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Executive Summary 

Urban greenspaces provide essential ecosystem services, enhance biodiversity, and hold 

cultural significance, particularly for Indigenous communities. However, these areas are 

increasingly threatened by climate change, urbanization, and invasive species. While greenspace 

planning and species distribution modeling are established tools for supporting ecological 

resilience, few studies integrate future climate suitability into site-specific planting guidelines. 

This represents a key gap in designing adaptive urban landscapes. Remote sensing offers a 

distinct advantage in this context by enabling fine-scale, spatially continuous assessment of 

environmental conditions, such as precipitation and shade, that are difficult to capture through 

ground-based methods alone. 

This study addressed this gap by assessing habitat suitability and future climate impacts at a 

local scale. Specifically, it identified future habitat suitability and optimal planting locations for 

culturally significant plants of the Musqueam people on the University of British Columbia 

Vancouver campus. To achieve this, the study combined iNaturalist occurrence data, future 

climate projections from ClimateBC, and local environmental variables derived from LiDAR within 

a MaxEnt modeling framework. The analysis focused on two species: Salmonberry (Rubus 

spectabilis) and Sword Fern (Polystichum munitum), evaluating their suitability under different 

climate scenarios. The resulting suitability maps highlighted optimal planting locations based on 

projected climate conditions and environmental factors such as slope, aspect, and shade. Shade 

emerged as the most influential variable across all models, contributing between 74% and 92%. 

Other environmental variables had a limited effect on model outcomes, likely due to the study’s 

small geographic scope. Overall, the model outputs aligned closely with the known ecological 

preferences of the studied species. These findings can inform climate-resilient planting strategies 

for culturally significant species in urban greenspaces. 

Key Words: Greenspace, Species Distribution Modelling, Salmonberry, Sword Fern, Culturally 

Significant Plants, Climate Change Adaptation 
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1. Introduction  

Urban greenspace such as urban forests, parks, planted boulevards and other organic zones, 

provide a host of ecosystem services, like air purification, essential to any city (Gill et al., 2007). 

These spaces also offer numerous public health services such as reduction in pollution, noise and 

dissipation of heat island phenomena through the urban greenspace cooling effect (Aram et al., 

2019; Europe, 2016). This effect helps counteract the urban heat island phenomenon, a form of 

increased warming in city environments caused by heat-retaining surfaces like concrete and 

asphalt (Aram et al., 2019). By breaking up these heat-trapping materials, greenspaces help lower 

ambient temperatures in urban areas (Aram et al., 2019).  Urban greenspace also impacts human 

health on the individual level. Access to nature has demonstrated a host of benefits ranging from 

improved mental health to a reduction of cardiovascular mortality (Europe, 2016). Culturally, 

greenspaces hold significance for many, particularly in regions with a history of colonialism, 

where Indigenous communities maintain deep, longstanding connections to the land (Dickinson 

& Hobbs, 2017). There has also been an increase in recognition of the importance of urban 

greenspace for biodiversity conservation and promotion, with parks in particular being of high 

interest due to their high levels of habitat diversity and microhabitat heterogeneity (Nielsen et 

al., 2014; Savard et al., 2000). As climate change and urbanization challenge the resilience of 

these spaces, remote sensing and suitability modelling offer promising approaches for guiding 

future management decisions that are both ecologically and culturally informed. 

Despite these wide-ranging benefits and growing recognition of their value, urban 

greenspaces are increasingly vulnerable to a range of pressures, including densification and 

climate change (Aronson et al., 2017; Omann et al., 2009). The increase in extreme weather 

events like floods, droughts and heatwaves can cause stress to ecosystems, through events like 

plant deaths and changes to soil environment (Bogati & Walczak, 2022; Ummenhofer & Meehl, 

2017; Zhang et al., 2022). On a more local level, densification is a threat to urban greenspaces 

that will need to be mitigated through careful and thoughtful planning (Haaland & van den Bosch, 

2015). In addition to those mid to long term temporal challenges, areas such as parks are under 

constant stressors due to common management techniques like herbicide and insecticide use, 

pruning and introduction of non-native plants (Aronson et al., 2017). Non-native plants are 

especially a problem in urban settings where 73 species have been introduced as an ornamental 

or landscaping plant in Canada (Canadian Food Inspection Agency - Invasive Alien Plants in 

Canada - Summary Report, n.d.). This introduction of exotic species, while technically increasing 

plant species richness, has downsides such as decreasing animal species richness (Faeth et al., 

2011). 

Challenges faced by urban greenspaces highlight the importance of good landscape planning 

to not only preserve human and ecological health in relation to these areas, but as a tool to help 

reconciliation efforts with Indigenous populations. As discussed earlier, ample research exists 
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outlining the ecosystem services from urban greenspace. Planting guidelines based on those 

services have been developed discussing topics including where to plant trees in order to improve 

cooling within a city (J. Wang et al., 2022). Additionally, studies are discussing how urban 

greenspace can be used as a tool for climate change adaptation (Gill et al., 2007). An example 

would be how greenspaces can be used to mitigate events such as urban flooding, which are a 

growing threat due to climate change (Qin, 2020; Rainey et al., 2021).  Currently, a knowledge 

gap resides at the intersection of planting guidelines and future climate suitability. Researching 

this space is essential to ensure the long-term ecological prosperity of urban greenspaces. 

While the importance of urban areas as opportunities to conserve and promote biodiversity 

is growing (Nielsen et al., 2014), few explore the ways to improve the long-term outlook of key 

native species while managing these spaces. Current papers concentrate on modelling current 

species distribution and suitability. In Hale et al. (2022), a maximum entropy machine learning 

algorithm called MaxEnt is used in order to model habitat suitability for Stewartia ovata. MaxEnt 

reappears frequently in papers attempting to determine plant community movements or 

possible future distribution (Hale et al., 2022; Hay et al., 2023; Morales et al., 2017; Zhao et al., 

2021). One such study successfully modeled spatial distribution of Amah Mutsun culturally 

important plants in southern California (Taylor et al., 2023). Others concentrate on the potential 

future impact of climate change on suitable species habitat, including Hamann & Wang (2006), 

who through the use of climate scenarios and statistical modeling estimated province-wide 

habitat gain and loss for tree species in British Columbia. Local to British Columbia, research on 

future climate impacts, such as Ball’s study on canola production, rely on ClimateBC projections 

to inform future environmental conditions (Ball, 2023). Building on the work done in these 

previous studies, this planting suitability paper aims to merge methods evaluating habitat 

suitability and future climate impacts while also shrinking the studied area to a local scale. In 

doing so, it endeavors to determine future habitat and thus planting locations for plants of 

heightened cultural significance for Musqueam on the University of British Columbia (UBC) 

Vancouver campus. While UBC’s Vancouver campus will be used as a case study, special attention 

will be paid to developing a reproducible roadmap that can help create climate resilient planting 

guidance for urban planning professionals in a variety of contexts.  
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2. Study Site and Data Summary 

2.1 Study Site Area – University of British Columbia Vancouver Campus 

The University of British Columbia (UBC) main campus is situated on 400ha of land in the 

greater Vancouver area, Canada on traditional Musqueam territory (Vancouver - UBC Campuses 

| The University of British Columbia, n.d.). It sits on a peninsula surrounded by a forested green 

belt and the Salish Sea. UBC is part of the Southern Coastal Western Hemlock Zone in the Very 

Dry Maritime subzone (CWH Subzone Maps, n.d.). It has a mild climate with a mean average 

temperature of 9.3 degrees Celsius and an average precipitation of 1427 millimeters per year 

(Subzone/Variant Climate Data, n.d.). The built environment is a mix of housing, commercial and 

academic buildings. The campus is also home to a variety of parks and gardens that make up its 

collection of greenspace. This study concentrates on finding suitable planting locations on 

campus. Figure 1 highlights the area of interest for this study. 

 

 
Figure 1: UBC’s Vancouver campus and endowment lands. The study area is a collection of 

urban and suburban development surrounded by beaches and forested parks. Outline overlaid 

on top of ESRI’s light theme base map. 
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2.2 iNaturalist Occurrence Data 

iNaturalist is an occurrence recording tool powered by crowdsourced observations. It has 

over 213,870,000 observations for more than 490,000 species uploaded by millions of users 

(Observations, n.d.). It is an invaluable source of data especially in situations, such as this study, 

where gathering manual presence data is untenable. Despite its plethora of information, it is 

important to acknowledge that it is spatially biased towards points of access like roads and 

footpaths (El-Gabbas & Dormann, 2018; Geurts, 2023; Mair & Ruete, 2016; Rocchini et al., 2011). 

However, researchers still utilise iNaturalist occurrence data, as biases can be corrected to a 

comparable level as professionally collected data (Mesaglio & Callaghan, 2021). In a comparable 

paper modeling habitat suitability of Stewartia ovata, Hale et al. (2022) used iNaturalist research 

grade observations due to its peer reviewed nature offering a strong safeguard against 

mislabeled plant occurrences. Similar studies looking at future species distribution have also 

successfully incorporated iNaturalist in their modeling pipeline (Salgado et al., 2024; Taylor et al., 

2023). 

Occurrence data for the plants of interest was queried from the iNaturalist export tool on 

08/10/2024 (Export Observations · iNaturalist, n.d.). Salmonberry (Rubus spectabilis) and Sword 

Fern (Polystichum munitum) research grade observations were extracted over a rectangular 

extent ranging from a southwest point of (49.240443, -123.269016) to a northeast point of 

(49.28067, -123.19523) over UBC’s campus. In sum, more than 800 observations were retrieved, 

with occurrences erroneously intersecting with water removed from the dataset (Figure 2). This 

occurrence data will set a baseline used for calculating future probability distribution of the 

species of interest. 
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Figure 2: Salmonberry and Sword fern Occurrence overlaid on ESRI’s satellite base map. 

The occurrences are mainly on the outer edges of campus and within pacific spirit park.  

 

2.3 LiDAR Derived Models (DSM, DEM, CHM) 

A Digital Elevation Model (DEM) represents the bare earth surface, excluding surface objects 

such as buildings or vegetation (Guth, 2006; Mukherjee et al., 2013). DEMs are commonly derived 

from Light Detection and Ranging (LiDAR) data, a remote sensing technology that accurately 

captures the elevation of terrain features (Liu, 2008). DEMs are commonly used in environmental 

studies because elevation influences climate factors such as temperature and precipitation. In 

modeling tools used in this study, such as ClimateBC, a DEM is essential not only for providing 

elevation data used in predictions, but also for defining the spatial extent and resolution of the 

output. 
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To visually interpret the topography of the study area, a hillshade render was produced. A 

hillshade render is a qualitative technique for visualizing terrain based on a simulated light source 

and the terrain slope. While it does not give elevation values, it is helpful in showing that UBC’s 

elevation is relatively flat with low elevation and minimal variance mostly due to the escarpment 

from the main campus down to the beach (Figure 3).  

 

 
Figure 3: Hillshade render of UBC’s Vancouver Campus overlaid on ESRI’s light theme base map 

showing the relative uniformity of its relief. 

 

In contrast to DEMs, Digital Surface Models (DSMs) and Canopy Height Models (CHMs) 

include above-ground features (Mielcarek et al., 2018; Priestnall et al., 2000). A DSM models the 

surface including buildings and vegetation, making it useful for representing urban environments 

(Priestnall et al., 2000). A CHM is derived by subtracting a DEM from a DSM, resulting in a layer 

that shows vegetation height alone (Mielcarek et al., 2018). For this study, both a DSM and CHM 

were essential for estimating average shade across the study area, as the inclusion of above-

ground features allows for modeling how sunlight interacts with buildings and vegetation. 

The UBC published DEM, DSM and CHM used in this study were derived from a LiDAR survey 

conducted in September 2021 and includes the main campus as well as parts of Pacific Spirit Park. 

No control was available to verify the validity of the elevation data, but the data has a horizontal 
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accuracy of ± 0.30m and vertical accuracy of ± 0.15m (Planning, 2022). The models are suitable 

for this study, offering a spatial resolution of 50cm, substantially finer than the 30m resolution 

commonly used in habitat suitability studies (Hale et al., 2022; Taylor et al., 2023). 

 
2.4  Generating Future Climate Data (ClimateBC) 

ClimateBC is a standalone Windows software, developed by the Centre of Forest Genetic 

Conservation at UBC, used to generate future climate data. To do so, it takes a pre-calculated 

climate scenario and downscales it in order to derive climate variables using latitude, longitude 

and elevation (Spittlehouse, 2008). This has the advantage of generating scale free climate data 

as the model can determine values for any point (T. Wang et al., 2016). Data generated by the 

program has been used for climate data estimation in studies that concentrate on climate 

impacts and mitigation of plants in British Columbia (Ball, 2023; Majidian, 2011; Rose & Burton, 

2009). Beyond its wide use, ClimateBC can output environmental rasters, a key advantage 

streamlining integration with modeling steps in this study.  

In order to generate future climate data, it is necessary to choose appropriate settings for use 

with the ClimateBC model. First step was choosing a Shared Socioeconomic Pathways (SSPs). 

These socio-economic and emission scenarios attempt to give potential future scenarios on how 

emissions may evolve over time (van Vuuren et al., 2011). Two SSPs were chosen to model a 

moderate and pessimistic scenario of future climate. The first, SSP 2-4.5 is an intermediate 

scenario where radiative forcing stabilizes at 4.5 W/m2 post 2100. The second is SSP 5-8.5, a high 

emission scenario where radiative forcing rises to 8.5 W/m2 in 2100 (Environment and Climate 

Change Canada, 2023). Using two scenarios allows gauging how dependent on climate impacts 

planting locations are for each plant of interest. Finally, the model was run with the two scenarios 

to produce data for 2021 and 2100. Once the model tuned and run, resulting precipitation, 

temperature and relative humidity rasters of 2021 and 2100 were collected for use with the 

MaxEnt model. 
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3. Methods 

This study aims to identify suitable planting locations of Musqueam plants of interest by 

leveraging future climate data with a distribution model. The following methods can be grouped 

into three main steps; Deriving categorical variables, Running the distribution model, Generating 

the suitability maps (Figure 4).  

 

 

 

Figure 4: Workflow representing generating a planting suitability raster for a Musqueam plant 
of interest. 
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3.1 Preparing Data for MaxEnt 

MaxEnt is a machine learning model that uses maximum entropy to predict species 

distribution and niches. It uses presence data along with climate rasters to calculate probability 

of presence over the studied area (Steven J. Phillips, Miroslav Dudík, Robert E. Schapire, n.d.). 

Studies have successfully used MaxEnt to derive future habitat and distributions of plant species 

in varied climates, including ones similar to the study site (Hay et al., 2023; Prevéy et al., 2020; 

Zhao et al., 2021). For this study, a high future presence likelihood was used as a proxy for a 

suitable planting location as both scenarios represent a case where a plant has the right 

conditions to thrive, regardless if it spawned there naturally or with human intervention. 

Furthermore, a key factor in choosing MaxEnt is its performance with limited data and ability to 

work with presence only information (Elith et al., 2011), as gathering field data was out of this 

study’s scope. 

To prepare the climate and categorical data for use with the MaxEnt model, raster data must 

have homogenous resolution, extent and projection. The Warp (Reproject) tool in GDAL was used 

in order to ensure each raster was projected to the EPSG:4236 (WGS 84) coordinate reference 

system and upscaled to a pixel size of 0.00004 degree (approximately 4.4 meters). The generated 

GeoTif’s were then be converted to ASCII format using the Terra library in R as that is the only 

raster format supported by MaxEnt.  

3.2 Running the MaxEnt Model 

Similarly to ClimateBC, MaxEnt also needs to be set up for the specifics of this study. Two 

parameters must be set to run the model. The first, called the regularization multiplier, is 

responsible for reducing model overfitting (Sun et al., 2020). The next, feature types, are 

transformations of environmental predictor variables such as lineal (L), quadratic (Q), product 

(P), threshold (T), and hinge (H), that can be combined to best capture the relationship between 

the different environmental and categorical factors and species occurrence (Elith et al., 2011).  

To find the best combination of parameters, the ENMevaluate function from the ENMeval 

package was used. This function systematically tests models with different combinations of 

regularization multipliers and feature types reporting resulting evaluation metrics including Area 

Under Curve (AUC), Omission Rate (OR) and Corrected Akaike Information Criterion (AICc) 

(ENMevaluate Function - RDocumentation, n.d.). For this study, the model with the lowest AICc 

determined final parameters as AICc outperforms AUC and OR as a criterion for parameter 

selection (Warren & Seifert, 2011).   

Once ideal model parameters were selected, environmental data was fed into MaxEnt as 

described in Figure 4. MaxEnt was run for each plant of interest twice, once for each climate 

scenario, and a mean probability raster was generated for the year 2100. The final probability 

rasters were used as the base for the final planting suitability maps. 
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3.3 Generating Suitability Maps 

Building final planting suitability maps was accomplished using QGIS. The two probability 

rasters for each plant were masked with polygons of unplantable areas on UBC’s campus such as 

buildings, roads, and abiotic landscape features. In turn, this returned a layer of physically 

possible planting locations along with a scale of the planting suitability of said plant. The scale of 

suitability was symbolized from least suitable to most suitable enabling ease of understanding 

for a non-technical audience. 

3.4 Deriving Categorical Data 

Average shade, aspect and slope were calculated using the UBC DEM, DSM and CHM, for use 

with the MaxEnt model as all three can have an impact on plant suitability (Holland & Steyn, 

1975; Sack & Grubb, 2002). Once each layer generated, shade, slope and aspect rasters were 

reclassified to an Integer value to turn them into classified data. 

3.4.1 Deriving Slope and Aspect from DEM 

Slope and aspect rasters of UBC were derived using the UBC DEM described in the data 

section of this paper. Employing the native slope and aspect tools found within QGIS with the 

DEM as input yielded high resolution rasters. 

3.4.2 Deriving Average Shade Values 

To build an average shade raster, both a DSM and CHM of the study area were required. 

Firstly, the DSM was used to generate hourly binary hillshades of the study area on July 15th 2024. 

These hourly shade rasters were combined into an aggregate raster and normalized. To ensure 

forested areas of pacific spirit were correctly shaded, a binary shade mask was created from areas 

above 15m in height in the canopy height model and subsequently applied to the normalized 

shade raster. The result was a finalized shade raster of the entire study site.  

  



14 
 

4. Results 

A range of factors impact the suitable planting locations of Musqueam plants of interest in 

this study. Both data and methodological decisions influence the MaxEnt model and final planting 

suitability. Results are expressed as suitability maps for each modeled climate scenario (Figure 7, 

12), species distribution model performance metrics (Figure 8, 9, 13, 14) and results of evaluated 

model parameters (Figure 5, 6, 10, 11). 

4.1 Salmonberry (Rubus Spectabilis) Results 

4.1.1 Evaluated Parameters 

Model performance varied between different regularization multipliers and feature class 

combinations for Salmonberry under the SSP 5-8.5 scenario. The best performing parameters, 

with lowest Delta AICc, were LQHP-1, which were selected for the final model (Figure 5). 

 

Figure 5: Comparison of MaxEnt model performance across different feature class and regularization multiplier 

combinations for Salmonberry under the SSP 5-8.5 climate scenario. The y-axis represents the change in AICc 

(Delta AICc), where lower values indicate better model performance. Each bar corresponds to a unique 

combination of feature class (L, LQ, H, etc.) and regularization multiplier (1–5), illustrating their impact on model 

complexity and predictive power. 
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Model performance also varied between different regularization multipliers and feature class 

combinations for Salmonberry under the SSP 2-4.5 scenario. The best performing parameters, 

with lowest Delta AICc, were LQH-1, which were selected for the final model (Figure 6). 

 

Figure 6: Comparison of MaxEnt model performance across different feature class and regularization multiplier 

combinations for Salmonberry under the SSP 2-4.5 climate scenario. The y-axis represents the change in AICc 

(Delta AICc), where lower values indicate better model performance. Each bar corresponds to a unique 

combination of feature class (L, LQ, H, etc.) and regularization multiplier (1–5), illustrating their impact on model 

complexity and predictive power. 

4.1.2 Salmonberry Planting Suitability Maps 

The generated normalized suitability raster of Salmonberry in the year 2100, using the SSP 5-

8.5 scenario has planting suitability values ranging from 0.048 to 0.933. Values for the planting 

suitability raster using the SSP 2-4.5 range from 0.008 to 0.362. Planting suitability is higher for 

the SSP 5-8.5 scenario compared to the SSP 2-4.5 scenario. The top inset demonstrates how 

densely forested areas on campus have high suitability values whereas other areas, as seen in 

the bottom inset, are more dependent on individual features such as buildings and trees. The 

insets also demonstrate the uniform impact of different climate scenarios on suitability values 

across the entire study area (Figure 7).  
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Figure 7: Map highlighting mean planting suitability of Salmonberry on UBC’s campus in the year 2100. Results 

generated with climate scenario SSP 5-8.5 and SSP 2-4.5 are on the left and right respectively. 

4.1.3 Response Curves and Significant Variables 

For the SSP 5-8.5 scenario, shade had the largest contribution to the final Salmonberry 

MaxEnt model (Table 1). The response curves for shade, temperature, and precipitation indicate 

that Salmonberry prefers shaded areas with higher precipitation and temperatures. Specifically, 

the shade response shows a smooth peak at shade classification 4, while temperature exhibits a 

sharp increase in probability before leveling off at 16.7°C. Precipitation follows an exponential 

increase before becoming noisy beyond 1350 millimeters (Figure 8). 

Table 1: Contribution of Every Variable to the Final Salmonberry MaxEnt Model for the SSP5-8.5 

Scenario. 

Variable Percent Contribution 

Shade 74.8 
Mean Average Precipitation 14.5 

Mean Average Temperature 4.7 
Aspect 3.9 
Slope 1.9 
Relative Humidity 0.2 
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Figure 8: Response curves of the three most impactful variables (Shade, Mean Average Precipitation and Mean 

Average Temperature) on the MaxEnt model for Salmonberry using the SSP 5-8.5 scenario. Response curves show 

how each variable impacts the model’s prediction. The curves show how the predicted probability of presence 

changes as each environmental variable is varied. The curves show the effect of changing a single variable. 

 

For the SSP 2-4.5 scenario, shade had the largest contribution to the final Salmonberry 

MaxEnt model (Table 2). The response Curves for Shade, Temperature and Precipitation highlight 

that Salmonberry has a preference for shaded areas with higher precipitation and higher 

temperatures. Specifically, the shade response shows a smooth peak at shade classification 3, 

while temperature exhibits a sharp increase in probability followed by slight cratering before 

leveling off at 16.7°C. Precipitation follows an exponential increase before becoming noisy 

beyond 1350 millimeters (Figure 9). 
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Table 2: Contribution of Every Variable to the Final Salmonberry MaxEnt Model for the SSP2-4.5 

Scenario. 

Variable Percent Contribution 

Shade 81.7 
Mean Average Precipitation 9.3 
Mean Average Temperature 4.4 
Aspect 2.6 
Slope 1.9 
Relative Humidity 0 

 

 

 

 

Figure 9: Response curves of the three most impactful variables (Shade, Mean Average Precipitation and Mean 

Average Temperature) on the MaxEnt model for Salmonberry using the SSP 2-4.5 scenario. Response curves show 

how each variable impacts the model’s prediction. The curves show how the predicted probability of presence 

changes as each environmental variable is varied. The curves show the effect of changing a single variable. 
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4.2 Sword Fern (Polystichum munitum) Results  

4.2.1 Evaluated Parameters 

Model performance varied between different regularization multipliers and feature class 

combinations for Sword Fern under the SSP 5-8.5 scenario. The best performing parameters, with 

lowest Delta AICc, were LQHPT-2, which were selected for the final model (Figure 10). 

 

 

Figure 10: Comparison of MaxEnt model performance across different feature class and regularization multiplier 

combinations for Sword Fern under the SSP 5-8.5 climate scenario. The y-axis represents the change in AICc (Delta 

AICc), where lower values indicate better model performance. Each bar corresponds to a unique combination of 

feature class (L, LQ, H, etc.) and regularization multiplier (1–5), illustrating their impact on model complexity and 

predictive power. 
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Model performance varied between different regularization multipliers and feature class 

combinations for Sword Fern under the SSP 2-4.5 scenario. The best performing parameters, with 

lowest Delta AICc, were H-2, which were selected for the final model (Figure 11). 

 

 

Figure 11: Comparison of MaxEnt model performance across different feature class and regularization multiplier 

combinations for Sword Fern under the SSP 2-4.5 climate scenario. The y-axis represents the change in AICc (Delta 

AICc), where lower values indicate better model performance. Each bar corresponds to a unique combination of 

feature class (L, LQ, H, etc.) and regularization multiplier (1–5), illustrating their impact on model complexity and 

predictive power. 
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4.2.2 Sword Fern Planting Suitability Maps 

The generated normalized suitability raster of Sword fern in the year 2100, using the SSP 5-

8.5 scenario has planting suitability values ranging from 0.145 to 0.896. Values for the planting 

suitability raster using the SSP 2-4.5 range from 0.089 to 0.715. Planting suitability is higher for 

the SSP 5-8.5 scenario compared to the SSP 2-4.5 scenario. The top inset demonstrates how 

densely forested areas, with full shade, have the highest suitability values with forest edges even 

seeing drops in suitability. Other areas, as illustrated in the bottom inset, contain individual 

features that provide limited shade and therefore do not produce the same depth of shading, 

resulting in lower values. The insets also demonstrate the uniform impact of different climate 

scenarios on suitability values across the entire study area (Figure 12). 

   

Figure 12: Map highlighting mean planting suitability of Sword Fern on UBC’s campus in the year 2100. Results 

generated with climate scenario SSP 5-8.5 and SSP 2-4.5 are on the left and right respectively. 

4.2.3 Response Curves and Significant Variables 

For the SSP 5-8.5 scenario, shade had the largest contribution to the final Sword Fern MaxEnt 

model (Table 3). The response Curves for Shade, Temperature and Precipitation highlight that 

Sword Fern has a preference for shaded areas with higher precipitation and lower temperatures. 

Specifically, the shade response shows a stepped increase up to shade classification 5, while 

Highlight

Highlight
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temperature exhibits a sharp increase in probability to a peak around 16.35 before dropping 

consistently. Precipitation follows a consistent linear increase before becoming hitting a plateau 

around 1375 millimeter (Figure 13). 

Table 3: Contribution of Every Variable to the Final Sword Fern MaxEnt Model for the SSP 5-8.5 

Scenario.  

Variable Percent Contribution 

Shade 90 
Mean Average Temperature 4.9 

Mean Average Precipitation 2.3 
Aspect 2.1 
Slope 0.5 
Relative Humidity 0.2 

 

 

 

Figure 13: Response curves of the three most impactful variables (Shade, Mean Average Precipitation and Mean 

Average Temperature) on the MaxEnt model for Sword Fern using the SSP 2-4.5 scenario. Response curves show 

how each variable impacts the model’s prediction. The curves show how the predicted probability of presence 

changes as each environmental variable is varied. The curves show the effect of changing a single variable. 
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For the SSP 2-4.5 scenario, shade had the largest contribution to the final Sword Fern MaxEnt 

model (Table 4). The response Curves for Shade, Temperature and Precipitation highlight that 

Sword Fern has a preference for shaded areas with higher precipitation and lower temperatures. 

Specifically, the shade response shows a stepped increase up to shade level 5, while temperature 

exhibits a sharp increase in probability to a peak around 16.35 then dropping slightly before 

plateauing. Precipitation follows a consistent linear increase until 1375 millimeter before slight 

dip (Figure 14). 

Table 4: Contribution of Variables to the Final Sword Fern MaxEnt Model for the SSP2-4.5 

Scenario. 

Variable Percent Contribution 

Shade 92.7 
Mean Average Precipitation 3 

Mean Average Temperature 2.7 
Aspect 1 
Slope 0.6 
Relative Humidity 0 

 

 

 

Figure 14: Response curves of the three most impactful variables (Shade, Mean Average Precipitation and Mean 

Average Temperature) on the MaxEnt model for Sword Fern using the SSP5-8.5 scenario. Response curves show 

how each variable impacts the model’s prediction. The curves show how the predicted probability of presence 

changes as each environmental variable is varied. The curves show the effect of changing a single variable. 
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5. Discussion 

This study aimed to identify suitable planting locations for Salmonberry and Sword Fern on 

the University of British Columbia’s Vancouver campus. To do so, a suitability analysis was 

conducted for each species using MaxEnt under two climate scenarios, incorporating both 

climate and categorical raster data. Suitability values varied widely, ranging from 0.008 to 0.933 

depending on underlying conditions, with shade consistently emerging as the most influential 

variable across both models. The following discussion explores species-specific trends, assesses 

model performance, and reflects on the implications and limitations of modeling plant suitability 

within a small geographic area. 

5.1 Salmonberry (Rubus Spectabilis) Results 

The generated maps (Figure 7) and response curves (Figure 8, 9) suggest that Salmonberry’s 

preferred conditions are moderate shade with higher precipitation and temperature. These 

findings are congruent with observed preferences for seedlings to establish in moderate shade 

with perennially moist soils (United State Forest Service, 2019b). Not observed in the results, is a 

preference for full sun and moist soils, one of the best growing conditions for mature 

Salmonberry plants (United State Forest Service, 2019b). The lack of preference for full sun may 

be due to several factors, including the study area's land use. Most open areas are designated for 

academic purposes such as farming, grass lawns, or sports fields, meaning occurrence data likely 

contained few, if any, mature plants growing in optimal full-sun conditions. Additionally, the 

absence of soil data as a variable in this study makes it difficult to account for differences in 

moisture levels, which are crucial for Salmonberry regardless of insolation levels (United State 

Forest Service, 2019b). While the study design might have inadvertently overestimated the 

importance of shade for Salmonberry’s overall habitat suitability, this could be beneficial, as the 

stated goal of this research is to find planting locations, and Salmonberry seedlings may die in 

areas of high sun (United State Forest Service, 2019b). 

5.2 Sword Fern (Polystichum munitum) Results 

Predicted suitable conditions for Sword Fern differ slightly from Salmonberry with a 

preference for full shade and high precipitation (Figure 12, 13, 14). These conditions are in 

agreement with known preferences for the species, an abundant understory plant that thrives in 

mild wet coastal areas (United State Forest Service, 2019a). One unexplained trend of the 

predicted future habitat is the preference of Sword Fern for cooler temperatures, around 16.4 

degrees Celsius, or the cooler spectrum of temperatures values in this study. This pattern may be 

driven by the concentration of occurrence data in forested, shaded areas, which are primarily 

located on the outer edges of the peninsula and tend to be cooler. In contrast, the warmer central 

region, occupied mainly by the university campus, has less shade and is less suitable for growth. 
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If similar forested conditions existed in these warmer areas, Sword Fern would likely grow there 

as well, given the minimal temperature variance across the study site. 

5.3 Model Performance 

While the resulting MaxEnt models, using the variables provided in this study, generated 

expected results for the two plants studied, the response curves, selected model metrics and 

variable importance suggest potential overfitting or spatial bias.  

Firstly, for each studied permutation of the model in this study (Table 1, 2, 3, 4), shade 

represented over 74% of the contribution, nearing 92% in one case. While shade is a biologically 

relevant factor for each plant studied, and a high contribution is likely to result from this reality, 

a high value indicates the model might be over relying on the variable to predict habitat 

suitability, or that other variables fail to meaningfully impact the model.  

Next, visible peaking and jagged values present throughout the temperature and 

precipitation response curves (Figure 8, 9, 13, 14) suggest that the model might be capturing 

noise rather than the relationship between the variable and occurrence data (Elith et al., 2011).  

Comparatively, unpredictable values are not present with a significant variable such as shade 

where the response curve is much smoother. This may indicate spatial bias, either from 

occurrence data being concentrated in easily accessible areas due to crowdsourcing or from the 

study area capturing only a limited range of environments, as discussed in the Salmonberry 

results. 

Finally, as seen in Figure 5, 6, 10, 11, the reliance on complex relationships, such as Hinge, 

product, or threshold as well as low regularization multipliers, combined with the high 

importance of shade, is a sign that the model might be overfitting to the training data, making it 

less generalizable (Elith et al., 2011). Overfitting could be caused by low variance in 

environmental variables, which weakens their relationship with occurrence points and forces the 

model to increase parameter complexity to detect significance. 

5.4 Pitfalls of a Small Study Area for Plant Suitability Modelling 

Concentrating on a small area for this study was done to obtain fine scale raster results 

needed to be able to effectively suggest planting locations at a very small scale. In doing so, the 

study area had to be limited for computational reasons. This limitation caused many of the issues 

that were discussed in the previous sections. The key challenge arising from using a small area is 

the limited variance in climate variables rasters. For example, the delta in the mean average 

temperature rasters used with the MaxEnt model was less than one degree Celsius. In contrast, 

suitability studies focusing on environmental factors, such as those for Oak Fern or Mountain 

Camellia, typically cover large study areas spanning multiple states, encompassing both suitable 

and unsuitable climate conditions. Including the full range of a plants viable climate allows 

effective modelling of changing climactic conditions and their impact on future changes (Hale et 
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al., 2022; Hay et al., 2023). In this study, the limited climactic variance within the study area likely 

contributed to the counterintuitive result where future suitability maps indicated greater 

suitability under the more pessimistic climate model than the optimistic one. Given that climate 

variables were the only differing inputs between model implementations, this discrepancy 

suggests that low variance in the data may have led to an overrepresentation of shade in the 

model and the overfitting of noise in climactic variables. 

5.5 Practitioners Recommendations 

To improve the overall validity and usefulness of the model, two key steps are recommended: 

incorporating soil data and combining models of different spatial scales. Including soil variables 

such as depth and nutrient content could enhance the model's ability to capture local variability 

and more accurately identify suitable planting locations. This is particularly relevant for UBC’s 

Vancouver campus, where soil conditions likely differ from the surrounding forest, where most 

occurrence points are concentrated. Additionally, integrating models at both local and broader 

spatial scales would better capture climate variability and improve the model’s ability to project 

future climate suitability. This approach could also help address challenges such as overfitting 

and the overrepresentation of local variables (Olivero et al., 2016; Sun et al., 2021). 

At present, it is recommended that practitioners continue planting species of interest in 

locations already known to be suitable.  
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