg MEAT
32 1-22915 3 PORK FEET CUT 1 Kg 1.00 Kg MEAT
33 1-64876 18 TMRW BURGER PATTIES VEGAN 40 each 1.00 each MEAT
34 1-64877 3 TMRW SAUSAGE BREAKFAST PATTY 100 each 1.00 ea MEAT
35 |-55331 4 CHICK BREAST BL/SO HAL TENDOUT 1 Kg 1.00 Kg POULTRY
36 1-3999 4 CHICK DRUMSTICK HALAL 1 Kg 1.00 Kg POULTRY
37 1-4465 36 ASPARAGUS (LARGE) MX 1 b 1.00 Ib PRODUCE
38 1-22443 40 BAMBOO SHOOTS STRIP 6 LG CAN 2.84 i PRODUCE
39 1-10616 17 BEANS ROMANO 1 Ib 1.00 b PRODUCE
40 1-4582 38 CARROTS BABY BUNCHED BC 1 each 1.00 CcT PRODUCE
41  1-11670 40 COLESLAW MIX CABBAGE&CARROT 5 b 1.00 Ib PRODUCE
42 |-10265 37 TOMATOES HEIRLOOM BC 1 Ib 1.00 Ib PRODUCE
43  1-4849 36 SALAD MIX ARTISAN 3 bag 2.00 b PRODUCE
44 1-62863 59 CKIG&G|HMR|Meat Ball & Pasta. 1 ea 1.00 ea PRODUCTION FOOD
45 1-19923 12 HALIBUT STEAK 40Z.0W 1 Ib 1.00 b SEAFOOD
46 1-8105 12 SAL LOX SMK SLC OW 1 [[] 1.00 b SEAFOOD
47 1-3094 54 PEPPERCORN BLACK WHOLE 3 Kg 1.00 Kg SPICES
48 1-168080 54 SUMAC GROUND 1 each 454.00 g SPICES

# Import list of items that adjusted GHGe factor manually
Manual_Factor = pd.read_csv(os.path.join(os.getcwd(), "data", "mapping", "Manual_Adjust_Factors.csv'"))
Manual Factor.head()

Active Total Stress-

Supply Chain gN Freshwater Weighted

Itemld CategorylD Description CaseQty CaseUOM PakQty PakUOM yGroup Emissi (kg lost/kg Withdrawals Water
CO02/kg product (L/FU) Use

food) (L/FU)




Itemld CategorylD

Description

BURGER BEEF

CaseQty CaseUOM

0 59 & MUSHROOM 10 cs
52090 HALAL
I- Prep-Vegan
45558 £ Parmesan e g
MAYONNAISE
2 |-3352 59 PAIL TEC 4L 2.0 each
COCONUT
3 1-3223 59 MILK 17/19% 6.0 LG CAN
MILK FAT
- MUSTARD
4 59 DIJON WINE 6.0 jar
2898 FLEUR
Update Correct Uom for Preps
# Update prep list with manully adjusted uom
for index, row in Manual PrepU.iterrows():
PrepId = Manual PrepU.loc[index, 'Prepid']
gty = Manual PrepU.loc[index, 'StdQty']
uom = Manual PrepU.loc[index, 'StdUom']
Preps.loc[Preps[ 'PrepId'] == PrepIld, 'sStdQty']
Preps.loc[Preps[ 'PrepId'] == PrepId, 'sStdUom']

Preps.drop_duplicates(subset=[ 'PrepId'], inplace=True,)

Preps.head()

Prepid
P-55516
P-64666
P-54664
P-56502

P-56433

Description PakQty

BAKED]|Lasagna|Spin Mushroom 5.550

BAKED|Pasta|Chicken Alfredo 6.176

BAKED|Pasta|Chorizo Penne 7.360

BAKED|Pasta|Shrimp Pesto 5.760

BATCH|Shrimp Remoulade 1.600

Preps.shape

(752, 7)

path = os.path.join(os.getcwd(),
Preps.to_csv(path, index = False,

"data”,

PakUOM
Kg
Kg
Kg
Kg

Kg

"cleaning",
header = True)

Active Total

Supply Chain

PakQty PakUOM yGroup Emissi (kg

co2 kg

food)

48.00 CT MEAT 25.00894
PRODUCTION

1.00 g FO0D 3.85686
FOOD -

4,00 L GROCERY 3.55000
FOOD -

2.84 13 GROCERY 3.50000
FOOD -

1.00 Kg GROCERY 3.32600

= gty
= uom

InventoryGroup StdQty StdUom
NaN 5550.0 g
NaN  6176.0 g
NaN 7360.0 g
NaN 5760.0 g
NaN  1600.0 a

"Preps_List Cleaned.csv")

Import List of New Items with Emission Factors Category ID Assigned

frames = [Items_Assigned, New_Ttems Added]

Items_ﬁssigned_Updated = pd.concat(frames).reset_index(drop=True, inplace=False).drop_duplicates()

Items_Assigned Updated.head()

0

1

Itemld CategorylD

1-575645
1-10869

1-7064
1-37005

1-37002

1
1

1

1

Description CaseQty CaseUOM

CHUCK FLAT BONELESS FZN 3.30
BEEF STIRFRY COV FR 5.00

BEEF OUTSIDE FLAT AAA 1.00
BEEF MEATBALLS 4.54

BEEF INSIDE ROUND SHAVED 9.00

Items_Assigned Updated.shape

(1993, 8)

Items_Assigned Updated[['CategoryID']] =

path = os.path.join(os.getcwd(),
Items_Assigned_Updated.to_csv(path, index

"data",

"mapping",

PakQty PakUOM

10
10
1.0
1000.0

1000.0

= False, header = True)

Kg
Kg
Kg

InventoryGroup
MEAT
MEAT
MEAT
MEAT

MEAT

"Ttems_List_Assigned.csv")

gN
lost/kg
product

200.86

0.00

0.00

0.00

0.00

Freshwater
Withdrawals
(LIFU)

1038.84

0.00

0.00

1.00

0.00

Items_Assigned_Updated[[ 'CategoryID']].apply(pd.to_numeric)

Stress-
Weighted
Water
Use
(L/FU)

37961.2

0.0

0.0

0.0



Mapping ltems to Footprint Factors

# Map GHG footprint factors
mapping = pd.merge(Items_Assigned Updated, ghge_factors.loc[:,['Category ID', 'Food Category','Active Total Supply Chain E
how = 'left',
left on = 'CategoryID',
right_on = 'Category ID')
for index in mapping.index:
if np.isnan(mapping.loc[index, 'Category ID']):

mapping.loc[index, 'Active Total Supply Chain Emissions (kg €02 / kg food)'] = 0
mapping = mapping.drop(columns=['Category ID', 'Food Category'])
mapping
ik Active Total Supply Chain Emissions
Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup (kg CO2 | kg food)
I= CHUCK FLAT BONELESS
0 57545 1 7N 3.30 Kg 1.0 Kg MEAT 41.3463
1 1086; 1 BEEF STIRFRY COV FR 5.00 Kg 1.0 Kg MEAT 41.3463
2 1-7064 1 BEEF OUTSIDE FLAT AAA 1.00 Kg 1.0 Kg MEAT 41.3463
3 37002 1 BEEF MEATBALLS 454 Kg 1000.0 g MEAT 41.3463
I- BEEF INSIDE ROUND
4 37002 1 SHAVED 9.00 Kg 1000.0 g MEAT 41.3463
I- CK|G&G|HMR|Meat Ball & PRODUCTION
1988 62863 59 PASIA; 1.00 ea 1.0 ea FooD 0.0000
1989 19922 12 HALIBUT STEAK 40Z.0W 1.00 b 1.0 Ib SEAFOOD 4.9798
1990 1-8105 12 SAL LOX SMK SLC OW 1.00 Ib 10 b SEAFOOD 4.9798
I- PEPPERCORN BLACK
1991 3004 54 WHOLE 3.00 Kg 1.0 Kg SPICES 9.3703
1992 1606; 54 SUMAC GROUND 1.00 each  454.0 g SPICES 9.3703
1993 rows x 9 columns
# Map nitrogen footprint factors
mapping = pd.merge(mapping, nitro factors.loc[:,[ 'Category ID', 'Food Category','g N lost/kg product']],
how = 'left’,
left_on = 'CategoryID',
right on = 'Category ID')
for index in mapping.index:
if np.isnan(mapping.loc[index,'Category ID']):
mapping.loc[index,'g N lost/kg product'] = 0
mapping = mapping.drop(celumns=['Category ID', 'Food Category'])
mapping
Active Total Supply Chain gN
Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup Emissions (kg CO2 | kg food) lost/kg
product
I- CHUCK FLAT
0 57545 1 BONMELESS FZN 3.30 Kg 1.0 Kg MEAT 41,3463 329.50
I- BEEF STIRFRY COV
1 10869 1 R 5.00 Kg 1.0 Kg MEAT 41.3463 329.50
2 1-7064 1 BEEE QUTSIDE Fk:; 1.00 Kg 10 Kg MEAT 41.3463 329.50
3 37002 1 BEEF MEATBALLS 4.54 Kg 1000.0 g MEAT 41.3483 329.50
I- BEEF INSIDE ROUND
4 37002 1 SHAVED 9.00 Kg 1000.0 <] MEAT 41.3463 329.50
I- CK|G&G|HMR|Meat PRODUCTION
1988 62863 59 Ball & Pasta. 1.00 ea 10 ea FooD 0.0000 0.00
I- HALIBUT STEAK
1989 19923 12 A07.0W 1.00 Ib 1.0 Ib SEAFOOD 4.9798 70.30
1990 1-8105 1g,  SALLOXSMRSLE 1.00 b 10 b SEAFOOD agres  70.30

ow



Active Total Supply Chain gl

Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup Emissions (kg CO2 | kg food) lost/kg
product

I- PEPPERCORN BLACK
1991 3094 54 WHOLE 3.00 Kg 1.0 Kg SPICES 9.3703 6.75
1992 k 54 SUMAC GROUND 1.00 each 454.0 g SPICES 9.3703 6.75

16060

1993 rows x 10 columns

# Map water footprint factors

mapping = pd.merge(mapping, water_ factors.loc[:,[ 'Category ID';'Food Category', Freshwater Withdrawals (L/FU)', 'Stress-%
how = 'left',
left_on = 'CategoryID',
right_on = 'Category ID')

for index in mapping.index:
if np.isnan(mapping.loc[index, 'Category ID']):
mapping.loc[index, 'Freshwater Withdrawals (L/FU)'] = 0
mapping.loc[index, 'Stress-Weighted Water Use (L/FU)'] = 0

mapping = mapping.drop(columns=['Category ID', 'Food Category'])

mapping
t[24]: Active
Total Stress-
Supply gN Freshwater Weighted
Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup Chain lostlkg Withdrawals Water
Emissions product (L/FU) Use
(kg €02/ (L/FU)
kg food)
I- CHUCK FLAT
0 57545 1 BONELESS FZN 3.30 Kg 10 Kg MEAT 41.3463 329.50 1677.2 61309.0
I= BEEF STIRFRY
1 10869 1 COV ER 5.00 Kg 1.0 Kg MEAT 41.3463  329.50 1677.2 61309.0
BEEF OUTSIDE
2 |-7064 1 FLAT AAA 1.00 Kg 10 Kg MEAT 41.3463  329.50 1677.2 61309.0
3 37002 1 BEEF MEATBALLS 454 Kg 1000.0 g MEAT 41.3463  329.50 1677.2 61309.0
I- BEEF INSIDE
4 37002 1 ROUND SHAVED 9.00 Kg 1000.0 g MEAT 41.3463 329.50 1677.2 61309.0
- CK|G&G|HMR|Meat PRODUCTION
1988 62863 59 Ball & Pasta. 1.00 ea 1.0 ea FOOD 0.0000 0.00 0.0 0.0
I- HALIBUT STEAK
1989 19923 12 210Z.0W 1.00 b 1.0 b SEAFOOD 4.9798 70.30 1580.5 8483.4
1990 1-8105 12; (ALLDAEMR %L\:f, 100 b 10 b SEAFOOD 49798  70.30 1580.5 84834
I- PEPPERCORN
1991 3094 54 BLACK WHOLE 3.00 Kg 10 Kg SPICES 9.3703 6.75 249 220.3
1992 16085 54  SUMAC GROUND 1.00 each 454.0 g SPICES 9.3703 6.75 249 220.3

1993 rows x 12 columns

Manully Adjust Footprint Factor for Specific ltems

for index, row in Manual Factor.iterrows():
itemId = Manual Factor.loc[index, 'ItemId']
ghge = Manual_Factor.loc[index, 'Active Total Supply Chain Emissions (kg €02 / kg food)']
nitro = Manual_Factor.loc[index, 'g N lost/kg product']
water = Manual Factor.loc[index, 'Freshwater Withdrawals (L/FU)']
str water = Manual Factor.loc[index, 'Stress-Weighted Water Use (L/FU)']
mapping.loc[mapping['ItemId'] == itemId, 'Active Total Supply Chain Emissions (kg €02 / kg food)'] = ghge
mapping.loc[mapping['ItemId'] == itemId, 'g N lost/kg product'] = nitro
mapping.loc[mapping['ItemId'] itemId, 'Freshwater Withdrawals (L/FU)'] = water
mapping.loc[mapping['ItemId'] == itemId, 'Stress-Weighted Water Use (L/FU)'] = str_water

mapping.drop_duplicates(subset = ['ItemId'], inplace=True)
mapping.dtypes

i ITtemId object
CategoryID inté4
Description object

CaseQty float64d




CaseUOM object

PakQty float64d
PakuoM object
InventoryGroup object
Active Total Supply Chain Emissions (kg €02 / kg food) float64
g N lost/kg product float64
Freshwater Withdrawals (L/FU) float64
Stress-Weighted Water Use (L/FU) float64

dtype: object

mapping.shape
(1993, 12)
mapping
Active
Total Stress-
Supply gN Freshwater Weighted
Itemid CategorylD Description CaseQty CaseUOM PakQty PakUOM InventoryGroup Chain lost/kg Withdrawals Water
Emissions product (L/FU) Use
(kg CO2/ (L/FU)
kg food)
I CHUCK FLAT
0 57545 BONELESS FZN 3.30 Kg 1.0 Kg MEAT 41.3463  329.50 1677.2 61309.0
I- BEEF STIRFRY
1 10869 1 COV FR 5.00 Ka 10 Kg MEAT 41.3463  329.50 1677.2  61309.0
BEEF OUTSIDE
2 |-7064 1 FLAT AAA 1.00 Kg 1.0 Kg MEAT 41.3463  329.50 1677.2 61309.0
3 3_’,00: 1 BEEF MEATBALLS 454 Kg 1000.0 g MEAT 41.3463  329.50 1677.2  61309.0
I- BEEF INSIDE
4 37002 1 ROUND SHAVED 9.00 Kg 1000.0 g MEAT 41.3463  329.50 1677.2 61309.0
= I- CK|G&G|HMR|Meat PRODUCTION
1988 62863 59 Ball & Pasta. 1.00 ea 10 ea FOOD 0.0000 0.00 0.0 0.0
I= HALIBUT STEAK
1989 19923 12 207.0W 1.00 b 1.0 b SEAFOOD 4.9798 70.30 1580.5 8483.4
1990 [-8106 12 Sk Lax: s %va, 1.00 b 10 b SEAFOOD 4.9798 70.30 1680.5 8483.4
I= PEPPERCORN
1991 3094 54 BLACK WHOLE 3.00 Kg 10 Kg SPICES 9.3703 6.75 249 220.3
1992 1606; 54  SUMAC GROUND 1.00 each  454.0 g SPICES 9.3703 6.76 24.9 220.3

1993 rows x 12 columns

path = os.path.join(os.getcwd(), "data", "mapping”, "Mapping.csv")
mapping.to_csv(path, index = False, header = True)



Climate-Friendly Food Systems (CFFS) Labelling Project
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Part IV: Data Analysis

Set up and Import Libraries
#pip install -r reguirements.txt

import numpy as np

import pandas as pd

import pdpipe as pdp

import matplotlib.pyplot as plt

import glob

import os

import csv

from itertools import islice

from decimal import Decimal

import xml.etree.ElementTree as et

from xml.etree.ElementTree import parse
import openpyxl

import pytest
pd.set_option('mode.chained assignment', None)

# Set the root path, change the the current working directory into the project folder

path = "/Users/silvia/cffs-label”
os.chdir(path)

# Enable reading data table in the scrolling window if you prefer
#pd.set_option("display.max rows'", None, "display.max columns", None)

Import Cleaned Datasets

Items = pd.read csv(os.path.join(os.getcwd(), "data",

Items.dtypes

L[5]: ItemId object
Description object
CaseQty float64
CaseUOM object
PakQty float64
PakuoM object
InventoryGroup object

dtype: object

Items.head()

Itemid Description CaseQty CaseUOM
0 142N APPLES GRANNY SMITH 113.0 ea
1 1-4971 ARTICHOKE 1/4 SALAD CUT TFC 6.0 LG CAN
2 |-2305 BACON PANCETTA 1.0 Kg
3 11207 BAGUETTE FRENCH 24.0 each
4 1-17203 BALSAMIC GLAZE 2.0 bottle

Ingredients = pd.read_csv(os.path.join(os.getcwd(),
Ingredients.dtypes

IngredientId object
oty float64
Uom object
Conversion float64
InvFactor float64
Recipe object

dtype: object
Ingredients.head()

Ingredientld Qty Uom Conversion InvFactor Recipe

PakQty
1.0
2.5
1.0
10

2.0

"data",

"preprocessed"”, "Items_List.csv"))

PakuOM InventoryGroup

cT PRODUCE
Kg PRODUCE
Kg MEAT
CT BREAD

L FOOD - GROCERY

"preprocessed"”, "Ingredients_List.csv"))



Ingredientld Qty Uom Conversion InvFactor Recipe
0 P-18746 1.00 Kg 1.00000 1.0000 P-10241
1 1-3388 1.00 L. 1.00000 0.3058 P-10496
2 1-4660 2.27 Kg 2.20462 0.6942 P-10496
3 1-3451 2.56 L 1.00000 1.2800 P-13933
4 1-4679 1.00 BUNCH 1.00000 0.0063 P-18318

Preps = pd.read_csv(os.path.join(os.getcwd(), "data", "cleaning”,

Preps .dtypes

"Preps_List_Cleaned.csv"))

PrepId object
Description object
PakQty float6d
PakuoM cbject
InventoryGroup object
Stdoty float64
Stduom object
dtype: object
Preps.head()

Preps.shape

(752, 7)

Products = pd.read csv(os.path.join(os.getcwd(), "data", "preprocessed", "Products List.csv'"))

Products.dtypes

11]: ProdId object
Description object
SalesGroup object

dtype: object

21z Products.head()

Prodid Description SalesGroup
0 R-81778 ALF|Flatbread|4 Cheese OK - AL FORNO
1 R-61780 ALF|Flatbread|Apple & Pancetta OK - AL FORNO
2 R-61749 ALF|Flatbread|BBQ Chicken OK - AL FORNO
3 R-50859 ALF|Flatbread|Bruschetta OK - AL FORNO
4 R-50788 ALF|Flatbread|Caprese OK - AL FORNO

Conversions = pd.read_csv(os.path

Conversions.dtypes

ConversionId
Multiplier
ConvertFromQty
ConvertFromUom
ConvertToQty
ConvertToUom
dtype: object

Conversions

Conversionld

[+] NaN
1 NaN
2 NaN
3 NaN
4 NaN
585 P-32664
586 P-55707
587 P-55709
588 P-62293
589 P-62023

object
float64
floaté4
object
floaté4
object

Multiplier
1.000000
0.877193
0.666667
0.571429
0.5600000

0.016393
0.005405
0.005405
0.005405
0.008452

590 rows x 6 columns

.join(os.getcwd(),

ConvertFromQty ConvertFromUom

"data",

1.0 XXX
1.0 1.14L
1.0 1.5L
1.0 1.75L
1.0 2L
1.0 each
1.0 PTN
1.0 PTN
1.0 PTN
1.0 ROLL

"e¢leaning",

"conversions_Added.csv"))

ConvertToQty ConvertToUom

1.00
114
1.50
1.75

2.00

61.00
185.00
185.00
185.00

155.00

L

IL

a e o @



mapping = pd.read csv(os.path.join(os.getcwd(), "data”,
mapping.dtypes

ItemId

CategoryID

Description

CaseQty

CaseUOM

PakQty

PakuoM

InventoryGroup

Active Total Supply Chain Emissions (kg €02 / kg food)
g N lost/kg product

Freshwater Withdrawals (L/FU)
Stress-Weighted Water Use (L/FU)
dtype: object

mapping
Itemld CategorylD Description CaseQty CaseUOM
- CHUCK FLAT
O 57545 BONELESS FZN 980 ke
& BEEF STIRFRY
T 10869 L CoV FR 00 Ka
BEEF OUTSIDE
2 17064 1 i 1.00 Kg
I-
8 i 1 BEEF MEATBALLS 454 Ka
= BEEF INSIDE
4 37002 T ROUND SHAVED 00 L
- CK|G&GIHMR|Meat
1988 co863 89 Ball & Pasta. 00 o
i HALIBUT STEAK
1989 19923 12 207.0W 1.00 b
1990 1-8105 1z, SALLOXSMKCSLE 1.00 Ib
ow
I PEPPERCORN
1991 49, 5% BLACK WHOLE 3.00 kg
|-
1892 o 54 SUMAC GROUND 1.00 each

1993 rows x 12 columns

Unit Converter

"mapping", "Mapping.csv"))

object
inted
object
floatéd
object
float6d
object
object
float6d
float64
floatb4
float64

PakQty PakUOM

10 Kg
10 Kg
10 Kg
1000.0 g
1000.0 g
1.0 ea
10 b
10 b
10 Kg
454.0 <]

# Import standard unit conversion information for items
Std_Unit = pd.read_csv{(os.path.join(os.getcwd(), "data", "external", "standard conversions.csv"))

std_Unit.head()

Multiplier ConvertFromQty ConvertFromUom ConvertToQty ConvertToUom

0 4.92890 1 tsp 492890
1 14.78700 1 Tbsp 14.78700
2 946.35000 1 at 946.35000
3 47317625 1 pt 47317625
4 28.34950 1 oz 28.34950

ml
ml
ml

ml

In [18]: # Import list of prep that need convert uom to standard uom manually

Manual PrepU = pd.read csv(os.path.join(os.getcwd(), "data",

Manual_PrepU.head()

Prepld Description PakQty PakUOM InventoryGroup
0 P-54697 LEMON|Wedge 1/8 8.0 each PREP 84.0
1 P-35132 MARINATED|Lemon & Herb Chx 185.0 ea PREP 24050.0

2 P-51992 YIELD|Bread|Sourdough 5/8 36.0 slice

NaN  1620.0

"cleaning",

InventoryGroup

MEAT

MEAT

MEAT

MEAT

MEAT

PRODUCTION
FOOD

SEAFOOD

SEAFOOD

SPICES

SPICES

"update”,

StdQty StdUom

Active
Total

Supply
Chain
Emissions
(kg CO2 |
kg food)

41.3463

41.3463

41.3463

41.3463

41.3463

0.0000

4.9798

4.9798

9.3703

9.3703

gN
lost/kg
product

329.50

329.50

329.50

329.50

329.50

0.00

70.30

70.30

6.76

676

Freshwater

Withdrawals

(LIFU)

1677.2

1677.2

1677.2

1677.2

1677.2

0.0

15680.5

1680.5

249

249

"Preps UpdateUom.csv"))

Stress-
Weighted
Water
Use
(L/FU)

61309.0

61309.0

61309.0

61309.0

61309.0

0.0

8483.4

8483.4

220.3

220.3



Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom
3 P-26234 BATCH]|Roasted Garlic Bread 16.0 ea PREP  1280.0 g

4 P-26170 GRILLED|NaanBread 1.0 ea PREP 125.0 g

# Add unit conversion info for preps into converter

Prep_cov = Manual_PrepU[[ 'PrepId', 'PakQty', 'PakUoM', 'stdoty','StdUom']]

Prep cov.insert(l, "Multiplier", '')

Prep cov.columns = Conversions.columns

Prep cov.loc['Multiplier'] = Prep_cov['ConvertFromQty']/Prep_cov|['ConvertToQty']
Prep cov.head()

Conversionld Multiplier ConvertFromQty ConvertFromUom ConvertToQty ConvertToUom

0 P-54697 8.0 each 84.0 g
1 P-35132 185.0 ea 24050.0 g
2 P-51992 36.0 slice 1620.0 g
3 P-26234 16.0 ea 1280.0 g
4 P-26170 1.0 ea 125.0 g

frames = [Conversions, Prep cov]
Conversions = pd.concat(frames).reset_index(drop=True, inplace=False).drop_duplicates()
Conversions

Conversionld Multiplier ConvertFromQty ConvertFromUom ConvertToQty ConvertToUom

4] NaN 1 1.0 XXX 1.00 L
1 NaN 0.877193 1.0 1.14L 114 I
2 NaN 0.666667 1.0 15L 150 L
3 NaN  0.571429 1.0 175 L 1.25 8
4 NaN 05 1.0 2L 2.00 L
798 P-55707 1.0 PTN 185.00 g
799 P-55709 1.0 PTN 185.00 g
800 P-62293 1.0 PTN 185.00 g
801 P-62023 1.0 ROLL 155.00 g
802 NaN NaN NaN NaN NaN NaN

803 rows x 6 columns

# Seperate uoms that converted to 'ml' er ‘g’
liquid unit = std Unit.loc[Std Unit[ 'ConvertToUom'] == 'ml', 'ConvertFromUom'].tolist()
solid unit = Std Unit.loc[Std Unit['ConvertToUom'] == 'g', 'ConvertFromUcm'].tolist()

# Construct a standard unit converter
def std_converter(qty, uom):
if uom in Std Unit[ 'ConvertFromUom'].tolist():
multiplier = Std Unit.loc[Std_Unit['ConvertFromUom'] == uom, 'Multiplier']
Qty = float(gty)*float(multiplier)
Uom = Std Unit.loc[Std_Unit['ConvertFromUom'] == uom, 'ConvertToUom'].values[0]
else:
Oty = gty
Uom = uom
return (Qty, Uom)

# Test the std converter
std_converter(0.25,'1lb')

(113.398, 'g')

# Construct a unit converter for specific items
spc_cov = list(filter(None, Conversions['ConversionId'].tolist()))

def spc_converter(ingre, gty, uom):

if uom in liguid unit + solid unit: #convert to std uom for ingredients has no specific convention instruction
return std converter(gty, uom)

elif ingre in spc_cov: #convert to std uom for ingredients has specific convention instruction
conversion = Conversions.loc[ (Conversions['ConversionId'] == ingre) & (Conversions['ConvertFromUcm'] == uom)

& (Conversions['ConvertToUom'] == 'g')]

conversion.drop duplicates(subset=['Conversionld'], inplace = True)
multiplier = conversion[ 'Multiplier']
if multiplier.empty:



return std converter(gty, uom)

else:
#print(conversion)
Oty = float(qty)/float(multiplier)
Uom = conversion['ConvertToUom'].values[0]
return (Qty, Uom)

else:
return std converter(gty, uom)

# Test the spc_converter
#spc_converter('I-1120', 1, 'cT')

spc_converter('P-35132', 1, 'ea')

(129.9999948000002, 'g")

GHG Factors Calculation for Preps

Preps[ 'GHG Emission (g)'] = 0

Preps[ 'GHG Emission(g)/stduom'] = 0

Preps['N lost (g)'] = 0

Preps['N lost (g)/StdUom'] = 0

Preps| 'Freshwater Withdrawals (ml)'] = 0

Preps[ 'Freshwater Withdrawals (ml)/Stduom'] = 0
Preps| 'Stress-Weighted Water Use (ml)'] = 0

Preps|[ 'Stress-Weighted Water Use (ml)/StdUom'] = 0

[28]: # Calculate GHG, nitro, water footprints per gram/ml of each prep for items as ingredients only
def get_items_ghge_ prep(index, row):
ingres = Ingredients.loc[Ingredients[ 'Recipe'] == Preps.loc[index, 'PrepId']]
ghg = Preps.loc[index, 'GHG Emission (g)']
nitro = Preps.loc[index, 'N lest (g)']
water = Preps.loc[index, 'Freshwater Withdrawals (ml)']
str_water = Preps.loc[index, 'Stress-Weighted Water Use (ml)']
weight = Preps.loc[index, 'Stdoty']
#print( 'Index:', index, '\nIngres:\n', ingres)
for idx, row in ingres.iterrows():
ingre = ingres.loc[idx,'IngredientId']
if ingre.startswith('I"):
ghge = mapping.loc[mapping['ItemId'] == ingre, 'Active Total Supply Chain Emissions (kg €02 / kg food)']
nitro_fac = mapping.loc[mapping['ItemId’'] == ingre, 'g N lost/kg product']
water_fac = mapping.loc[mapping['ItemId'] == ingre, 'Freshwater Withdrawals (L/FU)']
str_water fac = mapping.loc[mapping['ItemId'] == ingre, 'Stress-Weighted Water Use (L/FU)']
#print (ghge)
Qty = float(ingres.loc[idx, 'Qty'])
Uem = ingres.loc[idx, 'Ucm']
if ingre in spc_cov:
gty = spc_converter(ingre, Qty, Uom)[0]
ghg += gty*float(ghge)
nitro += gty*float(nitro fac)/1000
water += gty*float(water_fac)
str_water += gty*float(str_water_ fac)
else:
gty = std_converter(Qty, Uom)[0]
ghg += gty*float(ghge)
nitro += gty*float(nitro_fac)/1000
water += gty*float(water_fac)
str_water += gty*float(str water fac)
#print(ingre, Qty, Uom, gty, float(ghge), gty*float(ghge))
#print (ghg, nitro, water, str _water)

Preps.loc[index, 'GHG Emission (g)'] = float(ghg)
Preps.loc[index, 'GHG Emission(g)/StdUom'] = ghg/float(weight)
Preps.loc[index, 'N lost (g)'] = float(nitro)

Preps.loc[index, 'N lost (g)/StdUom'] = nitro/float(weight)
Preps.loc[index, 'Freshwater Withdrawals (ml)'] = float(water)

Preps.loc[index, 'Freshwater Withdrawals (ml)/StdUom'] = water/float(weight)
Preps.loc[index, 'Stress-Weighted Water Use (ml)'] = float(str_water)
Preps.loc[index, 'Stress-Weighted Water Use (ml)/StdUom'] = str_water/float(weight)

# Calculate GHG, nitro, water footprints per gram/ml of each prep for other preps as ingredients
def get preps_ghge prep(index, row):
ingres = Ingredients.loc[Ingredients['Recipe'] == Preps.loc[index, 'PrepId']]
ghg = Preps.loc[index, 'GHG Emission (g)']
nitro = Preps.loc[index, 'N lost (g)']
water = Preps.loc[index, 'Freshwater Withdrawals (ml)']
str_water = Preps.loc[index, 'Stress-Weighted Water Use (ml)']
weight = Preps.loc[index, 'StdQty']
#print( 'Index:', index, '\nIngres:\n', ingres)
for idx, row in ingres.iterrows():
ingre = ingres.loc[idx,'IngredientId']
if ingre.startswith('P') and len(ingres) > 1:
ghge = Preps.loc[Preps[ 'Prepld'] == ingre, 'GHG Emission(g)/StdUom’]
nitro_fac = Preps.loc[Preps['PrepId'] == ingre, 'N lost (g)/stdUom']



Preps.
Preps.
Preps.
Preps.
Preps.
Preps.
Preps.
Preps.

water_fac = Preps.loc[Preps['Prepld'] == ingre,
str_water_fac = Preps.loc[Preps['Prepld'] == ingre,
#print(ghge)

oty = float(ingres.loc[idx, 'Oty'])
Uom = ingres.loc[idx, 'Uecm']
if ingre in spc_cov:
qty = spc_converter(ingre, Qty, Uom)[0]
ghg += gty*float(ghge)
nitro += gty*fleat(nitro fac)
water += gty*float(water_ fac)
str_water += gty*float(str water fac)
else:
gty = std_converter (Qty, Uom)[0]
ghg += gty*float(ghge)
nitro += gty*float(nitro fac)
water += gty*float(water_fac)
str_water += gty*float(str_water fac)
#print(ingre, Qty, Uom, qty, gty*float(ghge))
#print(ghg, nitro, water, str_water)
loc[index, 'GHG Emission (g)'] = float(ghg)
loc[index,
loc[index,
loc[index,
loc[index,
loc[index,
loc[index,
loc[index,

'N lost (g)'] =
'N lost (g)/stdUom'] =
‘Freshwater Withdrawals
'Freshwater Withdrawals
'Stress-Weighted Water Use (ml)'] =
'Stress-Weighted Water Use (ml)/StdUom'] =

float(nitro)
nitro/float(weight)

'Freshwater Withdrawals (ml)/StdUcm']

'stress-Weighted Water Use (ml)/stduUom']

'GHG Emission(g)/StdUom'] = ghg/float(weight)

(ml)'] = float(water)
(ml)/stdUom'] = water/float(weight)
float(str_water)

str_water/float(weight)

# calculate GHG, nitro, water footprints per gram/ml of each prep for linked preps
def link preps(index, row):
= Ingredients.loc[Ingredients[ 'Recipe'] == Preps.loc[index, 'PrepId’']]

ingres
ghg =
nitro
water

str water =
weight = Preps.loc[index,

Preps.loc[index,
= Preps.loc[index,
= Preps.loc|[index,
Preps.loc[index,
'stdoty' ]

'GHG Emission (g)']
'N lost (g)']
'Freshwater Withdrawals (ml)']

if len(ingres) == 1:

ingre =

ingres.iloc[0][ 'IngredientId']

if ingre.startswith('P"):

Preps.
Preps.
Preps.
Preps.
Preps.
Preps.
Preps.
Preps.

for index,

#print(ingres)
ghge = Preps.loc[Preps|'PrepId'] == ingre,
nitro_fac = Preps.loc[Preps['PrepId'] == ingre,
water_fac = Preps.loc[Preps['PrepId'] == ingre,
str_water_ fac = Preps.loc[Preps|'Prepld’'] == ingre,
oty = float(ingres.iloc[0]['Qty'])
Uom = ingres.iloc[0][ 'Ucm']
if ingre in spc_cov:

gty = spc_converter(ingre, Qty, Uom)[0]

ghg = gty*float(ghge)

nitro = gty*float(nitro_fac)

water = gty*float(water_ fac)

str water = gty*float(str water_fac)
else:

gty = std_converter(Qty, Uom)[0]

ghg = gty*float(ghge)

nitro = gty*float(nitro fac)

water = gty*float(water_fac)

str_water = gty*float(str_water_fac)
Uom, gty, weight)
str water)
float(ghg)

#print(ingre, ghge, Qty,

#print(ghg, nitro, water,
loc[index, 'GHG Emission (g)'] =
loc[index,
loc[index,
loc[index,
loc[index,
loc[index,
loc[index,
loc[index,

'N lost (g)'] = float(nitro)
'N lost (g)/stdUom'] = nitro/float(weight)
'Freshwater Withdrawals (ml)'] =

row in Preps.iterrows():

get_items_ghge prep(index , row)

index,

row in Preps.iterrows():

link preps(index, row)

index,

row in Preps.iterrows():

get_preps_ghge_prep(index, row)

341: | Preps

Prepld

Description PakQty PakUOM

InventoryGroup StdQty StdUom

'Stress-Weighted Water Use (ml)']

'GHG Emission(g)/StdUom']
'N lost (g)/StdUom']
'Freshwater Withdrawals

(ml)/stdUom' ]
'stress-Weighted Water Use (ml)/StdUom’]

'GHG Emission(g)/StdUom'] = ghg/float(weight)

float(water)

'Freshwater Withdrawals (ml)/StdUom'] = water/float(weight)
‘Stress-Weighted Water Use (ml)'] = float(str water)
'stress-Weighted Water Use (ml)/StdUom'] = str_water/float(weight)

GHG Emission GHG
(g) Emission(g)/StdUom

N lost (g)

Nlc
(g)/StdUc



GHG Emission GHG Nlc

Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom (g) Emission(g)/StdUom N lost (g) (9)/StdUc

P-  BAKED|Lasagna|Spin

L L Kg NaN  5550.0 g 19928597446 3590738 200.304444  0.0360
1 546('526- BAKED'paSta'%ﬁgsg 6.176 Kg NaN  6176.0 g 17657.751270 2850002 220725071  0.0357
2 546(:’; BAKEDIPBS‘*"CE::‘Zg 7.360 Kg NaN  7360.0 g 22177.046905 3013186 263810524  0.0358.
3 sssgé BAKED‘P”“'S:Q}S 5760 Kg NaN  5760.0 g 29040084386 5041681 178743124  0.0310
a 56453' EAT;:"]%T;:‘;: 1.600 Kg NaN  1600.0 g 12750.771772 7969232 45416647  0.0283

747 474?5; MiX|Cheese  2.000 Ka PREP 2000.0 g 17820.800000 8910400 186.600000 00933

748 423:} ROASTEDGP;;’::& 1.400 Kg NaN  1400.0 g 1411767296 1008405 18978199  0.0135

749 569; SAUTE'C“”"°F;';'§; 1,000 Kg NaN  1000.0 g 809.481296 0.809481 8311199  0.008%

750 568;% YIELD|Grated Pear 800.000 g NaN  800.0 g 430.600000 0538250 2700000  0.0033

751 465;'9' YIELD|Lettuce bun 3000 PTN NaN  450.0 g 469611174 1043580 5964515 00132

752 rows x 15 columns

n [35] path = os.path.join(os.getcwd(), "data", "final", "Preps Footprints.csv")
Preps.to_csv(path, index = False, header = True)

GHGe Calculation for Products

36]: Products[ 'Weight (g)'] = 0
Products|[ "GHG Emission (g)'] = 0
Products['N lost (g)'] = 0
Products|[ 'Freshwater Withdrawals (ml)'] = 0
Products|[ 'Stress-Weighted Water Use (ml)'] = 0

n [37]: # Calculate GHG, nitro, water footprints per gram/ml of each product for items ingredients only
def get items_ghge(index, row):
ingres = Ingredients.loc[Ingredients['Recipe'] == Products.loc[index, 'ProdId’']]
ghg = Products.loc[index, 'GHG Emission (g)']
nitro = Products.loc[index, 'N lost (g)']
water = Products.loc[index, 'Freshwater Withdrawals (ml)']
str_water = Products.loc[index, 'Stress-Weighted Water Use (ml)']
weight = Products.loc[index, 'Weight (g)']
#print( 'Index:', index, '\nIngres:\n', ingres)
for idx, row in ingres.iterrows():
ingre = ingres.loc[idx,'IngredientId']
if ingre.startswith('I'):
ghge = mapping.loc[mapping['ItemId’'] == ingre, 'Active Total Supply Chain Emissions (kg C02 / kg food)']
nitro fac = mapping.loc[mapping['ItemId’'] == ingre, 'g N lost/kg product']
water_fac = mapping.loc[mapping['ItemId'] == ingre, 'Freshwater Withdrawals (L/FU)']
str water_ fac = mapping.loc[mapping['ItemId'] == ingre, 'Stress-Weighted Water Use (L/FU)']
oty = float(ingres.loc[idx, 'Qty'])
Uom = ingres.loc[idx, 'Uom']
if ingre in Conversions['ConversionId'].tolist():
gty = spc_cnnverter(inqre, Qty, Uom)[0]
weight += gty
ghg += gty*float(ghge)
nitro += gty*float(nitro fac)/1000
water += gty*float(water_fac)
str water += gty*float(str_water_ fac)
else:
qty = std_converter(Qty, Uom)[0]
weight += gty
ghg += gty*float(ghge)
nitro += gty*float(nitro fac)/1000
water += gty*float(water_fac)
str_water += gty*float(str_water_fac)
#print(ingre, Qty, Uom, gty, float(ghge), gty*float(ghge))
Products.loc[index, 'GHG Emission (g)'] = float(ghg)
Products.loc[index, 'Weight (g)'] = float(weight)
Products.loc[index, 'N lost (g)'] = float(nitro)




Products.loc[index, 'Freshwater Withdrawals (ml)'] = float(water)
Products.loc[index, 'sStress-Weighted Water Use (ml)'] = float(str_water)

# calculate GHG, nitro, water footprints per gram/ml of each product for preps ingredients only
def get preps_ghge(index, row):
ingres = Ingredients.loc[Ingredients[ 'Recipe’'] == Products.loc[index, 'ProdIid’']]
ghg = Products.loc[index, 'GHG Emission (g)']
nitro = Products.loc[index, 'N lost (g)']
water = Products.loc|[index, 'Freshwater Withdrawals (ml)']
str_water = Products.loc[index, 'Stress-Weighted Water Use (ml)']
weight = Products.loc[index, ‘Weight (g)']
#print( 'Index:', index, '\nIngres:\n’', ingres)
for idx, row in ingres.iterrows():
ingre = ingres.loc[idx, 'IngredientId']
if ingre.startswith('P'):
ghge = Preps.loc[Preps['PrepId'] == ingre, 'GHG Emission(g)/stdUom']

nitro fac = Preps.loc[Preps['PrepId'] == ingre, 'N lost (g)/StdUom']
water fac = Preps.loc[Preps[’'Prepld’'] == ingre, 'Freshwater Withdrawals (ml)/StdUom']
str_water fac = Preps.loc[Preps|['PrepId’'] == ingre, 'Stress-Weighted Water Use (ml)/StdUom']

oty = float(ingres.loc[idx, 'Qty'])
Uom = ingres.loc[idx, 'Uocm’]
if ingre in Conversions['ConversionId'].tolist():
gty = spc_converter(ingre, Qty, Uom)[0]
weight += gty
ghg += gty*float(ghge)
nitro += gty*float(nitro_fac)
water += gty*float(water_fac)
str_water += gty*float(str_water_ fac)
else:
gty = std_converter(Qty, Uom)[0]
weight += gty
ghg += gty*float(ghge)
nitro += gty*float(nitro_ fac)
water += gty*float(water_ fac)
str water += gty*float(str_water_ fac)
#print(ingre, Qty, Uom, qty, float(ghge), gty*float(ghge))
Products.loc[index, 'GHG Emission (g)'] = float(ghg)

Products.loc[index, 'Weight (g)'] = float(weight)

Products.loc[index, 'N lost (g)'] = float(nitro)

Products.loc[index, 'Freshwater Withdrawals (ml)'] = float(water)
Products.loc[index, 'Stress-Weighted Water Use (ml)'] = float(str water)

# Calculate GHG, nitro, water footprints per gram/ml of each product for other products ingredients
def get products_ghge (index, row):
ingres = Ingredients.loc[Ingredients[ 'Recipe'] == Products.loc[index, 'ProdIid’']]
ghg = Products.loc[index, 'GHG Emission (g)']
nitro = Products.loc[index, 'N lost (g)']
water = Products.loc[index, 'Freshwater Withdrawals (ml)']
str_water = Products.loc[index, 'Stress-Weighted Water Use (ml)']
weight = Producte.loc[index, 'Weight (g)']
#print('Index:', index, '\nIngres:\n', ingres)
for idx, row in ingres.iterrows():
ingre = ingres.loc[idx, 'IngredientId']
if ingre.startswith('R'):
ghge = Products.loc[Products| 'ProdId'] == ingre, 'GHG Emission (g)']
nitro_fac = Products.loc[Products['ProdId'] == ingre, 'N lost (g)']
water fac = Products.loc[Products['ProdId'] == ingre, 'Freshwater Withdrawals (ml)"']
str_water_fac = Products.loc[Products['ProdId'] == ingre, 'Stress-Weighted Water Use (ml)']
Weight = Products.loc|[Producte['ProdId'] == ingre, 'Weight (g)']
Oty = float(ingres.loc[idx, 'Oty'])
ghg += gty*float(ghge)
nitro += Qty*float(nitro fac)
water += Qty*float(water_fac)
str_water += Qty*float(str_water fac)
weight += Qty*float(Weight)
#print(ingre, Qty, float(ghge), Qty*float(ghge))
Products.loc[index, 'GHG Emission (g)'] = float(ghg)

Products.loc[index, 'Weight (g)'] = float(weight)

Products.loc[index, 'N lost (g)'] = float(nitro)

Products.loc[index, 'Freshwater Withdrawals (ml)'] = float(water)
Products.loc[index, 'Stress-Weighted Water Use (ml)'] = float(str_ water)

107: for index, row in Products.iterrows():
get_items_ghge(index , row)

41]: £for index, row in Products.iterrows():
get_preps_ghge(index, row)

2]: for index, row in Products.iterrows():
get_products_ghge(index, row)

# Filter out products using preps with unknown units
Preps_Nonstd = pd.read csv(os.path.join(os.getcwd(), "data", "cleaning", "Preps_ NonstdUom.csv"))
Preps_Nonstd




Prepld Description PakQty PakUOM InventoryGroup StdQty StdUom

def filter products(index, row):
ingres = Ingredients.loc[Ingredients['Recipe'] == Products.loc[index, 'ProdId’']]
#print(ingres)
for idx, row in ingres.iterrows():
ingre = ingres.loc[idx, 'IngredientId']
if ingre in Preps Nonstd[ 'PrepId'].tolist():
print(ingre, index, Products.loc[index, 'ProdId'])
Products.drop(index, inplace=True)
break

for index, row in Products.iterrows():
filter products(index, row)

Products|[ 'Freshwater Withdrawals (L)'] = round(Products[ 'Freshwater Withdrawals (ml)']/1000, 2)
Products|[ 'Stress-Weighted Water Use (L)'] = round(Products|'Stress-Weighted Water Use (ml)']1/1000, 2)
Products = Products.drop(columns=['Freshwater Withdrawals (ml)', 'Stress-Weighted Water Use (ml)'])

Products[ 'GHG Emission (g) / 100g'] = round(l100*Products['GHG Emission (g)']/Products['Weight (g)'], 2)

Products['N lost (g) / 100g'] = round(l00*Products['N lost (g)']/Products[ 'Weight (g)'], 2)

Products[ 'Freshwater Withdrawals (L) / 100g'] = round(l00*Products['Freshwater Withdrawals (L)']/Products[ 'weight (g)'],
Products[ 'Stress-Weighted Water Use (L) / 100g'] = round(l00*Products[’'Stress-Weighted Water Use (L)' ]/Products['Weight (

1 Products
s
GHG Freshwater Wesit rﬁ‘s:c—' Emisi::ﬁ |osr: Freshwater We
Prodid Description SalesGroup Weight (g) Emission Nlost (g) Withdrawals a'ater @/ (9 Withdrawals
@ M yser)y  100g 100g (H/1008 U
0 R ALFFatbreadia cheese 9K~ AL 1a5000000 1220.947500 11.939000 21284 1086259 66484 6.45 1506 €
61778 FORNO :
R- ALF|Flatbread|Apple & OK - AL
1 61780 Barcat FORNO 140.000000 756.345750  9.031250 144.99 5287.95 540.25 6.45 103.56
R- ALF|Flatbread|BBQ OK - AL
2 61749 Chicken FORNO 245.000000 1071.756923 18.258191 118.17 3196.50 41296 7.74 48.23 g
3 iz ALF|Flatbread|Bruschetta I - AL 215.000000 454128829 4589045 75.98 3520.38 211.22 213 356.34
50859 FORNO
4 i ALF|Flatbread|Caprese DAL 233.000000 1010.276452 10.809234 150.95 7671.61 433.60 4.64 64.79 3
50788 FORNO
R- SQR|Tofu Safrito Qe
453 3 SQUARE 650.000002 1542.748135 11.964991 171.88 8616.10 237.35 1.84 26.44
57815 Quesadilla +1 MEAL
R- SQRI[Tofu Sofrito Qs
454 q SQUARE 1065.000002 2275.218575 16.560511 21499 11264.83 21364 165 2019
61679 Quesadilla +2
MEAL
- OK -
455 56902 SQR|Vegan Lettuce Wrap SQUARE 399.999993 640.295633 3.987816 81.04 468222 160.07 1.00 20.26
MEAL
R- SQR|Vegan Lettuce Wrap OK -
456 SQUARE 544.999993 806.712203 4.920096 157.61  5354.54 148.02  0.90 28.92
57810 +1
MEAL
R- SQR|Vegan Lettuce Wra| Ok~
457 8 P SQUARE 689.999993  973.128774 5.852376 23418  6026.86 141.03 0.85 33.94
57811 +2 MEAL

458 rows x 12 columns
Products.shape
(458, 12)

path = os.path.join(os.getcwd(), "data", "final", "Recipes Footprints.csv")
Products.to_csv(path, index = False, header = True)

Data Visualization
path = os.path.join(os.getcwd(), "reports”, "figures/")

Products.boxplot(column=[ 'GHG Emission (g)'], return type='axes')
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In [54]: Products.boxplot(column=['Freshwater Withdrawals (L)'], return_type='axes')

Out[54]: <AxesSubplot:>
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out[55]: <AxesSubplot:>

Products.boxplot(column=[ 'Stress-Weighted Water Use (L)'], return type='axes')
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plt.ylabel('Frequency')
plt.xlim(left=0)

plt.savefig(path + 'GHGe dish.png')

6]: Products.hist(column=['GHG Emission
plt.axvline(Products['GHG Emission (g)'].mean(), color='r"',
plt.axvline(Products['GHG Emission (g)'].median(), color='k
plt.xlabel('GHG Emission (g) / Dish')

(g)'], bins= 40, alpha = 0.7)
linestyle='dashed',



GHG Emission (g)

1000 2000 3000 4000 5000 6000 7000 8000
GHG Emission (g) / Dish

Products.hist(column=['GHG Emission (g) / 100g'], bins= 40, alpha = 0.7)
plt.axvline(Products['GHG Emission (g) / 100g'].mean(), color='r', linestyle='dashed', linewidth=2, label = 'mean’' )
plt.axvline(Products[ 'GHG Emission (g) / 100g'].median(), color='k', linewidth=1, label = 'median')

plt.xlabel('GHG Emission (g) / 100g')

plt.ylabel('Freguency')

plt.xlim(left=0)

plt.savefig(path + 'GHGe_100g.png')
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0 1000 2000 3000 4000 5000 6000
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In [58]: Products.hist(column=['N lost (g)'], bins= 40, alpha = 0.7)
plt.axvline(Products['N lost (g)'].mean(), color='r', linestyle='dashed', linewidth=2, label = 'mean' )
plt.axvline(Products['N lost (g)'].median(), color='k', linewidth=1, label = 'median')

plt.xlabel('N lost (g) / Dish')
plt.ylabel('Frequency')
plt.xlim(left=0)

plt.savefig(path + 'N lost dish.png')
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30 40
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[50]: Products.hist(column=['N lost (g) / 100g'], bins= 40, alpha = 0.7)
plt.axvline(Products['N lost (g) / 100g'].mean(), color='r', linestyle='dacshed', linewidth=2, label = 'mean' )
plt.axvline(Products['N lost (g) / 100g'].median(), color='k', linewidth=1, label = 'median’)
plt.xlabel('N lost (g) / 100g')
plt.ylabel('Frequency')
plt.xlim(left=0)
plt.savefig(path + 'N lost_100g.png')
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Products.hist(column=[ 'Freshwater Withdrawals (L)'], bins= 40, alpha = 0.7)
plt.axvline(Products['Freshwater Withdrawals (L)'].mean(), color='r', linestyle='dashed', linewidth=2, label = 'mean' )
plt.axvline(Products[ 'Freshwater Withdrawals (L)'].median(), color='k', linewidth=1, label = 'median')
plt.xlabel('Freshwater Withdrawals (L) / Dish')

plt.ylabel('Freqguency')

plt.xlim(left=0)

plt.savefig(path + 'Fresh water dish.png')

Freshwater Withdrawals (L)

0 100 200 300 400
Freshwater Withdrawais (L) / Dish

Products.hist(column=[ 'Freshwater Withdrawals (L) / 100g'], bins= 40, alpha = 0.7)

plt.axvline(Products[ 'Freshwater Withdrawals (L) / 100g'].mean(), color='r', linestyle='dashed', linewidth=2, label = 'me
plt.axvline(Products|['Freshwater Withdrawals (L) / 100g'].median(), color='k', linewidth=1, label = 'median')
plt.xlabel('Freshwater Withdrawals (L) / 100g')

plt.ylabel('Frequency')

plt.xlim(left=0)

plt.savefig(path + 'Fresh water_100g.png')

Freshwater Withdrawals (L) / 100g

Frequency

0 100 200 300 200 500
Freshwater Withdrawals (L) f 100g

Products.hist(column=['Stress-Weighted Water Use (L)'], bins= 40, alpha = 0.7)

plt.axvline(Products[ 'Stress-Weighted Water Use (L)'].mean(), color='r', linestyle='dashed', linewidth=2, label = 'mean’
plt.axvline(Products['Stress-Weighted Water Use (L)'].median(), color='k', linewidth=1, label = 'median')
plt.xlabel('Stress-Weighted Water Use (L) / Dish')

plt.ylabel('Frequency')

plt.xlim(left=0)

plt.savefig(path + 'Stress water dish.png')
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In [63]: Products.hist(column=['Stress-Weighted Water Use (L) / 100g'], bins= 40, alpha = 0.7)
plt.axvline(Products|'Stress-Weighted Water Use (L) / 100g'].mean(), color='r', linestyle='dashed',6 linewidth=2, label =
plt.axvline(Products['Stress-Weighted Water Use (L) / 100g'].median(), color='k', linewidth=
plt.xlabel('stress-Weighted Water Use (L) / 100g')
plt.ylabel('Freguency')
plt.xlim(left=0)
plt.savefig(path + 'Stress water_ 100g.png')

1, label = 'median')
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APPENDIX B [GHG EMISSION FACTORS LIST]

Category | Food Category Active Total Supply Chain Emissions | Data Source

ID (kg CO2 / kg food)

1 beef & buffalo meat 41.3463 Cool Food Calculator
2 lamb/mutton & goat meat 41.6211 Cool Food Calculator
3 pork (pig meat) 9.8315 Cool Food Calculator
4 poultry (chicken, turkey) 4.3996 Cool Food Calculator
5 butter 11.4316 Cool Food Calculator
6 cheese 8.9104 Cool Food Calculator
7 ice cream 4.0163 Cool Food Calculator
8 cream 6.9824 Cool Food Calculator
9 milk (cow's milk) 2.2325 Cool Food Calculator
10 yogurt 2.9782 Cool Food Calculator
11 eggs 3.6615 Cool Food Calculator
12 fish (finfish) 4.9798 Cool Food Calculator
13 crustaceans (shrimp/prawns) 21.1274 Cool Food Calculator
14 mollusks 2.4351 Cool Food Calculator
15 animal fats 6.9693 Cool Food Calculator
16 other legumes 1.6042 Cool Food Calculator
17 beans and pulses (dried) 1.6776 Cool Food Calculator
18 peas 0.6995 Cool Food Calculator
19 peanuts/groundnuts 1.692 Cool Food Calculator
20 soybeans/tofu 1.7542 Cool Food Calculator
21 other grains/cereals 1.4785 Cool Food Calculator
22 corn (maize) 0.9734 Cool Food Calculator
23 oats (oatmeal) 2.3017 Cool Food Calculator
24 wheat/rye (bread, pasta, baked goods) |1.5225 Cool Food Calculator
25 rice 2.5345 Cool Food Calculator
26 tree nuts and seeds 4.2854 Cool Food Calculator
27 almond milk 0.7021 Cool Food Calculator
28 oat milk 0.9943 Cool Food Calculator
29 rice milk 0.6972 Cool Food Calculator
30 soy milk 0.489 Cool Food Calculator
31 other fruits 0.4306 Cool Food Calculator
32 apples 0.3581 Cool Food Calculator




33 bananas 0.7115 Cool Food Calculator
34 berries 1.6547 Cool Food Calculator
35 citrus fruit 0.3942 Cool Food Calculator
36 cabbages and other brassicas (broccoli) |0.622 Cool Food Calculator
37 tomatoes 0.6932 Cool Food Calculator
38 root vegetables 0.3062 Cool Food Calculator
39 onions and leeks 0.3015 Cool Food Calculator
40 other vegetables 0.5029 Cool Food Calculator
41 potatoes 0.397 Cool Food Calculator
42 cassava and other roots 0.397 Cool Food Calculator
43 sugars and sweeteners 1.6414 Cool Food Calculator
44 other vegetable oils 3.1509 Cool Food Calculator
45 soybeans (oil) 3.0336 Cool Food Calculator
46 palm (oil) 4.2483 Cool Food Calculator
47 sunflower (oil) 3.0231 Cool Food Calculator
48 rapeseed/canola (oil) 3.2401 Cool Food Calculator
49 olives (oil) 5.6383 Cool Food Calculator
50 barley (beer) 0.9535 Cool Food Calculator
51 wine grapes (wine) 1.3776 Cool Food Calculator
52 cocoa 10.456 Cool Food Calculator
53 coffee 16.6995 Cool Food Calculator
54 stimulants & spices misc. 9.3703 Cool Food Calculator
55 water & beverages 0 By Assumption

56 salt 0.44 The Big Climate Database
57 vinegar 1.93 The Big Climate Database
58 sauces & paste 0 By Assumption

59 manually adjusted 0 Estimated Individually
60 human labor 0 By Assumption

61 kitchen supplies 0 By Assumption




APPENDIX C [NITROGEN FOOTPRINT FACTORS LIST]

Category ID |Food Category g N lost/kg product | Data Source

1 beef & buffalo meat 3295 Food Label Toolkit

2 lamb/mutton & goat meat 231.15 Average of beef (1) and pork (3)
3 pork (pig meat) 132.8 Food Label Toolkit

4 poultry (chicken, turkey) 116.8 Food Label Toolkit

5 butter 100.35 GHG ratio to milk (9)
6 cheese 93.3 Food Label Toolkit

7 ice cream 16.2 GHG ratio to milk (9)
8 cream 28.08 GHG ratio to milk (9)
9 milk (cow's milk) 19.6 Food Label Toolkit
10 yogurt 26.07 GHG ratio to milk (9)
11 eggs 61.2 Food Label Toolkit
12 fish (finfish) 70.3 Food Label Toolkit
13 crustaceans (shrimp/prawns) 70.3 Same as fish (12)

14 mollusks 70.3 Same as fish (12)

15 animal fats 0.2 Same as oil (44)

16 other legumes 5.9 Food Label Toolkit
17 beans and pulses (dried) 5.9 Food Label Toolkit
18 peas 5.9 Food Label Toolkit
19 peanuts/groundnuts 12.2 Food Label Toolkit
20 soybeans/tofu 5.9 Food Label Toolkit
21 other grains/cereals 5.9 Food Label Toolkit
22 corn (maize) 6.75 Average of all veg products
23 oats (oatmeal) 6.75 Average of all veg products
24 wheat/rye (bread, pasta, baked goods) 14.8 Food Label Toolkit
25 rice 5.3 Food Label Toolkit
26 tree nuts and seeds 12.2 Food Label Toolkit
27 almond milk 3.05 1/4 of nuts (19)

28 oat milk 0.68 1/10 of oats (23)

29 rice milk 1.06 1/5 of rice (25)

30 soy milk 2.37 2/5 of soybean (20)
31 other fruits 2.7 Food Label Toolkit
32 apples 2.7 Food Label Toolkit
33 bananas 2.7 Food Label Toolkit




34 berries 2.7 Food Label Toolkit

35 citrus fruit 2.7 Food Label Toolkit

36 cabbages and other brassicas (broccoli) 7.9 Food Label Toolkit

37 tomatoes 7.9 Food Label Toolkit

38 root vegetables 7.9 Food Label Toolkit

39 onions and leeks 7.9 Food Label Toolkit

40 other vegetables 7.9 Food Label Toolkit

41 potatoes 5 Food Label Toolkit

42 cassava and other roots 5 Food Label Toolkit

43 sugars and sweeteners 0 By Assumption

44 other vegetable oils 0.2 Food Label Toolkit

45 soybeans (oil) 0.2 Food Label Toolkit

46 palm (oil) 0.2 Food Label Toolkit

47 sunflower (oil) 0.2 Food Label Toolkit

48 rapeseed/canola (oil) 0.2 Food Label Toolkit

49 olives (oil) 0.2 Food Label Toolkit

50 barley (beer) 9.32 GHG ratio to wheat (24)
51 wine grapes (wine) 8.64 GHG ratio to fruits (31)
52 cocoa 2.7 Same as fruits (31)

53 coffee 2.7 Same as fruits (31)

54 stimulants & spices misc. 6.75 Average of all veg products
55 water & beverages 0 By Assumption

56 salt 0 By Assumption

57 vinegar 0 By Assumption

58 sauces & paste 6.75 Average of all veg products
59 manually adjusted 0 Estimated Individually
60 human labor 0 By Assumption

61 kitchen supplies 0 By Assumption




APPENDIX D [WATER FOOTPRINT FACTORS LIST]

Category | Food Category Freshwater Stress-Weighte |Data Source
ID Withdrawals |d Water Use

(L/FU) (L/FU)
1 beef & buffalo meat 1677.2 61309 Poore & Newecek
2 lamb/mutton & goat meat 461.2 258.9 Poore & Newecek
3 pork (pig meat) 1810.3 54242.7 Poore & Newecek
4 poultry (chicken, turkey) 370.3 333.5 Poore & Newecek
5 butter 1010.176 50055.168 GHG ratio to milk (9)
6 cheese 1559.3 80463.1 Poore & Newecek
7 ice cream 16.2 17597.52 GHG ratio to milk (9)
8 cream 28.08 30502.368 GHG ratio to milk (9)
9 milk (cow's milk) 197.3 9776.4 Poore & Newecek
10 yogurt 262.409 13002.612 GHG ratio to milk (9)
11 eggs 632.9 18621 Poore & Newecek
12 fish (finfish) 1580.5 8483.4 Poore & Newecek
13 crustaceans (shrimp/prawns) 1207.8 48737.6 Poore & Newecek
14 mollusks 0 0 By Assumption
15 animal fats 1810.3 54242.7 Same as pork (3)
16 other legumes 0 0 Poore & Newecek
17 beans and pulses (dried) 0 0 Poore & Newecek
18 peas 0 0 Poore & Newecek
19 peanuts/groundnuts 900.2 44352.1 Poore & Newecek
20 soybeans/tofu 6.6 32.4 Poore & Newecek
21 other grains/cereals 677.075 10563.3 Average of all grains
22 corn (maize) 43.9 349.6 Poore & Newecek
23 oats (oatmeal) 670.3 24456.3 Poore & Newecek
24 wheat/rye (bread, pasta, baked goods) [419.2 12821.7 Poore & Newecek
25 rice 1574.9 4625.6 Poore & Newecek
26 tree nuts and seeds 1823.3 129364.3 Poore & Newecek
27 almond milk 455.825 32341.075 1/4 of nuts (19)
28 oat milk 67.03 2445.63 1/10 of oats (23)
29 rice milk 314.98 925.12 1/5 of rice (25)
30 soy milk 1.3 6.2 Poore & Newecek
31 other fruits 3.5 4.7 Poore & Newecek




32 apples 114.5 1024.7 Poore & Newecek

33 bananas 1 31.3 Poore & Newecek

34 berries 403.5 16245.1 Poore & Newecek

35 citrus fruit 374 1345.5 Poore & Newecek

36 cabbages and other brassicas (broccoli) |54.5 2483.4 Poore & Newecek

37 tomatoes 77 4480.7 Poore & Newecek

38 root vegetables 9.9 37.9 Poore & Newecek

39 onions and leeks 1.9 57 Poore & Newecek

40 other vegetables 81.3 2939.5 Poore & Newecek

41 potatoes 2.6 78.3 Poore & Newecek

42 cassava and other roots 9.9 37.9 Poore & Newecek

43 sugars and sweeteners 10.1 65.2 Poore & Newecek

44 other vegetable oils 67.5 4937.72 Average of all veg oils
45 soybeans (oil) 1.6 7.8 Poore & Newecek

46 palm (oil) 6.4 34.8 Poore & Newecek

47 sunflower (oil) 10.2 236.7 Poore & Newecek

48 rapeseed/canola (oil) 14 13.6 Poore & Newecek

49 olives (oil) 317.9 24395.7 Poore & Newecek

50 barley (beer) 7 27.3 Poore & Newecek

51 wine grapes (wine) 4.5 60.4 Poore & Newecek

52 cocoa 24.9 220.3 Poore & Newecek

53 coffee 333 340.7 Poore & Newecek

54 stimulants & spices misc. 24.9 220.3 Same as cocoa (52)
55 water & beverages 1 1 By Assumption

56 salt 0 0 By Assumption

57 vinegar 1 1 By Assumption

58 sauces & paste 20.225 1134.925 % water + J tomato + % onion
59 manually adjusted 0 0 Estimated Individually
60 human labor 0 0 By Assumption

61 kitchen supplies 0 0 By Assumption




