

Capstone Project 68: Designing Window Sensors
to Advance Bird- Friendly and Energy Saving Building

Design Strategies on UBC Vancouver Campus

Prepared by: Huawen Li, Gengran Li, Ryotaro Hokao, Benjamin Powell, Mohamed Salah

Prepared for: UBC Campus and Community Planning

Course Code: ELEC 491

University of British Columbia

Date: 27 April 2023

Disclaimer: “UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies,
as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that
this is a student research project and is not an official document of UBC. Furthermore, readers should bear in mind that
these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned
in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a report”.

University of British Columbia

Social Ecological Economic Development Studies (SEEDS) Sustainability Program

Student Research Report

2

Executive Summary

Bird collisions with windows represent a growing environmental concern, as one of the leading

causes of human-related bird mortality. The consequences of these collisions extend beyond the

immediate loss of individual birds; they also pose a threat to overall biodiversity and ecosystem

health. To address this issue, our engineering capstone project aims to develop a comprehensive

system that detects bird collisions while also calculating the heat flow rate of windows. This

project builds upon the past capstone project design that performs the bird collision detection

using an accelerometer and Arduino.

The motivations behind this project stem from the need to better understand and mitigate bird

collisions, as well as to improve the energy efficiency of buildings. By providing researchers and

building managers with valuable data on the frequency and circumstances of bird collisions, we

aim to contribute to the development of targeted strategies and solutions that can reduce bird

mortality rates and protect biodiversity. Additionally, by analyzing the energy efficiency of

windows via heat flow rate, our project can inform decisions about building design and

materials, potentially leading to more energy-efficient and environmentally friendly construction

practices.

Our proposed monitoring system consists of:

1. Collision Detection: accelerometer attached to the window to measure the window

vibration. Data is sent to the Arduino for analysis.

2. Temperature: two Dragino LHT65 temperature sensors to measure the inside/outside

surface temperatures of a window. Surface temperatures are transmitted to ThingSpeak

via LoRaWAN, and used for heat flow rate calculation.

3. Microcontroller: Arduino MKR WiFi 1010 to analyze and infer a collision from the

accelerometer data. It also monitors whether the accelerometer has fallen from the

window. Once a collision is detected, or when the accelerometer falls, relevant data is

transmitted to ThingSpeak via WiFi. Multiple tasks are managed by FreeRTOS.

4. ThingSpeak: a cloud-based database and user-configurable dashboard to monitor

relevant data. Data received from Arduino and Dragino sensors are processed and

automatically displayed. In case of accelerometer falling, ThingSpeak sends an email

3

notification. Users can also input the U-Value and the dimension of the window, allowing

the system to compute the heat flow rate.

5. Hardware: two 3D printed enclosures. One of them is designed to be weather resistant,

and is for outdoor use.

Researchers and other users can view not only the collision data and heat flow rate, but also other

environmental data such as outside air temperature and the time of the collision on ThingSpeak.

This information can be invaluable for understanding the factors that contribute to collisions and

developing effective mitigation strategies, to potentially identify patterns and correlations with

bird collisions.

This iteration of the project adds more functionalities to the previous design, with increased cost

and size to the previous design. Our design, however, takes a modular design approach;

depending on the users’ needs (i.e., monitoring bird collision, or measuring heat flow rate), they

can choose to purchase only the components required for their use case. Throughout this

document, the alternative approaches and recommendations are discussed for future

improvements.

4

Table of Contents

Executive Summary .. 2

Requirements .. 8

1.0 Background and Outcome .. 8

2.0 System Process Diagram.. 9

3.0 Functional Requirement ... 10

4.0 Non-Functional Requirement... 11

5.0 Constraints ... 12

Deliverables .. 14

Design ... 16

1.0 System Architecture ... 16

1.1 Hardware ... 16

1.2 Communications ... 18

1.3 Data Pathways ... 20

1.4 State Transitioning and Tasks ... 21

2.0 Detection System ... 24

2.1 Summary of Previous Capstone Design ... 25

2.2 Accelerometer ... 25

2.3 Limitations and Trade-offs ... 29

2.4 Other Accelerometers Considered and Noise Estimation 30

2.5 Other Sensor Technology Explored .. 32

3.0 Detection Algorithm .. 34

3.1 Analysis of Previous Capstone Design ... 34

3.2 Detection Algorithm Design ... 35

3.3 Detection Algorithm Performance .. 42

3.4 Limitations and Other Designs Explored .. 43

4.0 Accelerometer Fall Detection Algorithm... 45

4.1 Algorithm and Functionality ... 46

4.2 Design Decisions .. 46

4.3 Advantages and Disadvantages ... 47

5

4.4 Alternative Approaches .. 47

5.0 Temperature ... 48

5.1 Heat Flow Rate Measurement ... 48

5.2 Other Candidates ... 50

6.0 Outside Air Temperature Detection ... 51

7.0 Microcontroller .. 51

7.1 Significance and Function of Microcontrollers .. 51

7.2 Microcontroller Decision .. 52

7.3 Other Microcontroller Candidates and Screening Process 52

8.0 Task Scheduling Algorithm ... 55

8.1 System Context for Design and Architecture ... 55

8.2 Design ... 56

8.3 Alternative Design for Scheduling Algorithm .. 57

8.4 Task Scheduling Performance .. 59

8.5 Detail Explanation of FreeRTOS Operation ... 59

9.0 Communication System ... 61

9.1 WiFi for Arduino MKR WiFi 1010 .. 61

9.2 LoRaWAN for Dragino LHT65 Sensors .. 62

9.3 MQTT for ThingSpeak Integration ... 63

9.4 HTTP for External Temperature Data .. 64

10.0 Data Storage and User Interface .. 64

10.1 Significance to requirements... 64

10.2 Context with respect to system, design, architecture .. 64

10.3 Design ... 65

10.4 Evidence it works .. 69

11.0 Hardware .. 70

11.1 Hardware Enclosure .. 70

11.2 Battery Powered Option .. 72

Verification & Validation ... 75

1.0 Temperature Communication System Verification ... 75

1.1 Purpose .. 75

6

1.2 Equipment ... 75

1.3 Set up .. 75

1.4 Testing Tasks .. 76

1.5 Results ... 76

2.0 Microcontroller FreeRTOS and data Communication System Verification............ 78

2.1 Purpose .. 78

2.2 Equipment ... 78

2.3 Set up .. 78

2.4 Testing Tasks .. 79

2.5 Results ... 79

3.0 Verification of Codes in the ThingSpeak’s Built-in Analytics Tools 83

3.1 Purpose .. 83

3.2 Equipment ... 84

3.3 Tasks ... 84

3.4 Results ... 84

4.0 Hardware System ... 88

4.1 Purpose .. 88

4.2 Set up for inside case .. 88

4.3 Set up for outside case .. 89

4.4 Equipment ... 89

4.5 Task Results .. 89

References ... 91

Revisions ... 94

Appendices .. 95

Appendix I : Report Contribution .. 95

Appendix II : Impact force estimation ... 96

Appendix III : Complete list of accelerometer candidates ... 97

Appendix IV : Complete Comparison Table of Microcontroller candidates 98

Appendix V : Flash Memory Calculations .. 99

Appendix VI : Sample Collected Data ... 99

Appendix VII : Minimum Data Storage Calculation Process .. 101

7

Appendix VIII : Complete Comparison Table of Data Storage Candidates 102

Appendix IX : User Interface Visualisation ... 102

Appendix X : Communication Protocols and Authorizations ... 104

Appendix XI : Microcontroller Battery Charging Calculation .. 105

Appendix XII : Ranking of Criteria for microcontroller ... 105

Appendix XIII : Cayenne Information ... 106

8

Requirements
1.0 Background and Outcome

Through the release of the Green Building Action Plan (GBAP) in 2018 and climate action plan

2030 that addresses climate change and biodiversity, University of British Columbia (UBC) is

continually working on building a green sustainable environment among the campus. The goal of

these plans is that by 2035, all newly constructed and rebuilt buildings on the UBC campus will

achieve high performance through meeting low cost, low energy consumption, and low

environmental emissions requirements [1]. Most importantly, those buildings should also avoid

and cut back on environmental control and costs related to natural health deterioration. For this

ambitious goal to be successful in safeguarding campus ecology, and encouraging energy

balance, bird-friendly building design is a crucial element. According to a study by UBC [1],

more than 10,000 birds perish each year by colliding windows because they cannot perceive

translucent glass as solid [2]. In response to the GBAPs request as well as to maintain bird

species number, UBC Social Ecological Environment Development Studies (SEEDS) and Green

Building Manager have begun looking into solutions to lessen the number of fatalities caused by

bird impacts on windows. In 2019, a student team in UBC had already thought about and created

a basic model for this issue. However, the previous bird strike monitor model which can only

keep track of the time and number of impacts is no longer an efficient way to monitor the data. In

this project, the bird strike monitor will be redesigned to allow UBC green building researchers

to better collect and visualize bird strike data and analyze sustainable factors such as heat

transfer and insulation of windows.

The final design can accurately count collisions and provide associated details of each incident,

including season, location, temperature inside and outside, time and date of collision occurrence.

Data mentioned above enables UBC green building researchers to identify potential causes

behind bird strikes and examine the efficacy of various window treatments when designing bird

friendly window treatments or choosing glazing materials. Furthermore, the heat transfer through

a glass window is calculated from temperature data collected, which assists green building

researchers to assess the thermal insulation of various glazing materials [Different window

glazing has different factors that influence the heat mitigation measurement] for better energy

9

savings. UBC green building researchers therefore could create more thorough strategies for the

protection and conservation of bird populations. Improved bird friendly strategies enlighten

green building managers and UBC building developers for challenges arising from compliance

with the GBAP, the UBC Climate Action Plan 2030 (CAP 2030) and Bird Friendly Building

Design Guideline. Parts of these strategies such as examination results of bird friendly window

treatments and the thermal insulation of various glazing materials offers UBC building

developers practical guidance window design and glazing materials selection. Moreover, an

online database with a researcher-friendly interface is provided for multiple researchers to

operate and export data without assistance. In short, this design will not only provide reliable and

accurate data for researchers to build better bird-friendly strategies, but also helps provide

practical guidelines for building developers and managers.

2.0 System Process Diagram

This system's flowchart clearly demonstrates how the complete bird strike monitor model

operates and how it interacts with researchers.

10

Figure 1: System Operation Flowchart.

The system collects data from various sensors placed on the windows and processes it uses a

central processor. The processed data, including bird impact-related information, as well as

window insulation performance data, is then sent to the backend of the user interface. The

backend further processes the data with accuracy and transmits it to the frontend for display to

the user. This enables users to conveniently and efficiently observe and record data, facilitating

further research and implementation of GBAP measures for bird conservation.

3.0 Functional Requirement

Functional requirements which include the services, capabilities or functions delivered by the

product, are identified as follows:

F1: The system must detect collisions with windows and infer whether it is a false-positive

collision based on calculated force and frequency metrics of the collision.

11

F2: The system must record the cumulative number of birds strikes along with the time of day,

season, and date at which the strikes occurred1 [3].

F3: The system must record the latitude and longitude of the building that window placed.

F4: The system must record the data packet for the fall detection.

F5: The system must record the surface temperature of the window inside and outside.

F6: The system must record the air temperature outside of the building.

F7: The device must have the ability to secure itself to the window and no part of the device can

be left unattached to, or separated from, the window under normal operation and avoid dropping

in adverse weather conditions.

F8: The user interface must graphically display stored data.

F9: The user interface must export historical data from the database to the user's computer as a

file.

F10: The system must alert the user in the case of the accelerometer falling from its attached

position on the selected window.

4.0 Non-Functional Requirement

Non-functional requirements which include the quality attributes the product needs to exhibit

(the “ilities”: reliability, security, portability, interoperability) are identified as follows:

NF1: The accuracy of bird strike detection must be higher than 95%. (Using simulated bird

strikes.)

NF2: The calculation error of the heat flux2 should be within ±0.001 𝑊𝑎𝑡𝑡𝑠/𝑚2

1 According to the UBC science faculty research, 19 bird strike fatalities occur every 225 days in one building on the

Vancouver campus.

2 |𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  −  𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒| / 𝑅 𝑣𝑎𝑙𝑢𝑒

12

NF3: The measurement error of the window’s surface temperature and air temperature must be

within ±2°C.

NF4: The data recording must be fully functional for a minimum of 30 days before requiring

maintenance.

NF5: The outside part of the device must be waterproof to avoid water ingress in the event of

rain. Reach the IP standard IP33 [4].

NF6: The device must not have color or shape features that attract bird species and/or other

animals [5].

NF7: The database must have sufficient storage size to store at least 10 bird impact events per

day.

NF8: The temperature sensors should measure the temperature per hour.

5.0 Constraints

Constraints which identify conditions the product must meet in terms of how it is implemented

are identified as follows:

C1: The whole project cost (including hardware, software, and auxiliary supplies) should be

under $1803.

C2: Materials chosen for the device must withstand the operating temperature of between -20°C

~ 40°C. (±6°C based on maximum and minimum temperatures of the past year) [6].

C3: The device must operate on a wireless network.

C4: The device should support both battery charging and wall outlet 120VAC charging

methods.

3 Because many of these devices may be required by researchers in the future. For several of the model to be used

for bird strike monitoring, the cost option needs to pick the most affordable one in order to maintain the overall cost

within the researcher's means. [Database must be free for the user.]

13

C5: The external and internal hardware design should be within 15cm x 6cm x 6cm dimensions

to achieve a compact design.

C6: The weight of the entire hardware design (Both external and internal) should be within the

200 g.

C7: The system must function on a window with dimension 80cm x 50cm. Bird collision

detection model must work on typical windows on the UBC campus.

14

Deliverables

The Table below lists the deliverables that will be submitted at the end of the project, agreed

upon between the clients and the project group.

Table 1: List of Deliverables: Hardware, Software, and Documents.

Item Description

Hardware

Device • Detect collisions with windows

• Record the collision vibration metrics via an accelerometer

• Infer whether the collision is a bird strike or a false-positive

• Detect accelerometer falling from position on window

• Record:

o the location of the bird strikes (by location of the

placed hardware component)

o the time, day, and date of the bird strikes

o the temperature:

▪ inside surface temperature of the window being

monitored

▪ outside surface temperature of the window

being monitored

• Periodically upload recorded data to cloud repository, through

UBC’s visitor WiFi

• Immediately upload accelerometer-fall and notify the user

Software

Cloud Repository • Display all constituents of received data (time of day,

temperatures, etc.)

• Retrieve outside ambient temperature from weather website

• Allow U-Value and Window dimension input

• Calculate Heat Flow Rate

• Allow the user to aggregate selected groups of recorded data

into a covarying table representation

• Visually represented the data, in the form of co-varying

histograms (i.e., strikes vs time of day).

• Allow the user to export all data, formatted, off the cloud, to

the working computer that is accessing the repository.

Documents

15

Key documents • Verification and Validation Document

• Requirements Document

• Design Document

• Presentation Slides

User Manual • Installation of hardware component

• Connecting hardware component to cloud repository

• Traversal of cloud repository features

CAD files • Computer aided design files for designs of the 3D printed

hardware model encapsulation

Blueprints • Engineering drawings of entire device assembly

o Arduino

o Temperature Sensors

o Vibration Sensors and attachment to window

o Power Supply

o 3D-printed case attachment to windowsill

o 3D-printed case enclosure

Bill of materials • Parts list

• Manufacturer

• Quantity of each part

• Price of eat part

Capstone Video • Video explaining project/problem and our solution

16

Design

1.0 System Architecture

1.1 Hardware

1.1.1 Introduction

In this section, we will discuss the various hardware components used in the bird detection

system, their roles, and their integration to form a fully functioning system. The system is

comprised of an Arduino MKR WiFi 1010 microcontroller, an ADXL343 accelerometer, two

Dragino LHT65 sensors, two DS18B20 thermocouples, two 3D printed hardware enclosures, and

a power cable (or lithium-ion battery). Figure 2 illustrates the setup of the system.

17

Figure 2: Hardware System Setup

1.1.2 Microcontroller: Arduino MKR WiFi 1010

The Arduino MKR WiFi 1010 serves as the central processing unit for the bird detection system.

It is responsible for processing data from the ADXL343 accelerometer, as well as handling

communication with the ThingSpeak platform for bird collision uploading.

18

1.1.3 Accelerometer: ADXL343

The ADXL343 accelerometer is responsible for taking samples of vibration signals collected

from the window it is attached to. The ADXL343 is a digital accelerometer, handling the analog-

to-digital conversion itself. The ADXL343 communicates with the Arduino MKR WiFi 1010,

sending vibrational data for further processing.

1.1.4 Sensors: Dragino LHT65 and DS18B20 Thermocouples

The system uses two Dragino LHT65 sensors and two DS18B20 thermocouples to measure the

surface temperatures of the windows. These sensors communicate this data to ThingSpeak

through their built-in LoRaWAN modules, providing the necessary data for calculating heat flow

rates across windows.

1.1.5 Power Options: Wall Outlet and Battery

The bird detection system can be powered in two ways: through a wall outlet or a battery. When

powered by a wall outlet, the system has a continuous power supply, ensuring uninterrupted

operation. Alternatively, the system can be powered by a 3.7V 3200mAh lithium-ion battery,

allowing for up to four days of operation without recharging. This versatility allows for the

system to be deployed in various locations without being constrained by the availability of power

outlets.

1.1.6 Hardware Enclosure

The system has two 3D printed enclosures. They are printed using FDM technology to ensure

robustness and being able to withstand pressure.

1.2 Communications

In this section, we will discuss the communication aspects of the bird collision detection system

and heat flow monitoring system within the context of the System Architecture (see section 9.0

for a more detailed overview). Efficient and reliable communication between the various

hardware components and the cloud platform (ThingSpeak) is essential for meeting functional

requirements F2 and F3, and constraint C3. The system utilizes different communication

technologies and protocols to achieve this goal:

19

1.2.1 I2C Communication

The connection between the Arduino MKR WiFi 1010 and the accelerometer relies on the I2C

communication protocol. This protocol enables a simple, two-wire interface for exchanging data

between the devices, allowing the Arduino to receive vibration data from the accelerometer.

1.2.2 WiFi Communication

The Arduino MKR WiFi 1010 is equipped with built-in WiFi capabilities, enabling wireless

communication with the ThingSpeak platform. The WiFi communication allows the Arduino to

transmit bird collision data to ThingSpeak for further analysis and visualization.

1.2.3 LoRaWAN Communication

The Dragino LHT65 temperature sensors utilize LoRaWAN technology for long-range, low-

power communication. This technology allows the temperature sensors to transmit data over a

wide area while consuming minimal power. The transmitted data is received by a LoRaWAN

gateway, which then forwards the data to The Things Network (TTN). TTN processes the data

and forwards it to ThingSpeak for further analysis and visualization.

1.2.4 Serial Communication

The Arduino communicates with the user's computer via a USB connection, employing serial

communication for debugging and configuration purposes. This connection enables the user to

monitor the system's operation, upload new firmware, or modify existing configurations as

needed.

20

Figure 3: System Data Pathway Flowchart

Figure 3 illustrates the flow of data between various components for both the Arduino MKR

WiFi 1010 and the Dragino LHT65 sensors in the overall system. Each section is assigned a

different color to help visually distinguish the various components of the system.

1.3 Data Pathways

In this section, we will go over the specific data pathways of the components within our system,

including the Arduino, Dragino sensors, and external data sources.

1.3.5 Arduino MKR WiFi 1010 Data Pathway

The data pathway for the Arduino MKR WiFi 1010 with an attached accelerometer involves the

sampling of data to detect bird collisions on the window. When a collision or fall is detected, the

Arduino processes the data and sends the relevant information to ThingSpeak over WiFi for

further analysis and visualization.

21

1.3.6 Dragino LHT65 Sensors Data Pathway

The data pathway for the two Dragino LHT65 sensors, responsible for measuring the surface

temperature of the window's inside and outside surfaces, involves communication with the

LoRaWAN network. The network transmits the temperature data to The Things Network (TTN),

which then forwards the data to ThingSpeak.

1.3.7 Data Integration on ThingSpeak

The data pathways for the Arduino MKR WiFi 1010 and the Dragino LHT65 sensors converge

at ThingSpeak, where the platform consolidates and visualizes the information. This allows users

to view detected bird collisions, input window-specific parameters, and analyze the heat flow

rate through the window.

1.3.8 External Temperature Data Pathway

The data pathway for the ambient air temperature outside the building is fetched from a weather

report website (weather.eos.ubc.ca). A ThingSpeak MATLAB-script is used to retrieve this data,

where it is then integrated with the data from the Arduino and Dragino sensors.

1.4 State Transitioning and Tasks

In the bird collision detection system, we leverage the capabilities of FreeRTOS to replicate

concurrent threading, ensuring that multiple tasks run seamlessly and efficiently.

FreeRTOS is an open-source real-time operating system designed specifically for

microcontrollers, such as the Arduino MKR WiFi 1010 used in this project. The operating

system allows for the efficient scheduling and management of tasks, providing a framework for

handling real-time events and system states. By assigning priorities to the various tasks involved

in our system, we effectively manage the execution of these tasks concurrently, allowing for a

seamless transition between states. High-priority tasks, such as collision sampling, are given

precedence over lower-priority tasks, such as idle waiting.

In the following section, we will discuss the task scheduling model for our bird collision

detection system, detailing the different tasks the system executes, their functionalities, and their

priorities.

22

Figure 4: Kernel Task Selector.

Figure 4 illustrates the interaction between the CPU, the kernel, and the five tasks in our bird

collision detection system. The diagram aims to provide an overview of how tasks are selected

and executed by the CPU, with the help of the kernel.

1.4.1 Idle Task

The Idle Task is the lowest priority task that runs when no other tasks are being executed. It is

executed at the beginning of the system start-up, before any sampling starts, and serves as a

default state during the running of the system when other tasks are not active.

23

1.4.2 Sampling Task

The Sampling Task is the highest-priority task that samples the accelerometer at a fixed sampling

frequency. It is designed to run concurrently with other tasks, allowing the system to maintain

data collection even during the execution of other tasks.

1.4.3 Collision Detected Task

This task is called every 256 samples and is responsible for checking the collected samples for

possible collisions using the collision detection algorithm. If a collision is detected, the task

updates the collision-array with the time of the collision and then terminates. It runs concurrently

with the Sampling Task, ensuring continuous data collection even while processing collision

events.

1.4.4 Accelerometer Fall Detection Task

The kernel executes this task every 5 minutes, checking for a fall. The y-axis of the

accelerometer is checked against a threshold. If the y-axis value surpasses the threshold, the

system suspends all other tasks and calls the Uploading Task to email the client about the fallen

accelerometer. It then waits for the reset button to be pressed before allowing other tasks to

resume. If no fall is detected, this task terminates, until called again.

1.4.5 Data Upload Task

The Uploading Task is called every 24 hours to upload the collision data stored in the collision

array. It is also called when the Fall Detection Task detects a fallen accelerometer; emailing the

client that the accelerometer has fallen from the window.

1.4.6 CPU and Kernel

At the core of the system is the CPU, responsible for executing tasks, and the kernel, which

manages the tasks and their scheduling. The kernel plays a crucial role in coordinating the

operation of all tasks, ensuring that they are executed in the correct order and with the right

priority.

24

1.4.7 Task Selection

 The kernel determines which task should be executed next. The task scheduler considers the

priority and state of each task and selects the highest-priority task that is ready to run. This

ensures that high-priority tasks, such as the sampling task, are executed at the correct sampling

frequency and with minimal delay.

1.4.8 Task Execution

 Once a task has been selected, the CPU executes the task according to its corresponding

instructions. During the execution, the task may transition between different states, such as

running, waiting, or suspended, depending on the task requirements.

1.4.9 Task Interaction

 Figure 4 also highlights the relationships and dependencies between the five tasks: idle,

sampling, collision detection, fall detection, and uploading. These tasks interact with each other

through shared resources, inter-task communication, and synchronization mechanisms provided

by the kernel.

2.0 Detection System

Bird collision detection subsystem is comprised of two components: sensor and detection

algorithm. When a bird-window collision occurs, the impact force imparted by the bird causes a

vibration across the window panel. As shown in Figure 2, the sensor picks up the vibration, and

transmits signal to the microcontroller. On the microcontroller, the received signal is processed

through the detection algorithm to check if the impact is indeed a bird collision, or if it is a false

positive (e.g., tree branches, human, or random objects hitting a window). Functional

requirement F1, and non-functional requirement NF1 capture the goal of bird collision detection

system. See Requirements section for details.

Section 2.2 summarizes the accelerometer sensor used for collision detection. The following

section 3.0 summarizes the developed detection algorithm that utilizes the wavelet denoising and

a simple score-based detection logic.

25

2.1 Summary of Previous Capstone Design

As a starting point, the detection system design used by the previous Capstone team is reviewed

[7]. Table 2 summarizes the key design choices made by the previous Capstone team.

Table 2: Summary of bird collision detection system by the previous Capstone team.

Sensor

Sensor Type 3-axis analog accelerometer (only 1 axis data used)

Sensor Cost $16

Sensor Placement Attached to a window with duct putty

Sensor Location Minimum 7.26cm (3inches) away from window frames

Detection Window Size Undefined or undocumented

Detection algorithm

Data Processing Methodology Voltage thresholding, Frequency peak check, and impact

duration check

2.2 Accelerometer

This section summarizes the sensor selected for collision detection.

2.2.1 Sensor Specification

The following table summarizes the minimum design specification identified based on

preliminary research and testing, and the finalized sensor specification. Details and justifications

are provided below.

Table 3: Specification for a sensor used in bird collision detection.

Criteria Design specification Adafruit Industries LLC,

ADXL343 Evaluation Board

Sensor Type 3-axis accelerometer 3-axis MEMS accelerometer

(only 1 axis data used for

collision detection)

Sensor Cost $8.72

Measurement Range

(g-force)
Minimum ±15𝑔 ±16𝑔

26

Detection Window Size TBD Tested on 180cm by 80cm

window

Sensitivity TBD 3.9𝑚𝑔/𝐿𝑆𝐵

Bandwidth Cover 0-250Hz range 200Hz (up to 1.6kHz)

Operating Voltage 3.3V or 5V 3.3V

Operating Temperature -20 to 40 degrees Celsius -40 to 85 degrees Celsius

Interface Analog or digital Digital (Connected via I2C)

2.2.2 Sensor Type

Accelerometers are chosen over other types of sensor technology (refer to section 2.5 for other

sensors considered). Accelerometers are relatively low cost compared to other sensor types and

are often deployed in collision detection applications [8].

Just like the previous Capstone design, one axis data is used for collision detection (see section

3.0 for more details on detection algorithm). Additionally, another axis data is used for fall

detection of the accelerometer as described in section 4.0. Although this still leaves one axis not

being used, a 3-axis accelerometer is used as two-axis accelerometers are less common on the

market, and cost more than a typical 3-axis accelerometers.

Among other accelerometer options, ADXL343 Evaluation Board is selected for its 1) lowest

cost of CA$8.72, and 2) lowest RMS noise performance of ~6.7989𝑚𝑔. See section 2.4 for

other accelerometers considered. Evaluation board (or breakout board) is a small PCB that

contains the accelerometer chip, and components such as resistors and capacitors required for

signal conditioning and/or for communication. Many commercial evaluation boards, including

ADXL343 Evaluation Board, come tested at the factory [9]. The use of evaluation board saves

substantial development time and cost to design a PCB and validate the accelerometer

functionalities.

2.2.3 Measurement Range

Measurement range refers to a range of acceleration a particular accelerometer is designed to

reliably measure. It is expressed in g-force where 1g is equivalent to Earth’s gravity (1𝑔 =

 9.81𝑚/𝑠2).

27

To determine the measurement range required for our application, the g-force imparted by birds

upon collision is estimated. The previous Capstone team has identified Golden-crowned kinglet

as a bird species affected by the window collisions and estimated the impact g-force using

kinglet data [7].

According to the study conducted by De Groot et al., however, the following five bird species

had the highest number of bird collisions throughout their 225-day study period, January 2015 to

March 2017 [10]:

1. Varied Thrush

2. American Robin

3. Fox Sparrow

4. Darkeyed Junco

5. Golden-Crowned Kinglet

Impact g-forces are therefore estimated for these five species. See Appendix II for more details.

Based on the estimation, the minimum measurement range required for our application is ±3𝑔,

which is the same as the previous Capstone design. However, enDAQ Blog suggests a margin

that is 5x larger than the minimum specification, so ±15𝑔 is used to provide margins around the

estimated measurement range [11].

As shown in Table 3, ADXL343 accelerometer is capable of measuring ±16𝑔 range.

2.2.4 Detection Window Size

The previous Capstone team did not define or document the maximum window size their design

can operate. Various window sizes are identified across UBC Vancouver campus buildings.

Depending on the sensitivity of the accelerometer, sensor location, and impact location,

accelerometer may not pick up the impact that happens far away from the sensor. This is a

possible scenario particularly on large windows.

Due to the time constraints, and the lack of data about impact vibration dissipation across a

window surface of varying sizes, maximum detection window size is not finalized in our design.

The challenge with determining the maximum detection window size is the impact force used for

estimation. If the minimum estimated impact g-force is used, then the maximum detection

window size is very small, as the smaller impacts get drowned in the noise faster. On the other

hand, if the maximum estimated impact g-force is used to determine the maximum distance away

28

from the sensor at which the impact is not picked up by the sensor, then the maximum detection

window size is very big and cannot reliably detect minimum impact g-force.

2.2.5 Sensitivity

Sensitivity depends on the estimated impact force. ADXL343 accelerometer has the sensitivity

of 3.9𝑚𝑔/𝐿𝑆𝐵, meaning the smallest increment of g-force it can measure. This, however, is not

entirely accurate in real accelerometers. Accelerometers are susceptible to thermos-mechanical

noise internally, which impacts the “effective” sensitivity of the accelerometer. This is discussed

further in section 2.4.

2.2.6 Bandwidth

Bandwidth refers to the frequency range that the accelerometer can accurately capture.

According to the previous Capstone team, a typical bird collision results in spikes in frequencies

between 0-200Hz, which is used to identify bird collisions in the previous Capstone design [7, p.

27]. In our preliminary accelerometer testing, the frequency response of simulated bird-window

collisions ranged from 8-250Hz. The test is done using the same test window the previous

Capstone team has used.

Depending on the sampling rate, or the output data rate (ODR), the ADXL343 accelerometer has

the bandwidth of up to 1600Hz. As discussed in section 3.2, the bandwidth of the accelerometer

does not need to cover the entire frequency spectrum associated with the simulated bird-window

collisions for our detection algorithm to function.

2.2.7 Operating Voltage

3.3V or 5V is specified to ensure compatibility with a typical microcontroller. ADXL343

accelerometer operates at voltage between 2.0V and 3.6V [12], and therefore can be powered by

the Arduino MKR WiFi 1010 (which runs on 3.3V) without extra power management circuitry.

See section 7.0 for details on microcontrollers.

2.2.8 Operating Temperature

The sensor is attached onto a window surface on the inside of the building at UBC Vancouver

campus. -20℃ to 40℃ is chosen as the operating temperature based on constraints C2. As

shown in Table 3, ADXL343 accelerometer can safely operate within this temperature range.

29

2.2.9 Interface

Accelerometers are interfaced with microcontrollers using either analog or digital pins. Analog

accelerometers require Analog-to-Digital Converter (ADC) to digitize analog output voltage.

Digital accelerometers perform analog-to-digital conversion internally on the accelerometer chip;

many digital accelerometers output data via SPI and/or I2C communication protocol.

ADXL343 accelerometer is a digital accelerometer. Data is read by the microcontroller via I2C

communication protocol (see section 3.2 for details on sampling). This eliminates the

dependency on the on-board ADC on the microcontroller, which provides flexibility with the

microcontroller choice in future iterations.

2.3 Limitations and Trade-offs

Selected accelerometer, ADXL343, is unable to detect the estimated minimum impact g-force

discussed in Appendix II due to the following two reasons:

1. The internal noise of the accelerometer is not low enough to resolve the minimum

estimated g-force.

2. The external environmental noise is higher than the minimum estimated g-force.

Figure 5 shows a typical noise signal collected by ADXL343 at 400Hz sampling rate, ±16𝑔

measurement range, mounted on a test window of ~180cm by 80cm.

30

Figure 5: Typical noise readings at 400Hz sampling rate.

Peak-to-peak value of this signal is measured to be 80𝑚𝑔, which is substantially larger than the

minimum impact force estimated (~1.855𝑚𝑔), meaning such impact is inevitably drowned in

the noise. This limitation stems from the lack of sources on the minimum speed of birds used for

minimum impact g-force estimation.

Additionally, the external environmental noise contributes to this signal. The root-mean-squared

value of this noise signal is ~37.2𝑚𝑔, which is approximately 5x larger than the estimated

(internal) RMS noise as described in the next section. This suggests the external noise is larger

than the estimated minimum impact g-force, and that improving the internal noise performance

of the accelerometer does not resolve this limitation.

2.4 Other Accelerometers Considered and Noise Estimation

This section briefly discusses the other accelerometer options considered.

Based on the sensor specification defined in Table 3, two other accelerometers are initially

selected as shown below. These sensors are selected to cover a wide range of measurement

31

range, and sensitivity. See Appendix III for a full list of selected sensor candidates and their

details.

Table 4: Selected accelerometers.

Name Measurement range [±𝒈]

SparkFun Electronics, STMicroelectronics H3LIS331DL

Evaluation Board [13]

100,200,400 selectable

SparkFun Electronics, STMicroelectronics LIS331HH

Evaluation Board [14]

6,12,24 selectable

To determine the optimal sensor for our application, the effective resolution of the

accelerometers is estimated following the guidelines by NXP Semiconductors [15].

The effective resolution refers to the minimum impact g-force an accelerometer can measure

without the sensor’s internal noise interfering. Figure below shows the effective resolution of

two accelerometers above, as well as ADXL343 accelerometer.

Figure 6: Comparison of effective resolutions of three accelerometer candidates and the estimated minimum impact

g-force.

As the resolution of three accelerometer candidates are not sufficient to resolve the estimated

minimum impact g-force, the effective resolutions of three industrial-grade accelerometers are

calculated to evaluate the performance improvement.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Estimated
Minimum Impact

g-force

ADXL343 LIS331HH H3LIS331DL

R
es

o
lu

ti
o

n
 [

m
g]

Resolution Comparison

32

Figure 7: Comparison of effective resolutions of additional accelerometers with the estimated minimum impact g-

force.

As shown in the figure above, high-performance accelerometers such as ADXL355 is

theoretically capable of resolving the estimated minimum impact. However, these accelerometers

are not chosen for this project for the following two reasons:

1. The estimated minimum impact is based on an educated guess of minimum flying speed,

and therefore has room to make tradeoff between minimum detectable impact, and the

cost.

2. The industrial-grade accelerometers are more expensive. For instance, ADXL355

accelerometer evaluation board costs $65.88 [16].

Among the initial three accelerometer options, H3LIS331DL accelerometer clearly exhibits the

worst noise performance, which is expected as it is designed for high-g applications such as

crash detection, and therefore is not suitable for our application. ADXL343 accelerometer has

the better resolution than LIS331HH accelerometer, and thus is selected for our project.

2.5 Other Sensor Technology Explored

This section briefly discusses other sensor technology considered for collision detection. The

following four additional sensor types are initially identified as potential candidates:

1. Camera: capturing collision footage

2. Microphone: capturing the air vibration (sound) of collisions

3. Force sensor: capturing the impact force

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Estimated
Minimum
Impact g-

force

ADXL343 LIS331HH ADXL362 ADXL350 ADXL355

R
es

o
lu

ti
o

n
 [

m
g]

Resolution comparison of additional
accelerometers (excl. H3LIS331DL)

33

4. IR sensor: sensing presence of bird on collision surface

Candidates 3 and 4 are immediately eliminated. Force sensors are designed to sense the force

applied onto them, and not around them. Since the collision can occur at any point on a given

window, we cannot guarantee that the collision happens on the force sensor without covering the

entire surface with force sensors. For IR sensors, they need to be placed on the outside of the

window as identified by the previous Capstone team [7, p. 34]. The issue that arises from placing

the IR sensor outside is that the infrared light used for sensing can be absorbed by the rainwater;

therefore, we cannot always guarantee the proper operation of IR sensors on the outside.

The remaining two sensor types are compared against the accelerometer, and eliminated based

on the three criteria: cost, ease of integration, and accuracy. Cost requirement is captured in the

constraint C1, while the accuracy of the detection system is captured in the functional

requirement NF1. Ease of integration refers to the relative difficulty of R&D activity required to

integrate the given sensor as the centerpiece of the collision detection system.

Cost and accuracy criteria are given the equal weight of five as they are both

requirements/constraints. Ease of integration, on the other hand, is given the weight of four. Each

criterion is then scored out of five. The resulting decision matrix is shown in Table 5 below.

Table 5: Decision matrix for sensor type selection.

Sensor type Cost (5) Ease of integration (4) Accuracy (5) Score

Camera 4 2 5 53

Microphone 5 4 4 61

Accelerometer 5 5 4 65

Camera is scored four out of five for cost, as camera modules tend to be slightly more expensive

than the other two sensor types (ranging $10 - $70) [17]. Although both microphones and

accelerometers can be as expensive as camera modules, they can be had for less than $10.

For ease of integration, camera and microphone scored lower than accelerometer. The use of

camera necessitates a development of image recognition algorithm. This is discussed in section

3.4 as well. Microphone is scored four due to the lack of prior works available that utilize the

microphone as the main sensor in the collision detection system. Accelerometer, on the other

hand, is given a score of five as there are prior works that validate the accelerometer’s

performance in collision detection applications, serving as resources that aid the development in

our project.

34

Lastly, camera is given a score of five for accuracy. Assuming the adequate image recognition

algorithm is developed, the use of camera improves the detection accuracy, as each collision can

be verified with recorded image/video. Microphone and accelerometer are more susceptible to

environmental noise, which increases the potential false detection rate; however, their accuracies

are also improved with accompanying detection algorithm, granting them the score of four.

Based on the decision matrix, accelerometer is selected as the sensor for detection system in this

project. Future iteration of the project may choose to re-evaluate these sensor options.

3.0 Detection Algorithm

The following sections summarize the developed detection algorithm used to identify bird-

window collisions.

3.1 Analysis of Previous Capstone Design

Figure 8 below shows the algorithm used in the previous Capstone design.

Figure 8: Detection algorithm used in the previous Capstone design.

This algorithm utilizes a combination of 1) voltage thresholding, 2) signal duration check, and 3)

frequency peak check using Fast Fourier Transform [7]. When all three characteristics of an

35

impact signal matches the expected values, the algorithm identifies that the bird-window

collision has occurred. Strength and weaknesses of this algorithm are identified below:

Table 6: Strength and weaknesses of detection algorithm in previous Capstone design.

Strength

Checking for signal duration may allow the algorithm to distinguish shorter impulse event

(such as noise) from actual collisions.

Weakness

Thresholding is done without filtering/denoising. Lower energy impact may be drowned in the

noise.

Frequency peaks may vary based on window size.

3.2 Detection Algorithm Design

Based on the potential for improvement in previous Capstone design, a new collision detection

algorithm is devised. Figure 9 shows the high-level flowchart of the detection algorithm. The

algorithm is broken up into four stages. Each stage is described in detail in the following

sections.

1. Sampling: collecting vibration signal from accelerometer.

2. Pre-processing: denoising signal using wavelet denoising.

3. Processing: a score-based detection logic that checks for nearly consecutive data points

above/below the threshold, and infers a collision based on the number of such data points.

4. Output: if collision is detected, fetch current time as the time of impact.

36

Figure 9: Flowchart of detection algorithm.

3.2.1 Sampling

First, the vibration signal is collected using the accelerometer. Since ADXL343 is a digital

accelerometer, the accelerometer itself handles the analog-to-digital conversion. Three design

decisions are involved in this stage: 1) sampling rate of the signal, 2) buffer configuration to

store accelerometer data, and 3) overlapping samples to avoid loss of information in pre-

processing stage.

Sampling Rate

The accelerometer is sampled at 400Hz (every 2.5ms), and new data point is stored in the data

buffer. Nyquist-Shannon sampling theorem states that the sampling rate needs to be at least 2x

the highest frequency component of the signal to accurately capture a signal [18]. As mentioned

in section 2.2, the highest frequency component of typical impact signal is ~250Hz; therefore,

sampling rate of 500Hz is theoretically required at minimum to ensure that the impact signal is

accurately captured. 400Hz sampling rate is technically smaller than the Nyquist rate of ~500Hz,

resulting in undersampling.

The justification for this trade-off is that:

37

• Our detection logic does not perform frequency analysis, and instead uses g-force

magnitude information to infer an impact. As long as the accelerometer reading is

sufficiently above the typical noise floor upon impact, the detection algorithm is able to

detect a collision even when some frequency components are lost due to aliasing. As

shown in Figure 10, sampling rate of 400Hz still captures the characteristics of impact

signal (i.e., decaying oscillation).

• Undersampling at 400Hz results in less noisy data. As shown in Figure 10, the signal

sampled at 400Hz contain smaller noise variation when no collision is happening.

Figure 10: Comparison of a simulated impact signal (dummy weight = 50 grams) sampled at 3200Hz and 400Hz.

2048 data points are collected at each sampling rate. The signal sampled at 3200Hz is shorter because it takes less

time to collect 2048 samples. Note that the signal sampled at 400Hz still captures a clear decaying oscillation

signature of simulated bird-window collision despite not meeting the Nyquist-Shannon sampling theorem.

Buffer Configuration

Detection algorithm utilizes two 256-sample buffer arrays. At any given point in time, one buffer

is serving as a “data buffer” where the latest accelerometer readings are actively stored at 400Hz.

At the same time, another buffer is serving as a “processing buffer” where the microcontroller is

38

actively processing its content through wavelet denoising, and detection logic described in the

following section [19]. Figure 11 shows the flowchart of this process.

Figure 11: Flowchart depicting how dual-buffer configuration works. At any point in time, one buffer is used as a

data buffer, while data in the other buffer is processed by the detection algorithm.

This “dual buffer” configuration is necessary to avoid overwriting part of the data that is actively

being processed by the detection algorithm. When 256 data points are collected, without the

second buffer, the sampling task described in section 8.2 keeps sampling and starts overwriting

the array while the data is still being processed.

The main advantages of dual-buffer approach are:

• Detection algorithm can have a more relaxed timing constraint. Without the second

buffer, detection algorithm is required to start processing after 256 samples are collected,

and finish processing before the next sample (257th sample) arrives (i.e., timing budget of

2.5ms). Dual-buffer configuration gives the detection algorithm 640𝑚𝑠

(2.5𝑚𝑠 × 256 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) to finish processing and enables task scheduling using

FreeRTOS described in section 8.0.

39

• Storage use on microcontroller is more predictable, as both buffers are allocated at

compile, with no dynamic memory allocation involved.

Overlapping Samples

Wavelet denoising described in the next section is implemented using filters, and therefore

inevitably introduce filter delay to the denoised signal. This results in denoised signal delayed by

the total filter delay compared to the original accelerometer data. Since the total number of

samples are kept constant (i.e., 256), there are certain number of signals lost at the end of each

frame (“pushed” out of the frame by the filter delay).

The discontinuity is particularly not desirable when the impact signal happens across two (or

more) frames, which could skew the result of the score-based detection logic. Fortunately, the

filter bank is designed in such a way that the filter delay is easy to compute (total filter delay is

15 samples). To counteract the border effect, the consecutive frames are overlapped by the

number of total delay samples as shown below:

Figure 12: Overlapped sampling. The last 15 samples of current data buffer, and the first 15 samples of the next

buffer are overlapped to avoid loss of information.

3.2.2 Pre-processing

Sampled signal may contain an impact signal indicating a bird impact has occurred, but also

contains noise due to different factors. Preliminary research shows that the vibration signal from

accelerometer is contaminated by pulse noise and white noise [20]. Accelerometers also

naturally fluctuate slightly when no acceleration is applied to it (known as “zero g offset”) [21].

40

Noisy signals pose a challenge when detecting a lower energy impact; therefore, noise

component should be removed as much as possible before further processing is performed.

Wavelet denoising is a technique that makes use of wavelet transform, which has been shown to

handle nonstationary signals well [22]. Nonstationary signal is a type of signal whose frequency

response changes over time. This applies to our signal of interest, where the bird-window impact

is an infrequent event and persists for a very short period of time compared to the total number of

hours the device is operational.

Wavelet denoising filter bank is implemented by utilizing FIR Decimator and FIR Interpolator

functions in ARM CMSIS DSP library [23]. CMSIS library is an open-source library with a set

of functions and APIs developed for ARM Cortex-M microcontrollers [24]. Arduino used in our

project, Arduino MKR WiFi 1010, uses SAMD21 Cortex-M0+ microcontroller, and therefore is

compatible with CMSIS library.

The following table summarizes the key wavelet denoising design choices and justifications:

Table 7: Summary of important wavelet denoiser parameters and justifications.

Parameters Design Choice Justification

Wavelet Basis Type Bior 2.2 Filter bank designed using biorthogonal

wavelet has a linear phase delay, which

is needed to compensate for delays in

real-time applications [25].

Number of denoising levels 2 Theoretical limit is 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑁)) =

8 where 𝑁 = 256. More levels result in

smoother denoised signal, but also

increase execution time per processing,

and introduce longer filter delay.

Moreover, the improvement in

denoising for level > 2 is minimal and

hard to justify.

Thresholding method for noise

coefficients

Hard thresholding Hard thresholding result in better

denoising on the noise portion of the

signal, while preserving the majority of

the impact signal component

unmodified.

41

3.2.3 Processing

Once pre-processing is complete, the denoised signal is checked for potential bird-window

collision. The detection logic consists of 1) thresholding and 2) a score-based scheme that checks

for nearly consecutive data points above threshold.

Thresholding is the simplest way to determine if a collision has occurred based on the

accelerometer readings, since a collision results in irregular (i.e., larger reading than typical) data

points. Thresholding alone works well in simple cases; however, it can falsely recognize random

spikes in sensor reading (which can be due to random noise spikes, or someone tapping the

window) as collision. A typical simulated bird-window collision results in a signal with multiple

(nearly) consecutive data points that are above threshold, as opposed to just one random spike.

Those (nearly) consecutive data points eventually decay out and sensor readings return to typical

noise level.

A score-based scheme is implemented to take advantage of this nearly consecutive data points:

1. First, it initiates a detection logic when a data point is above the detection threshold for

the first time.

2. It then counts the number of nearly consecutive data points that are above threshold.

3. The detection logic keeps counting (i.e., scoring) until there are certain number of exactly

consecutive data points that are below threshold. This ensures that the impact signal has

completely decayed out, and that the readings are back to the typical noise level.

4. If the score is above a certain value, that means that there were multiple nearly

consecutive data points that were above the threshold, which likely means that the impact

has occurred. Otherwise, it likely was a random noise spike, and can be disregarded.

5. Once the output of the detection logic is picked up by the appropriate process, the

detection logic resets the score. It will wait for the next instance where the data point is

above the detection threshold, and repeat.

This detection logic design ensures that 1) the random spikes in accelerometer readings are not

falsely identified as collisions, and 2) nearly consecutive data points above the g-force threshold

is considered as one collision instead of individual collisions.

42

3.2.4 Output

If the detection logic determines that the bird-window collision has occurred, the current time is

fetched and used as the time of collision. This time data is eventually sent to ThingSpeak. See

section 8.2 for more details.

Note that the time fetched in this stage is not the actual time of the impact. There is a delay

between the time the collision data is sampled, and the time that chunk of data gets processed (as

discussed earlier, the detection system operates on 256-sample frames per processing). This

delay, however, has been measured to be approximately 7-8 sampling intervals, or ~17.5 – 20ms

(sampling rate is 400Hz, so one sampling interval is 2.5ms), which is a negligible difference.

3.3 Detection Algorithm Performance

The detection algorithm including wavelet denoising using FIR Decimators and Interpolators are

first developed on MATLAB for easier troubleshooting and visualization. Figure 13 shows the

demonstration of detection algorithm. See section 2.0 in Verification & Validation for

demonstration of detection algorithm deployed on Arduino.

43

Figure 13: Demonstration of detection algorithm on MATLAB model. The orange spike shows that the collision is

detected in the time between the spike and the next orange point.

3.4 Limitations and Other Designs Explored

The main limitation of our detection system design is that it only uses vibration information from

the accelerometer. This means that the detection algorithm identifies a collision as long as the

expected signature (i.e., decaying oscillation) is present in the signal. That is, our detection

system identifies any object with enough mass to cause such vibration as a bird-window impact.

The fundamental assumption of our detection system is that the detection window (window used

for collision monitoring) is free from people or object accidentally hitting the window.

This is assumption is necessary because the detection system need to be tested by the simulated

bird-window collision setup, which consists of a ball made from cloth and rice as a filling. By

assuming such object represents a bird-window impact and can be used verify the functionality

44

of detection system, our detection system also assumes that anything hitting a window is a

collision.

An alternative design that has the potential to alleviate this limitation is the use of camera and

image recognition to verify if the impact is indeed caused by a bird. This design, however,

increases cost and the complexity of the detection system as mentioned in section 2.4.

Another design explored utilizes a neural network model to detect anomaly (i.e., collision) in

sampled signals. Collision detection system with neural network classifier developed for wind

turbines demonstrates an improvement over a simple thresholding system [8].

Despite its advantages, machine learning approach is removed from consideration due to high

R&D overhead. Future improvements to our design could be made by considering machine

learning algorithm from the earlier stages of design process.

Lastly, the detection algorithm that use data from all three axes of the accelerometer was

considered, inspired by design described in [8].

45

Figure 14: Plots of vibration signals from three axes. Z-axis is orthogonal to the windowpane and therefore has

captured the largest magnitude of impact signals.

Figure 14 shows the impact signals from each axis. The axis orthogonal to the windowpane, z-

axis, has captured the largest impact signals, while other two axes still contain the signature of

small bird-window impact. Signal from other axes may contain a useful impact signal especially

when the collision happens at an angle, where the impact vector is more evenly split across three

axes. Due to the time constraints, and the fact that the x and y axis impact is significantly smaller

than the z axis impact (approximately 1/10x), x and y axis information are not used in our final

design.

4.0 Accelerometer Fall Detection Algorithm

Fall detection is a crucial feature for meeting the functional requirement F10, as it ensures the

reliability of the accelerometer and the overall system. The fall detection algorithm is designed to

identify if the accelerometer has fallen off the window surface, which causes inaccurate

measurements.

46

4.1 Algorithm and Functionality

The fall detection algorithm is designed to be power-efficient and ensure the reliability of the

accelerometer and the overall system. It works by periodically monitoring the y-axis

accelerometer readings every 5 minutes. This interval was chosen to minimize power

consumption and reduce the computational load on the microcontroller.

The algorithm uses a two-step process to detect a fall. In the first step, when the fall detection

task is called, it checks the y-axis accelerometer value and sets a flag if the value indicates a

possible fall. At this point, fall detection task finishes executing with the flag set. This flag serves

as a preliminary indication of a fall and is used in the second step to further confirm the event.

In the second step, when the fall detection task is called again after the next 5-minute interval, it

checks the y-axis value again. If the value still indicates a possible fall and the flag set in the first

step is still active, the algorithm confirms that a fall has occurred. This two-step process helps to

reduce false positives by ensuring that the accelerometer readings consistently indicate a fall

over two consecutive checks.

4.2 Design Decisions

In this section, we explore the fall detection design decisions, focusing on power efficiency,

reliability, and computational load. We will discuss the periodic execution of the task, the two-

step process for improved accuracy, and the reduction of the microcontroller's computational

load.

4.2.1 Design Considerations

Power efficiency: As the system can be battery-powered, minimizing power consumption is

essential. The chosen design periodically executes the fall detection task, reducing power usage

and computational load (see section 11.2, for more details on battery operation).

Reliability: The two-step process improves the reliability of fall detection by minimizing false

positives, ensuring that the system only acts when a fall is detected.

Computational load: By executing the fall detection task at 5-minute intervals, the

computational load on the microcontroller is reduced, allowing it to perform other tasks

efficiently.

47

4.3 Advantages and Disadvantages

4.3.1 Advantages

Power-efficient: The periodic execution of the fall detection task reduces power consumption.

Reliable: The two-step process minimizes false positives, ensuring accurate fall detection.

Reduced computational load: The 5-minute interval between task executions allows the

microcontroller to perform other tasks more efficiently.

4.3.2 Disadvantages

Potential delay in fall detection: The 5-minute interval between task executions may cause a

delay in detecting a fall.

Reduced sensitivity: The two-step process might not detect falls with less impact on the y-axis

value.

4.4 Alternative Approaches

Several alternative approaches to fall detection were considered during the design process:

Continuous monitoring: This approach involves constantly monitoring the accelerometer

readings to detect a fall. While this approach may provide faster fall detection, it increases power

consumption and computational load on the microcontroller.

Single-step detection: A single-step detection approach checks the accelerometer value only

once to determine a fall. While this method may be simpler, it can result in a higher rate of false

positives.

Machine learning-based detection: This approach uses machine learning algorithms to predict

falls based on accelerometer data. While this can be more accurate, it requires significant

computational resources and may not be suitable for a low-power microcontroller like the

Arduino MKR WiFi 1010.

The chosen design balances power efficiency, detection reliability, and computational load,

making it a suitable choice for this application.

48

5.0 Temperature

This section describes the heat detection process in our project and how the collected

temperature measurements play a role in the UBC sustainable green building policies. It also

describes how the temperature measurement are collected and displayed to the users for further

analysis.

5.1 Heat Flow Rate Measurement

We are required to measure the efficacy of windows and how well they mitigate heat flow rate

through them to quantify how well they perform against other windows. This design helps with

UBC enacting sustainable green building policies. The researchers for whom this device is

designed for will study the data provided by temperature sensors on the inside and outside of the

surface of the windows being observed. Together with a U-value and the dimensions of the

window (that will be provided by the researchers), the heat flow rate is calculated, and this value

is used to measure the efficacy of windows and hence quantify the comparisons of different

windows on UBC campus.

According to F3, the minimum allowed range we could have for any temperature sensor chosen

is between -40C to 50℃ which our temperature sensor satisfies. In addition, our temperature

sensor of choice is required to be wireless, connect to internet, waterproof and easily mountable

to insure user-friendliness according to F2, F3, F5, NF5.

Our temperature sensor connects to ThingSpeak via LoRaWAN and will send two surface

temperature packets to ThingSpeak every thirty minutes. We decided to collect the data every

thirty minutes as maximum the temperature change recorded in Vancouver is ±2℃ which is a

minimal change in a collision detection analysis.

A set of two thermocouple temperature sensors (DS18B20) are selected for gathering the heat

mitigation data. One temperature sensor is used on the outside surface of the window one on the

inside of the surface of the window. The sensors are touching the surface of the window and are

attached to the window using duck puddy as a barrier between the surface of the window and the

outside air to prevent the thermocouple from reading the outside air temperature. The

49

temperatures we chose can read a range of temperatures ranging from -40 to 200℃. This fits in

perfectly with the expected temperature of the outside surface of the window.

These two thermocouples are attached to the device called Dragino LHT65 which has a built-in

2400mAh non-rechargeable battery which can be used for more than 10 years. The Dragino

sensor includes a built-in SHT20 Temperature & Humidity sensor with an external sensor

thermocouple temperature sensor. Moreover, the device records up to 3200 data records with

date/time which can be retrieved with ThingSpeak for further analysis [26]. The LHT65 also

connects directly with ThingSpeak meaning that no extra microcontroller needs to be placed on

the outside the window, eliminating extra safety and technical risks. These temperature values

are then be stored in the ThingSpeak database for further analysis.

With the collected surface temperature data, the heat flow rate across the window is calculated

using the window surface area and the U-value provided by the user (which is a characteristic of

windows) to assess the efficacy of windows mitigating heat transfer, and consequently their

efficiency saving energy by keeping the heat trapped in a room. This allows researchers to know

which windows to use for building green and sustainable buildings.

Table 8: Hardware/software used to measure heat flow rate.

Function Selected Candidate

Surface Temperature Data Measurement Dragino LHT65

Heat Flow Rate Calculation The built-in analytics tools of

ThingSpeak to gather data from

the UBC weather website

The section 1.0 in Verification & Validation has proven to work, and measurements taken from

ThingSpeak showed that our sensors are in fact measuring the temperatures and displaying them

for the user.

The section 3.0 in Verification & Validation has proven the pre-set codes for heat flow rate

calculation in the MATLAB Analysis can give the accurate calculation result, which is updated

and stored every 30 minutes, and displayed in the dashboard of ThingSpeak as expected. More

detailed testing processes are recorded in the Verification & Validation Document.

50

5.2 Other Candidates

As for the other designs that we decided not to move forward with, the first option considered

was a heat flux sensor. This method gives the user a U-Value which is a quantitative way of

determining the efficacy of windows mitigating heat transfer. However, this method requires a

specific DAC that cannot connect to the Arduino. In addition, the heat flux sensor requires a

voltage resolution which the Arduino does not offer.

Moreover, one thing that was proven ineffective was using a heat flux paste to use as a middle

ground between the thermocouple of the temperature sensor and the window to better conduct

the temperature. However, after comparing it to a control thermocouple, both thermocouples

output the same value for surface temperature which suggests that the effect that the thermal

paste is at best minimal.

Table 9: Complete list of temperature sensor candidates [27], [28].

 DHT11 DHT22 LM335 BMP180 TMP36 LM75 BME280 DS18B20 LHT65

temp

pressure

humidity

Communication protocol One wire One wire Analog

output

I2C Analog

output

I2C i2C or

SPI

One wire ThingSpeak

Power supply range 3 to 5.5V 3 to 6v 4 to 30 v 1.8 to 3.6v for

chip

3.3 to 5V for

module

2.7 to

5.5 V

+-1c

3 TO

5.5 V

1.7 to 3.6

for chip

3.3 to 5v

for board

3-5.5 V 2400mAh non-

chargeable battery

Temp range 0 to 50c

+-2c

-40 TO

80c

-55 to

150C

+-0.5c

0 to 65c

+-0.5C

-40 to

125 c

+-1C

-55 to

125 c

+-2c

-40 to

85c

+-0.5c

-55c to

125c

+-0.5c

-40c to 80c

+-0.8

Humidity range 20 to 90%

+-5%

0 TO

100%

+-2%

 0 to 99.9%

+-10%

Sampling period 1 second 2 seconds 128

samples/sec

3

seconds

 0.21

seconds

waterproof

LEGEND

 no

 yes

51

 NA

6.0 Outside Air Temperature Detection

For researchers to be able to identify the conditions when collisions occur, as per F2, the outside

temperature is recorded at the time of impact. The data is collected from the UBC ESB Rooftop

Weather Station website.

Table 10: Function and selected candidate for outside air temperature measurement.

Function Selected Candidate

Outside Air Temperature Measurement UBC ESB Rooftop Weather

Station Website

Through the ThingSpeak’s MATLAB Analysis function, we programmed MATLAB code to

specify the web address string of the UBC ESB Rooftop Weather Station as the URL that we

want to scrape the web temperature data. The web temperature data is fetched every 30 minutes,

parsed to find the air temperature, and store the data into the data field specified.

The stability and accuracy of codes that used to collect the outside air temperature collection

from the UBC ESB Rooftop Weather Station website is verified in the section 3.0 in Verification

& Validation.

This has proven to work, and measurements taken from ThingSpeak showed that our sensors and

weather website are in fact displaying the correct temperatures.

7.0 Microcontroller

This chapter mainly discusses the role of microcontrollers in the project, as well as the final

selection of microcontrollers and the filtering process.

7.1 Significance and Function of Microcontrollers

The microcontroller holds a pivotal position in our project, serving as the central processing unit

of our system. It efficiently gathers and processes data from sensors strategically placed on

windows, allowing for real-time analysis and provide accurate collision and heat flow rate

information to researchers. This data aids researchers in identifying and addressing the multiple

52

factors contributing to bird-window collisions, supporting the implementation of UBC Green

Building Action Plan (GBAP) and the protection of birds and the natural environment.

The microcontroller will interface with an accelerometer and a reset button. The accelerometer

captures window vibration data, which is processed by the microcontroller using detection

algorithm as described in detection algorithm. In the event of a collision detection, the

microcontroller will log the timestamp and transmit the data along with the event count to the

user interface at the end of each day. (To optimizes power utilization, the microcontroller will

employ a data transmission interval of 24 hours. However, users have the option to increase data

frequency by connecting the system to a wall power source and upload an alternative code to

make the data transfer interval more frequent, every 5 minutes.)

7.2 Microcontroller Decision

The Arduino MKR WiFi 1010 is chosen as the microcontroller for the project, following a

detailed selection process.

The Arduino MKR WiFi 1010 satisfies the highest priority criteria's that are critical to the

success of the project, including availability of WiFi which correspond to C4, enough input

digital pins, compatibility with power socket module (C1), ample flash memory capacity (NF4),

and cost-effectiveness within the project budget when compared to other microcontrollers.

Moreover, its compact size and weight make it ideal for meeting the requirements of C5 and C6.

For a comprehensive comparison, please refer to the detailed comparison table provided in

Appendix IV.

The stability of Arduino MKR WiFi 1010 has been rigorously tested using various methods,

including testing the detection algorithm and data transmission code on the Arduino. The testing

results have successfully recorded the time and data of simulated bird-window collisions, which

were then transmitted to the user interface. For detailed testing results, please refer to the

Verification & Validation section.

7.3 Other Microcontroller Candidates and Screening Process

Eight widely used microcontrollers are assessed using 14 criteria points based on the project

constraints. The assessed microcontrollers include:

1. Arduino Uno WiFi Rev2

53

2. Raspberry Pi 3

3. Arduino NANO 3

4. Arduino Uno R3

5. Arduino Mega

6. ESP32 NodeMCU

7. ESP8266 Thing

8. Arduino MKR WiFi 1010

The 13 criteria points were prioritized based on their essentiality for the success of the project.

The weight of each criterion in microcontroller selection was determined by its importance. To

facilitate comparison, a decision table was constructed (Appendix IV). In Table 11, the minimum

criteria used to filter out unsatisfactory microcontrollers are listed.

Table 11: Minimum Microcontroller Requirements.

Microcontroller Feature Minimum Requirement

Number / type of I/O (Digital) 4

WiFi Availability Yes

Flesh Memory 130KB

Power Could be powered by both battery

and 120 VAC wall outlet

7.3.1 Criteria 1: Digital Input Pins

The hardware model of the project requires multiple input pins on the selected microcontroller to

receive digital data coming from impact force/vibration readings. As seen in Figure 2, the

detection section's collision data, recorded from the vibration sensor, requires, at minimum, 2

digital input pins of the microcontroller to function. In the fall-detection system, two input pins

are required for the reset button to receive data. The selection of the microcontroller considered

over-designing, allowing for potential future additions or alternative solutions, such as using

multiple vibration sensors for larger windows, which would require additional digital input pins.

This approach enables scalability and cost reduction in the final design. A detailed comparison of

data from different microcontrollers can be found in Appendix IV.

54

7.3.2 Criteria 2: WiFi and Database Connection

The hardware-to-software connection component of the model necessitates the secure transfer of

data over a wireless network, specifically WiFi, as indicated by C4. In line with section 10.0, the

chosen database framework is ThingSpeak. To comply with NF4, the microcontroller must

consistently transfer data to the ThingSpeak database. According to the findings in Appendix IV,

microcontrollers such as Arduino Uno WiFi Rev2, Raspberry Pi, ESP8266 Thing, ESP32

NodeMCU, and Arduino MKR WiFi 1010 fulfill the criteria as they possess WiFi capabilities

and a direct link to the database.

7.3.3 Criteria 3: Flash Memory

While the Arduino is operating and executing code, flash memory is needed to store program

code and gather data. It shows that the microcontroller used in this project needs to have a flash

memory that is big enough to store and evaluate the data needed by the client. Following some

experiments, it was discovered that the collision detection system needed a specific amount of

flash memory from the microcontroller for data gathering, noise reduction, and processing. At

the same time, the microcontroller also needs to transfer the temperature data for calculation,

which leads to the microcontroller's flash memory capacity must reach 130KB (See detail

calculation in Appendix V). Only microcontroller Arduino Uno WiFi Rev2 from the previous

round did not match this requirement and was eliminated, leaving Raspberry Pi, ESP8266 Thing,

ESP32 NodeMCU and Arduino MKR WiFi 1010 with flash memory levels that were far greater

than the minimum necessary and provided the project with considerable fault tolerance.

7.3.4 Criteria 4: Price and Power Socket

In order to satisfy C14, and NF45, the microcontroller candidates’ prices and power supply need

to be carefully selected. Based on the empirical findings from research references [29], [30] and

detailed calculations, it has been shows that the utilization of a 3200mAh battery, with a data

4 For several of the model to be used for bird strike monitoring, the whole project cost (including hardware,

software, and auxiliary supplies) needs to choose the most economical one within the available options and the cost

of an entire system should be under $180. [Database must be free for the user.]

5 The data recording must be fully functional for a minimum of 30 days before requiring maintenance.

55

transmission frequency of once a day to ThingSpeak, would provide the microcontroller with an

operational lifespan of approximately 6 days. The incorporation of batteries into the system

enhances its flexibility and availability, allowing users to deploy the device in locations without

access to wall outlets (Comprehensive calculations and analysis can be found in Appendix XI).

However, for more frequent data monitoring requirements, reliance on power outlets becomes

necessary to sustain the device's power consumption. Therefore, the selected microcontroller

must possess the capability to receive power from both batteries and external power outlets.

Among the remaining microcontroller options from the previous rounds of screening, only

Arduino MKR WiFi 1010 and Raspberry Pi 3 demonstrate the ability to accept power from both

batteries and external power outlets. Among these options, Arduino MKR WiFi 1010 stands out

as a more competitive choice compared to Raspberry Pi 3, considering that the latter is priced

approximately four times higher than Arduino MKR WiFi 1010.

8.0 Task Scheduling Algorithm

8.1 System Context for Design and Architecture

FreeRTOS is an open-source, real-time operating system designed specifically for

microcontrollers and small embedded systems. It offers a simple, efficient, and lightweight

solution for managing tasks, time, and resources, which makes it a popular choice for developers

working on IoT and embedded projects [31].

The purpose of using FreeRTOS is that timing constraints can be set for each task, and the whole

system has a pre-determined, predictable behaviour. FreeRTOS is responsible for managing and

scheduling the tasks that collect, process, and transmit data from the accelerometer, and it

simplifies the development of complex systems with multiple tasks, and ensuring reliable

operation and efficient utilization of CPU resources in the microcontroller. Through the

utilization of FreeRTOS in our system architecture, the requirements of F2 and NF4 are met,

enabling concurrent execution, and recording of multiple tasks while ensuring system reliability

and smooth operation.

56

8.2 Design

In FreeRTOS, there are five different tasks assigned to our system, the timing schedule is

showed in Figure 15 and Figure 16. The priority of these five tasks gradually decreases from

Task 1 to Task 5.

• Task 1 and Task 2 handle collision detection. Task 1 collects data from accelerometer

and wakes up Task 2 every time 256 data points are collected for further noise reduction

and analysis, to determine if a bird collision event has occurred.

• Task 3 is responsible for checking the accelerometer's proper attachment to the window

being tested every five minutes. If the accelerometer is detected to have fallen during the

first check, Task 3 will perform a second check after 5 minutes. If the result of the second

check is also a fall, Task 3 will stop other tasks, send a message to ThingSpeak to notify

the user of the fallen accelerometer, and wait for the user to reattach the accelerometer

and press the reset button to resume other tasks. Task 2 will be resume and finish the

remaining analysis after the reset button is pressed, and Task 4 will be re-initialized as

well. After a delay of five seconds, Task 1 will be restarted, giving Task 2 enough time to

complete the remaining work from the previous session. See Figure 16.

• Task 4 is responsible for sending bird collision data and fall detection to ThingSpeak.

Depending on user’s needs, Task 4 can run once every 24 hours or once every 5 minutes.

Task 4 sends the time and count of bird collision events that occurred during the time

elapsed since the last data transmission to ThingSpeak.

• Task 5 is the system's default idle task, which runs when no other tasks can run such as

sampling task.

57

Figure 15: Time scheduling diagram depicting tasks running with FreeRTOS. Solid line means forward operation;

dashed line means response.

Figure 16: Fall detection detailed Time scheduling diagram.

8.3 Alternative Design for Scheduling Algorithm

The previous design of the bird collision detection system relied on a state machine, illustrated

below, by Figure 17, which executed tasks sequentially based on a set of predefined states and

58

transitions. While this approach was functional, it had certain limitations, particularly when it

came to handling multiple tasks simultaneously and efficiently managing resources. One

significant drawback of the state machine model was its inability to sample in “real-time,” which

led to the potential for missed bird collisions if the system was in the wrong state. Likewise, fall

detection could not successfully be deployed for this same reason. Further, in a task-based

design, tasks are executed concurrently, allowing the processor to perform multiple operations

simultaneously. As a result, the processor spends less time idling and waiting for tasks to be

executed sequentially, as it would in the state machine model. This efficient use of resources

results in a lower overall power consumption, which in turn extends the battery life.

Figure 17: Previous State Machine Design.

To address these shortcomings, we decided to switch from the state machine-based design to a

real-time operating system that facilitates concurrent programming. FreeRTOS enables the

creation and management of multiple tasks that can run concurrently, effectively simulating

parallelism in a single-core microcontroller environment.

59

8.4 Task Scheduling Performance

The task scheduling and coordination capabilities of FreeRTOS have been thoroughly evaluated,

including task execution time, regularity, and potential latency. Test Results Demonstrate

FreeRTOS as an effective tool for achieving project objectives with consistent and reliable

operation. We tested the state machine functionality of FreeRTOS, as well as the compatibility

of FreeRTOS with the detection algorithm and the code for sending messages. For detailed

testing results, please refer to the Verification & Validation section.

8.5 Detail Explanation of FreeRTOS Operation

In this section, we will discuss how FreeRTOS works, its advantages and disadvantages, and

other alternatives that can be considered for implementing real-time systems.

FreeRTOS employs a pre-emptive, priority-based scheduling algorithm that allows multiple

tasks to share a single CPU. Each task is assigned a priority level, and the scheduler ensures that

the highest-priority task is always running [31]. When two tasks share the same priority level,

they are executed in a rotating sequence, alternating between the tasks in a fair and balanced

manner. Tasks can be in different states such as running, ready, blocked, or suspended. A tick

interrupt (periodic interrupt generated by a hardware timer in a microcontroller or

microprocessor) is used to manage the passage of time and facilitate context switching between

tasks. When the tick interrupt fires, the scheduler checks if a higher-priority task is ready to run.

If so, the context of the current task is saved, and the new task is executed. This enables effective

multitasking and ensures that the system remains responsive to external events.

8.5.1 Advantages of FreeRTOS

Lightweight and efficient: FreeRTOS has a small memory footprint, making it suitable for

resource-constrained environments like microcontrollers. It is designed for efficiency and can be

easily configured to use only the required features, further reducing memory usage.

Scalability: FreeRTOS is highly scalable, allowing developers to manage a wide range of tasks

and resources on various hardware platforms.

Portability: FreeRTOS supports a wide variety of microcontrollers and processor architectures,

making it easy to port applications across different hardware platforms.

60

Extensive documentation and community support: FreeRTOS has a large and active

community, which ensures that developers have access to extensive documentation, example

code, and support forums.

8.5.2 Disadvantages of FreeRTOS

Limited features: FreeRTOS lacks some features found in more comprehensive operating

systems, such as file systems, networking, and advanced memory management.

Learning curve: Developers new to real-time operating systems may experience a learning

curve when working with FreeRTOS, as it requires understanding concepts like tasks, priorities,

and scheduling.

8.5.3 Alternative Options

ChibiOS/RT: While ChibiOS/RT is another lightweight RTOS with features comparable to

FreeRTOS, it has a smaller community and less extensive documentation compared to

FreeRTOS. The availability of comprehensive documentation, example code, and community

support for FreeRTOS played a significant role in our decision-making process. Furthermore, the

performance differences between ChibiOS/RT and FreeRTOS were not significant enough to

justify choosing ChibiOS/RT over FreeRTOS for our project.

Zephyr: The Zephyr Project is a more feature-rich RTOS, offering advanced features such as

networking, file systems, and security. However, these additional features come at the cost of

increased complexity and memory usage. Given the resource constraints of our microcontroller-

based system, the lightweight and efficient nature of FreeRTOS was more suitable for our needs.

Moreover, our project did not require many of the advanced features provided by Zephyr,

making it unnecessary to adopt a more complex RTOS.

RIOT: RIOT is designed specifically for IoT devices and low-power microcontrollers, offering a

user-friendly API and support for various communication protocols. However, RIOT's focus on

IoT devices meant that some of its features were not applicable to our project. Additionally, like

ChibiOS/RT, RIOT has a smaller community and less extensive documentation compared to

FreeRTOS. Given the need for robust community support and documentation, FreeRTOS was a

more attractive choice for our project.

61

9.0 Communication System

When developing the overall system, several design decisions are made concerning

communication protocols. These decisions were influenced by factors such as power

consumption, data transfer speed, reliability, ease of implementation, and compatibility with

existing systems. In this section, we will discuss the chosen protocols in-depth, comparing them

to alternative options and discussing the advantages and disadvantages of each.

Figure 18: Communication System Initialization Parameters

Figure 18 illustrates the initialization parameters passed from the Arduino MKR WiFi 1010 and

Dragino sensors to establish a connection with and to write to ThingSpeak.

9.1 WiFi for Arduino MKR WiFi 1010

WiFi is chosen as the communication protocol for the Arduino MKR WiFi 1010 because of its

widespread availability, ease of use, and compatibility with the IoT platform ThingSpeak. WiFi

allows for efficient and reliable data transfer with minimal latency. Although it consumes more

power compared to some low-power wireless protocols like Zigbee or Bluetooth Low Energy

(BLE), it provides a higher data transfer rate. Zigbee and BLE are low-power alternatives, but

they lack the data transfer speed and widespread availability of WiFi. WiFi's higher bandwidth

capacity and seamless integration with IoT platforms outweigh its power consumption

disadvantage in this case.

By default, microcontrollers are unable to access the UBC visitor WiFi network. To resolve this,

the MAC address of the microcontroller(s) is registered with UBC IT.

62

During the uploading task of the microcontroller, a connection protocol is executed, through the

onboard WiFi-module, to establish a connection between the microcontroller and the WiFi

network at UBC. With the use of two libraries: WiFiNINA and SPI, the WiFi-module passes the

network SSID (domain of the desired WiFi network: char ssid[] = "ubcvisitor"), along with the

corresponding network password (char pass[] = ""), establishing the microcontroller as a client of

the UBC visitor WiFi network. After authentication, the microcontroller obtains an IP address

from the network's Dynamic Host Configuration Protocol (DHCP) server, which provides it with

network configuration parameters (i.e., subnet mask, default gateway, DNS server).

With a valid IP address, the microcontroller can establish an internet connection and securely

communicate with the ThingSpeak database.

To communicate with ThingSpeak, the microcontroller passes channel ID and write API keys. It

uses the MQTT communication protocol (Appendix X) to transmit data. ThingSpeak relies on

token-based authentication for secure communication between the device and the platform. The

microcontroller sends the channel ID to associate the device with the user's account and the write

API key to authorize data uploads to the corresponding ThingSpeak channel.

9.2 LoRaWAN for Dragino LHT65 Sensors

LoRaWAN was selected as the communication protocol for the window-surface sensors due to

its low power consumption, long-range capabilities, and ability to handle many devices. The

LoRaWAN protocol is specifically designed for low-power, wide-area networks (LPWANs) and

is well-suited for IoT applications such as this project. Alternative options like NB-IoT and

Sigfox are possible, but LoRaWAN was chosen for its wider coverage, flexibility, and ease of

deployment. NB-IoT and Sigfox are also LPWAN options, but they have some limitations. NB-

IoT requires more infrastructure and is more suitable for dense urban environments, while Sigfox

has lower data rates and may not be available in all regions. LoRaWAN offers a more versatile

and adaptable solution for this project.

LoRaWAN also uses a star-of-stars network topology, which means that individual devices can

communicate with one or more gateways connected to the internet. This allows for many devices

to be connected to the network without creating a bottleneck: affecting communication speed. In

addition, LoRaWAN uses a spread spectrum modulation technique that allows for a high degree

63

of immunity to interference and noise. This means that the network can maintain high levels of

reliability and availability even in noisy or crowded environments.

The Dragino temperature and humidity sensors are connected to LoRaWAN through their built-

in LoRa module, which enables it to communicate with LoRaWAN gateways. To establish a

connection between the sensors and the LoRaWAN network, the sensors use an AppEUI and

AppKey. The AppEUI is a unique identifier for the application, while the AppKey is a secret key

that is shared between the sensor and the network to ensure secure communication. As the

sensors periodically take temperature measurements, packets of data are sent using the LoRa

modulation to the nearest gateway (there are two located on the UBC campus). The gateway then

forwards these packets to a LoRaWAN network server, which authenticates the devices and

decrypts the packets. From there, the LoRaWAN network server sends the data to The Things

Network (TTN) along with a DevEUI.

9.3 MQTT for ThingSpeak Integration

MQTT was chosen for its lightweight design, low power consumption, and efficient use of

bandwidth. It is a widely adopted protocol for IoT applications and is natively supported by

ThingSpeak. This protocol enables seamless communication between the Arduino, Dragino

sensors, and the ThingSpeak platform. Alternative protocols like CoAP and AMQP are possible,

but MQTT's simplicity, minimal overhead, and broad support made it the preferred choice.

CoAP, while also lightweight, is more suited for constrained environments and uses a request-

response model, which is not ideal for this application. AMQP, although reliable and suitable for

complex messaging, has a larger overhead compared to MQTT and is less optimal for low-power

IoT devices.

The DevEUI is a 64-bit globally unique Extended Unique Identifier (EUI-64) assigned by the

manufacturer of the end-device (Dragino) to distinguish it from other devices in a network and is

a key component of the device authentication and secure communication process. Once the

DevEUI is passed to TTN and the connection between the sensors, through LoRaWAN, and

TTN is established, data can then be passed from TTN. To transmit the window-surface

temperature data to ThingSpeak, TTN uses the MQTT (Appendix X) protocol, but first must be

configured with the appropriate Channel ID and Write API Keys. The Channel ID is a unique

64

identifier for the ThingSpeak channel, while the Write API Keys provides access to write data to

the channel.

9.4 HTTP for External Temperature Data

The external temperature data from the weather report website is retrieved using the HTTP

protocol. HTTP was chosen for its simplicity, widespread use, and compatibility with web-based

data sources. It is a stateless protocol that allows easy fetching of data from web servers, making

it suitable for integrating the ambient air temperature data into the project. Alternatives such as

FTP or WebSocket are possible, but HTTP was deemed more suitable due to its widespread

adoption and ease of use. FTP, while designed for file transfer, is more complex and less suited

for fetching simple data from web servers. WebSocket, on the other hand, is more appropriate for

real-time, bi-directional communication, which is not required in this case.

10.0 Data Storage and User Interface

10.1 Significance to requirements

The data storage system acts as the central repository for all the information gathered from

various sources, necessitating adequate capacity to accommodate the collected data.

Additionally, it is crucial to design data storage systems with accessibility as a priority.

Researchers need convenient access to the required data to perform their studies efficiently.

Consequently, a user-friendly interface that is simple to navigate and comprehend enables

researchers to access data promptly, thereby promoting effective data analysis.

10.2 Context with respect to system, design, architecture

The user interface establishes communication with multiple devices, such as the microcontroller,

The Things Network, and the temperature webpage of the UBC ESB Rooftop Weather Station.

The microcontroller is programmed to check for new impacts every 5 minutes. Upon detecting a

new impact, it sends a data packet containing the cumulative collision count and timestamp. The

interface processes the received cumulative collision count using its built-in analytics tools

before updating the database. This ensures that only the latest collision data is stored and

analyzed. Additionally, if the accelerometer falls, the microcontroller sends a flag, as outlined in

65

the fall detection algorithm. ThingSpeak's built-in analytics tools include pre-set codes that run

every 5 minutes to identify falls. If fall detection data is received, the interface automatically

sends an email notification to the user.

The Things Network transmits two distinct data packets at 30-minute intervals, each containing

surface temperature readings from separate sensors. These readings are used to compute the heat

flow rate across the window. The updated results are then stored in the database and displayed on

the user interface at the same frequency.

Furthermore, the built-in analytical tool's pre-set code gathers external air temperature

information from the UBC ESB rooftop weather station website every 30 minutes. This ensures a

comprehensive and up-to-date data analysis and visualization for users.

10.3 Design

10.3.1 Design Decision

ThingSpeak, an IoT platform and analytics tool, is chosen as the data storage and user interface

solution for our system. It allows users to collect, analyze, and visualize data from multiple

connected devices. ThingSpeak's capacity is measured in units: one unit of the free plan provides

the ability to process and store up to 3 million messages per year (~8,200 messages/day) and

create up to 4 channels (customizable container for storing and visualizing data collected from

IoT devices or other data sources) [32].

Each channel can have up to 8 data fields that represent different types of data collected from

devices or websites. A data field is a container that holds a single data value, such as a

temperature reading, humidity level, or any other sensor measurement. For our project, the 8200

messages per day available in ThingSpeak are more than sufficient to handle the maximum of

196 data entries (calculated in section 10.3.3) collected daily. Additionally, ThingSpeak has a

deprecated version of MATLAB built in for analysis, allowing us to read surface temperature

data from two separate data fields, calculate heat flow rates in real-time, and store the results in

other data fields. We can also send an email notification to users using pre-set codes in the

analytics tools when an accelerometer fall message is detected. Moreover, the TimeControl app

in ThingSpeak provides a flexible way to automate tasks such as heat flow rate analysis and web

temperature data scraping by setting recurring intervals of 30 minutes.

66

For the user interface, ThingSpeak enables us to plot data fields on charts, visualize them in

gauges, display them in tables, and export them to other tools for further analysis. Researchers

can export all stored data from the channel, or specific data from a single data field, in one of

three file formats. The dashboard created in ThingSpeak is presented in Appendix IX.

10.3.2 Data Storage Design Consideration

Research conducted by the UBC Science faculty indicates that the highest number of collision

deaths occurred during the fall sampling period, with a rate of 1.38 collisions per day for 8

buildings, compared to other seasons [10]. Based on this data, the number of impacts per

building per day is approximately 0.17. For estimating the data storage requirements, one impact

per building per day is used. Additionally, we tested the equipment and determined that it would

only fall once per month. As a result, we assume that the device will be dropped at most once a

month. To ensure the selected database has sufficient storage size for 1 bird strike, and

constituent data, per day, the choice for data storage must meet the minimum specifications in

Table 12.

Table 12 illustrates the components considered in the selection of data storage to meet F2, F3,

F4, F5, F6:

Table 12: Data Storage Criteria.

Store one data entry for each bird impact, which includes the total number of collisions for a

specific window in a building along with the date and time of the bird collision.

Store two separate data segments for each impact received from the microcontroller, detailing:

• The cumulative number of bird collisions for a specific window in a building.

• The corresponding timestamp of the bird impact.

Store 1 individual data segment for the fall detection sent from the microcontroller.

Store 4 individual temperature data segments updated every 30 minutes:

• Outside air temperatures

• Inside surface temperatures

• Outside surface temperatures

• Heat flow rate for window’s insulation analysis

Store the latitude and longitude of the building that window placed when the location needs to be

changed each time.

Maximum data segment size of 32 characters.

67

 For the storage of collision data, each set of detection data from the microcontroller is first

stored in a specific location and then read out during data analysis, after which it is decided

whether the received collision data needs to be stored in a collision-specific database and

displayed. As a result, 3 distinct data segments need to save for each impact. Additionally, since

the microcontroller checks every 5 minutes to see if the device has been dropped, it will send the

fall detection data only if a fall is detected.

The maximum data segment size of 32 characters is made by observing the sample data

(Appendix VI) downloaded from our existing channel created on the ThingSpeak platform.

The sample data in Appendix VI shows that the timestamp has the longest data segment size of

20 characters; therefore, 32 characters is sufficient for every individual data segment that needs

to be stored for each bird strike.

Given that the location of all strikes detected by a specific device is the same, the building's

latitude and longitude only need to be stored once when the device is set up.

10.3.3 Minimum Specification Description for Data Storage

Minimum specifications (Table 13) are based on the size of the sample data file (Appendix VI),

which contains 102 data entries received and stored within a 12-hour period, with a maximum

size of 3790 bytes. This means that a maximum of 7.1 kilobytes (7283 bytes) of data storage is

required each day to store the 196 data entries that need to be collected per day, including:

• 48 outside surface temperature data segments

• 48 inside surface temperature data segments

• 48 outside air temperature data segments

• 48 heat flow rate data segments

• 2 collision data segments sent from the microcontroller as the impact detected

• 1 analyzed bird impact counts data segments being stored in the database

• 1 fall detection data sent from the microcontroller if the accelerometer falls down

Thus, our database must have at least 213 kilobytes data storage size to store 5910 data entries

per 30 days period. To ensure sufficient storage remaining at the end of 30-day maintenance

period, the minimum storage size within one maintenance period needs to be at least 300

68

kilobytes to meet F2, F3, F4, NF4 and NF7. Equations used for the values contained in this

paragraph are attached in the Appendix VII.

Table 13: Data storage minimum specifications.

Feature Minimum Specifications

Storage Size 300KB

Data Segment Length 32

Maximum Entries of Data/day 196

10.3.4 User Interface Design Considerations

The following components are considered to satisfy requirements of F6 and F7 and

characterized as minimum specifications for the UI design:

• Display all required data through various parts

• Represent historical data graphically

• Export all stored data from the database to Excel

10.3.5 Other Options Evaluated

Other candidates that were evaluated for data storage and user interface are:

• Cayenne [33]

• MongoDB [34]

• MySQL [35]

Appendix VIII compares ThingSpeak and Cayenne to the two options that were not chosen.

Cayenne meets all minimum requirements for data storage and user interface and was

implemented in early iterations of the system. Due to issues encountered with the complexity of

the system design, it was removed from the final version of the system. More details on why

Cayenne was not implemented are presented in the Appendix VIII.

MongoDB was excluded due to its limited free storage size, while other three options offer

sufficient storage size, with no fee. Although MySQL meets or exceeds the minimum

requirements for data storage, MySQL was not selected because it does not provide dashboards

that can be customized to satisfy the requirements for user interface, while both custom

69

dashboards of ThingSpeak and Cayenne offer a flexible way for users to manage and display

data through multiple widgets.

10.4 Evidence it works

ThingSpeak is the best option for data storage and user interface in the system design. The

calculation accuracy and stability of the heat flow rate by codes in MATLAB Analysis are tested

in section 3.0 in Verification & Validation. The test results indicate that the heat flow rate

calculated by the MATLAB Analysis codes is accurate, and the update interval of every thirty

minutes meets our requirements. In addition, section 2.0 in Verification & Validation indicates

that the timestamp received from microcontroller is correctly converted and stored into the

ThingSpeak with its corresponding impact counts. The email that is triggered to notify the user

that the accelerometer falling is also tested in section 3.0 in Verification & Validation, more

detailed testing results please see the Verification & Validation section.

70

11.0 Hardware

11.1 Hardware Enclosure

Figure 19: Current hardware design for the outside temperature sensor.

71

Figure 20: Current hardware design for the inside temperature sensor.

Since our device is susceptible to encountering conditions such as rain, someone dropping water

on it, wind and being hit by objects such as tree leaves, the device’s casing must be made secure

and able to withstand these conditions. To satisfy F5 requirement, the case is attached on the

windowsill using Velcro and is aligned in such a way that doesn’t compromise the holes in the

case to severe weather conditions according to NF5. The cases are printed using FDM (Fused

Deposition Modeling) technology using PLA plastic material.

11.1.1 Hardware Enclosure for inside

For our inside device, the Arduino and temperature sensors are placed in a 3D printed case with

adequate openings for wires coming in and out of the case. The case must be placed on a

windowsill and will be secured using Velcro that is going to be attached to the bottom of the

case. To satisfy our requirements (F5 and NF5), the case on the inside will have to satisfy an IP

rating of 2x or above. This will mean that the case must be protected against solid objects over

12mm (such as a finger).

72

11.1.2 Hardware Enclosure for outside

On the outside, the case is more prone to rain and random objects, such as leaves, hail or birds,

hitting it. This means that the outside case must have an outside rating of IP23 or higher which

entails that it should be secure enough to be protected against solid objects over 12mm (such as a

finger) and water spraying on it for 3 min for up to a 60-degree angle [36]. Again, the case is

printed using the same method and will contain the Dragino sensor with openings for wires (the

inputs and outputs of the system). The case for the outside will have 4 screw holes on the lid to

secure the lid. In addition, the case will have a seam where a rubber cable gland will be placed to

prevent water from going into the case. This rubber cable gland will be secured tightly when the

lid is tightened with the screws. The case also has a rubber gasket to allow wires to come out of

the case without compromising the case to water going in through the wholes. This is because

the gasket is tightened on the wires.

Velcro strip is attached to the bottom of the case. The case is attached to the window still to

make sure it does not fall off the sill. This also helps make sure that the case will withstand wind

and rain.

The chosen colors for the outside and inside modules will be white as certain studies show that

white and other bright colors are signs of danger for birds and other flying mammals. This means

that birds will try and avoid it meaning that the modules set on the windowsill inside and outside

are less prone to be directly hit by birds.

11.2 Battery Powered Option

11.2.1 Design Decisions

The bird collision detection system was designed to be self-sufficient, environmentally friendly,

and versatile by utilizing a lithium-ion battery with a capacity of 3.7V 3200mAh. Several factors

influenced this decision, with the primary focus being on compatibility, longevity, efficiency,

and flexibility in system placement.

11.2.2 Advantages

• Lithium-ion batteries possess a high energy density, ensuring that our compact system

has a long-lasting and reliable energy storage solution.

73

• They exhibit a relatively low self-discharge rate compared to other rechargeable batteries,

thus prolonging the system's operational time between recharges.

• Lithium-ion batteries experience minimal memory effects, preventing the loss of capacity

if they are not fully discharged before recharging.

• Being battery-powered allows the system to be placed on numerous windows, even those

not near a power outlet, providing increased flexibility and broader monitoring coverage.

11.2.3 Disadvantages

• Lithium-ion batteries can be temperature-sensitive, which could impact their performance

and lifespan in extreme environments.

• A dedicated charging circuit is often necessary to prevent overcharging and potential

damage.

11.2.4 Alternative Approaches

Although other battery types such as nickel-metal hydride (NiMH) or lead-acid could have been

considered, lithium-ion batteries were ultimately chosen due to their superior energy density,

favorable discharge characteristics, and the added advantage of flexible system placement.

11.2.5 Battery-Saving Design Decisions

• Scheduled Data Upload: The Arduino uploads data to ThingSpeak only once every 24

hours, reducing the frequency of wireless communication and conserving battery life.

• Optimized Fall Detection: Fall detection tasks are called every 5 minutes, as opposed to

continuous monitoring of the accelerometer, which reduces power consumption.

• Efficient Task Management: The system leverages FreeRTOS tasks to manage the

concurrent execution of tasks, ensuring minimal power consumption by running tasks

only when necessary.

11.2.6 Battery Life Calculation

Based on the battery life calculations (see Appendix XI), the system can run using a rechargeable

Lithium-ion battery (3.7V / 3200mah) for 4 days. This extended battery life has greatly increased

74

the system's versatility, allowing it to monitor a wide variety of windows without being

dependent on a wall outlet for power.

75

Verification & Validation
1.0 Temperature Communication System Verification

1.1 Purpose

The purpose of testing a temperature communication system is to evaluate its performance and

reliability in accurately measuring, transmitting, and receiving temperature data. This test

ensures that users are provided with accurate data on the thermal insulation performance of

windows, thereby facilitating the achievement of low-energy objectives in new building

construction. This test also ensures that ThingSpeak does in fact output the temperature

measurements and is able to calculate the heat flow rate accurately.

1.2 Equipment

Table 14: Temperature Communication System testing equipment.

Equipment

1 Dragino LHT65

2 Test window

3 Computer [Development tool]

1.3 Set up

1. Register the Dragino LHT65 in The Things Network V3 by using AppEUI, DevEUI and

the AppKey

2. Connect the external temperature sensor DS18B20 to the Dragino LHT65

3. Use ACT button to activate LHT65 and it will automatically join the TTN network

4. On TTN, replace downlink queue with the command “0xA201” to set external sensor

type to E1 Temperature Sensor to read the surface temperature data from DS18B20

5. On TTN, replace downlink queue with the command “0x01000708” = 1800 seconds to

change LoRaWAN End Node Transmit Interval to 30 minutes

6. Observe the uplink data message sent from LHT65 in the Live data section

7. Select the ThingSpeak in the Webhooks of the integrations section in the TTN

76

8. Input the ChannelId and Write API Key given in the API keys section of ThingSpeak

9. Go to the Payload formatters section of the End devices webpage in the TTN

10. Change the Formatter type to Custom JavaScript formatter

11. Copy the codes given in the type of Use Device Repository formatter

12. Add the commands to assign measured surface temperature data to the specified data

field in ThingSpeak

13. Open the data field used to collected data from TTN networks

14. Observe the measured temperature data in the Dashboard of ThingSpeak

1.4 Testing Tasks

The testing process involves evaluating the efficiency of the communication protocols and

interfaces used for data transmission, and analyzing the system's performance under varying

conditions, such as temperature ranges, environmental factors, and communication loads.

Table 15: Dragino-TTN and TTN-ThingSpeak Connection Results.

Task Result

1 Dragino LHT65 connection to TTN Pass

2 TTN sending data to ThingSpeak Pass

Criteria:

• Pass: connection success

• Fail: connection fail

1.5 Results

1.5.1 Task 1

Figure 21 illustrates the smooth communication between the Dragino LHT65 and TTN through

the LoRaWAN Network. The “TempC_DS” indicates the temperature in degree of the external

temperature sensor (Window surface temperature) and the “field 1” indicates the specified data

field connected in ThingSpeak. In the figure, it can be seen that both Dragino LHT65 sensors

send temperature data (Uplink Message) once every 30 minutes verifying that the connection is

in fact successful.

77

Figure 21: Dragino LHT65 sensor connection to TTN.

1.5.2 Task 2

Figure 22 depicts the connection status of the Dragino sensors with ThingSpeak. Both

connections use the LoRaWAN network to then pass through to TTN (The Things Network).

The connection is verified as the “Healthy” status indicates that the connection is established and

secured.

Figure 22: TTN webhook connection.

Figure 23: Two surface temperature data’s display on the dashboard of ThingSpeak.

The line charts the right side of Figure 23 illustrate the field 1 and field 2 in this ThingSpeak

channel is connected to two separate Dragino sensors. ThingSpeak receives two surface

temperature data packets every 30 minutes from TTN through the LoRaWAN Network. After

that, it displays their updated values and represent these received data in line chart on the

Dashboard of ThingSpeak.

The line charts on the right side of Figure 23 show historical stored data in the data fields 1 and 2

of the ThingSpeak channel. These two data fields receive surface temperature data every 30

minutes from The Things Network (TTN) via the LoRaWAN network. The updated values are

78

displayed and represented in a line chart on the ThingSpeak dashboard, which also satisfy the

requirement F8 for the user interface. This verifies that the data is read and stored on

ThingSpeak which can later be accessed by researchers for analysis.

2.0 Microcontroller FreeRTOS and data Communication System

Verification

2.1 Purpose

The goal of the testing is to assess FreeRTOS's ability to provide deterministic and reliable task

scheduling, meet real-time deadlines, manage system resources efficiently, and ensure overall

system stability and robustness.

2.2 Equipment

Table 16: Microcontroller testing equipment.

Equipment

1 Arduino MKR WiFi 1010

2 Test window

3 Development tool [IDE]

4 ThingSpeak Page

5 Accelerometer

6 Jumper wires

7 Duct seal putty

2.3 Set up

1. Connect the accelerometer to the Arduino MKR WiFi 1010

2. Fixing the accelerometer to the test window using duct seal putty

3. Connect the Arduino MKR WiFi 1010 to the computer

4. Verify the connections and ensure that the accelerometer is properly powered

5. Create a new test file for FreeRTOS in the Arduino IDE

6. Download any needed library

79

7. Complete the corresponding code for testing

8. Open the ThingSpeak webpage to ensure real-time data visualization

2.4 Testing Tasks

The testing process involves running FreeRTOS on a microcontroller, executing different tasks

with varying priorities and timing requirements, and measuring the system's performance in

terms of task scheduling, and context switching.

Table 17: Microcontroller testing tasks and result.

Test Result

1

Plan the execution sequence of the corresponding

threads and achieve the expected results in FreeRTOS

by setting different priority orders and delay time

Pass

2

Testing microcontroller's time data transmission

accuracy to ThingSpeak page during simulated bird

impact event on glass surface

Pass

3

Removing the accelerometer from the window to

simulate a fall and observing if the microcontroller can

detect the occurrence and send correspond information

to ThingSpeak

Pass

2.5 Results

2.5.1 Test 1

This is the conclusive outcome of Test 1, illustrating that FreeRTOS effectively and reliably

scheduled the various tasks as per our predetermined objectives. This attests to the stability and

dependability of FreeRTOS in the context of our project.

80

Figure 24: FreeRTOS Timing testing sequence case 1 result.

Figure 25: FreeRTOS Timing testing sequence case 2 result.

2.5.2 Test 2

The outcome of Test 2 demonstrates that under the coordination and scheduling of the

microcontroller and FreeRTOS, the bird impact events were accurately detected, recorded, and

transmitted to the backend of ThingSpeak. Figure 24 shows the initialization stage of the system,

which includes the initialization of Task 3 and 4, as well as the WiFi connection. Figure 25

displays the information of impact detection and timestamp logging.

81

Figure 26: Initialization of the system.

Figure 27: Detecting simulated bird collisions.

The data was sent to ThingSpeak after a 3-minute interval for faster result monitoring. Figure 28

illustrates the sending processes with three loops for collision time and total collision number.

Figure 29 displays how the data is shown on the user interface, accurately capturing impact count

and timing. The timing of the second collision shown on the user interface matches the detection

time printed on Figure 27. This validates the successful implementation of our system for

collecting and presenting bird impact data using FreeRTOS.

82

Figure 28: Sending data to ThingSpeak process.

Figure 29: ThingSpeak demonstration.

2.5.3 Test 3

The results of Test 3 indicate that our microcontroller successfully detected the fall of the

accelerometer and sent the information to ThingSpeak, as evident from the graph below. In

Figure 30, during the execution of Task 3, the microcontroller detected a Y-value of -0.15 for the

accelerometer, which is significantly lower than our threshold, indicating a fall event. In Figure

31 and Figure 32, we observed that Task 3 ran again after 5 minutes, detecting another fall event

and immediately suspending other tasks while sending information to ThingSpeak. When the

reset button was pressed, Task 2 and Task 3 were reactivated, followed by Task 1 after a delay of

5 seconds, as seen in Figure 32.

83

Figure 30: First Fall detection.

Figure 31: Second Fall detection.

Figure 32: After Reset button is pressed.

3.0 Verification of Codes in the ThingSpeak’s Built-in Analytics Tools

3.1 Purpose

The purpose of testing several codes programmed in the MATLAB Analysis which is the built-in

analytics tools of ThingSpeak. This section evaluates each code’s performance when ThingSpeak

interacts with multiple devices, including the microcontroller, The Things Network, and the

84

temperature webpage of the UBC ESB Rooftop Weather Station. The goal of the testing is to

ensure the accuracy and stability of codes developed in the MATLAB Analysis.

3.2 Equipment

Table 18: MATLAB Analysis Testing Equipment.

Equipment

1
MATLAB Analysis in

ThingSpeak

2
Dashboard Page of

ThingSpeak

3
Webpage of UBC ESB

Rooftop Weather Station

4 Mailbox

3.3 Tasks

The testing processing including running the codes of each task below and observing their

corresponding testing results to determine whether it is passed or not.

Table 19: Contents and Results of Tasks Testing.

Task Result

1
Test the calculation accuracy and stability of the heat

flow rate by codes in MATLAB Analysis
Pass

2
Test the conversion accuracy of the bird impact

timestamp by codes in MATLAB Analysis
Pass

3
Test the stability of the email notification of equipment

fall detection by codes in MATLAB Analysis

Pass

4

Test the stability and accuracy of codes that used to

collect the outside air temperature collection from the

UBC ESB Rooftop Weather Station website

Pass

3.4 Results

3.4.1 Task 1

From the Figure 23 in section 1.5 displays two surface temperature collected are 19.12°C and

19.18°C respectively. Using the equation provided in section 5.1 in Design, the heat flow rate

85

can be calculated, which is 0.028Watts. The calculation result is same with the heat flow rate

shown in the Figure 33 below. In addition, we can verify that the heat flow rate calculation is

updated every 30 minutes and displayed on the dashboard via the line graph in Figure 33.

Figure 33: Dashboard Display of Heat Flow Rate.

3.4.2 Task 2

By observing Figure 27 in the section 2.5, we can see the second impact is detected at the

timestamp of 18:35:52 2023/4/9. From Figure 29 it is clearly shown that the second impact is

stored with its correct timestamp Apr 09, 2023, 18:35:52, which means that the timestamp

received from microcontroller is correctly converted and stored into the ThingSpeak with its

corresponding impact counts.

3.4.3 Task 3

Figure 34 indicates that the accelerometer falling is detected at 18:56:51. After the fall

information is detected by the 5-minute recurring codes in MATLAB Analysis, an email

notification is sent to the user. Figure 35 shows the email contents and the time when the email

was sent out. The email just sends after the fall message is detected.

86

Figure 34: Dashboard Display of Fall Detection.

Figure 35: Notification Email Received.

3.4.4 Task 4

From the line chart on the Figure 36 below, it can be seen that ThingSpeak successfully retrieves

outside air temperature data from the website of UBC ESB Rooftop Weather Station every 30

minutes.

87

Figure 36: Dashboard Display of Outside Air Temperature.

Moreover, the temperature data accuracy is verified by comparing the temperature data in Figure

37 with the outside air temperature stored and displayed on the dashboard of ThingSpeak in

Figure 38. Both temperatures around 18:40 are 8.8°C, which indicates that the collection of

outside air temperature has very high accuracy.

88

Figure 37: Temperature Data from the UBC ESB Rooftop Weather Station.

Figure 38: Dashboard Display of Outside Air Temperature.

4.0 Hardware System

4.1 Purpose

The purpose of testing the 3D printed enclosures is to make sure that they are in fact waterproof

enough to prevent water from seeping into the cases in the weather conditions that the cases will

be put in. By conducting this testing, it can be ensured that the enclosures can be safely placed

outside of windows and will not fall when exposed to those conditions.

4.2 Set up for inside case

1. Put one side of Velcro on the bottom of the case

89

2. Put the other side of Velcro on the windowsill

3. Make sure the case is set up so that the holes for inputs and outputs are facing the

window surface instead of the inside of the room

4. Make sure the case is secured by pressing on it to make it stick tightly to the windowsill

5. Poke the case with a finger or any object around 12mm in diameter

6. Validate that the 12mm object is not making its way into the case

4.3 Set up for outside case

1. Put one side of Velcro on the bottom of the case

2. Put the other side of Velcro on the windowsill

3. Make sure the case is set up so that the holes for inputs and outputs are facing the

window surface instead of the inside of the outside

4. Make sure the case is secured by pressing on it to make it stick tightly to the windowsill

5. Poke the case with a finger or any object around 12mm in diameter

6. Validate that the 12mm object is not making its way into the case

7. Pour drops of water on the case using a syringe

8. Validate that water is not going into the case and that the Dragino sensor is dry

4.4 Equipment

Table 20: Testing Equipment.

Equipment

1 Velcro

2 Outside case

3 Inside case

4.5 Task Results

Table 21: Task Results.

Task Result

1
Test that 12mm object is not making its way into the

outside case
N/A

90

2
Test that 12mm object is not making its way into the

inside case
Pass

3
Test that drops of water are not going into the outside

case

N/A

4
Test that drops of water are not going into the inside

case

Pass

Due to a delay in the printing of the outside case, the testing has not been done to ensure

waterproofness. The waterproofness is expected to match an IP rating of x3.

91

References

[1] The University of British Columbia Campus + Community Planning, “Pathway to a Net

Positive Campus: UBC GREEN BUILDING ACTION PLAN.” 2018. Accessed: Oct. 16,

2022. [Online]. Available: https://planning.ubc.ca/sustainability/sustainability-action-

plans/green-building-action-plan

[2] C. Chaisson, “What Does ‘Bird-Safe Glass’ Even Mean?,” Audubon, Jul. 25, 2014.

https://www.audubon.org/news/what-does-bird-safe-glass-even-mean (accessed Oct. 13,

2022).

[3] S. Moreno-Garcia, “Bird’s-eye view - How UBC community members are flocking together

to bird-proof campus buildings,” Medium, Jan. 26, 2022. https://focus.science.ubc.ca/birds-

c2be73bc2f4f (accessed Jan. 23, 2023).

[4] Rainford Solutions, “IP Ratings & Standards Explained.”

https://rainfordsolutions.com/products/ingress-protection-ip-rated-enclosures/ip-enclosure-

ratings-standards-explained/ (accessed Jan. 23, 2023).

[5] M. Mayntz, “Landscaping Colors That Attract Birds to Your Yard,” The Spruce, Apr. 25,

2022. https://www.thespruce.com/colors-that-attract-birds-386400 (accessed Nov. 27, 2022).

[6] Time and Date AS, “Weather in University of British Columbia, British Columbia, Canada,”

timeanddate.com. https://www.timeanddate.com/weather/@7910029 (accessed Nov. 15,

2022).

[7] S. Chen, D. He, K. Morton, E. Xiong, and S. Vicentijevic, “CAPSTONE Group 062 Bird

Impact Detection System Design Document,” 2019.

https://open.library.ubc.ca/collections/18861/items/1.0387026

[8] K. Clocker, C. Hu, J. Roadman, R. Albertani, and M. L. Johnston, “Autonomous Sensor

System for Wind Turbine Blade Collision Detection,” IEEE Sensors Journal, vol. 22, no. 12,

pp. 11382–11392, Jun. 2022, doi: 10.1109/JSEN.2021.3081533.

[9] Adafruit, “ADXL343 - Triple-Axis Accelerometer (+-2g/4g/8g/16g) w/ I2C/SPI - STEMMA

QT / Qwiic.” Adafruit. Accessed: Apr. 11, 2023. [Online]. Available:

https://www.adafruit.com/product/4097

[10] K. L. De Groot, A. N. Porter, A. R. Norris, A. C. Huang, and R. Joy, “Year-round

monitoring at a Pacific coastal campus reveals similar winter and spring collision mortality

and high vulnerability of the Varied Thrush,” Ornithological Applications, vol. 123, no. 3, p.

duab027, Aug. 2021, doi: 10.1093/ornithapp/duab027.

[11] S. Hanly, “Accelerometer Specifications: Deciphering an Accelerometer’s Datasheet,”

enDAQ Blog. https://blog.endaq.com/accelerometer-specifications-decoding-a-datasheet

(accessed Nov. 28, 2022).

[12] Analog Devices, “ADXL343 | 3-Axis, ±2 g/±4 g/±8 g/±16 g Digital Accelerometer.”

Analog Devices. Accessed: Apr. 11, 2023. [Online]. Available:

https://www.analog.com/en/products/adxl343.html

[13] SparkFun Electronics, “H3LIS331DL - Accelerometer, 3 Axis Sensor Evaluation Board.”

Digi-Key Electronics. Accessed: Nov. 28, 2022. [Online]. Available:

https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538

[14] SparkFun Electronics, “LIS331HH MEMS, nano Accelerometer, 3 Axis Sensor

Evaluation Board.” Digi-Key Electronics. Accessed: Nov. 28, 2022. [Online]. Available:

https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799

92

[15] K. Tuck, “How Many Bits are Enough? The Trade-off Between High Resolution and

Low Power Using Oversampling Modes.” NXP Semiconductors, Sep. 2010. [Online].

Available: https://www.nxp.com/docs/en/application-note/AN4075.pdf

[16] Analog Devices Inc., “ADXL355 - Accelerometer, 3 Axis Sensor Evaluation Board.”

Digi-Key Electronics. Accessed: Apr. 11, 2023. [Online]. Available:

https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL355Z/6557295

[17] F. J, “10 Best Arduino Cameras,” Wonderful Engineering, Jul. 26, 2016.

https://wonderfulengineering.com/10-best-arduino-cameras/ (accessed Apr. 11, 2023).

[18] R. Keim, “The Nyquist–Shannon Theorem: Understanding Sampled Systems,” All About

Circuits, May 06, 2020. https://www.allaboutcircuits.com/technical-articles/nyquist-

shannon-theorem-understanding-sampled-systems/ (accessed Apr. 11, 2023).

[19] D. Jung and D. Park, “Real Time Sensor Signal Processing Techniques Using Symmetric

Dual-Bank Buffer on FreeRTOS,” in 2021 IEEE 3rd Global Conference on Life Sciences

and Technologies (LifeTech), 2021, pp. 331–332. doi:

10.1109/LifeTech52111.2021.9391911.

[20] F. Miao, R. Zhao, and X. Wang, “A New Method of Denoising of Vibration Signal and

Its Application,” Shock and Vibration, vol. 2020, p. 7587840, May 2020, doi:

10.1155/2020/7587840.

[21] Analog Devices, “Accelerometer Specifications - Quick Definitions.”

https://www.analog.com/en/products/landing-pages/001/accelerometer-specifications-

definitions.html (accessed Apr. 11, 2023).

[22] MathWorks, “Time-Frequency Analysis and Continuous Wavelet Transform,”

MathWorks Help Center. https://www.mathworks.com/help/wavelet/ug/time-frequency-

analysis-and-continuous-wavelet-transform.html (accessed Feb. 13, 2023).

[23] Arm Ltd., “CMSIS DSP Software Library,” CMSIS DSP Software Library Version

1.10.0, May 02, 2022. https://arm-software.github.io/CMSIS_5/DSP/html/index.html

(accessed Apr. 11, 2023).

[24] Arm Ltd., “CMSIS,” Common Microcontroller Software Interface Standard Version

5.9.0, May 02, 2022. https://arm-software.github.io/CMSIS_5/General/html/index.html

(accessed Apr. 11, 2023).

[25] MathWorks, “Calculate Channel Latencies Required for Wavelet Reconstruction,”

MathWorks Help Center. https://www.mathworks.com/help/dsp/ug/calculate-the-channel-

latencies-required-for-wavelet-reconstruction.html (accessed Apr. 11, 2023).

[26] Dragino Technology Co., Limited, “Dragino LHT65 Temperature & Humidity Sensor -

US/CAN - 915 MHz.” CalChip Connect. Accessed: Nov. 28, 2022. [Online]. Available:

https://www.calchipconnect.com/collections/dragino/products/dragino-lht65-temperature-

humidity-sensor

[27] “9 Arduino Compatible Temperature Sensors for Your Electronics Projects,”

RandomNerdTutorials.com. https://randomnerdtutorials.com/9-arduino-compatible-

temperature-sensors-for-your-electronics-projects/ (accessed Nov. 28, 2022).

[28] “LoRaWAN Temperature & Humidity Sensor, LHT65.” Dragino Technology Co.,

Limited. Accessed: Nov. 28, 2022. [Online]. Available:

https://cdn.shopify.com/s/files/1/0447/5633/6807/files/Datasheet_LHT65_LoRaWAN_Temp

erature_Humidity_Sensor.pdf?v=1629215041

93

[29] Arduino, “MKR 1000 WiFi Battery Life,” Arduino Documentation.

https://docs.arduino.cc/tutorials/mkr-1000-wifi/mkr-1000-battery-life (accessed Feb. 12,

2023).

[30] M. Davies, “How long can an Arduino run on a battery?,” Quora.

https://www.quora.com/How-long-can-an-Arduino-run-on-a-battery (accessed Feb. 11,

2023).

[31] Amazon Web Services, Inc. or its affiliates., “FreeRTOS FAQ - What is This All

About?,” freertos.org. https://www.freertos.org/FAQWhat.html#WhyUseRTOS (accessed

Apr. 10, 2023).

[32] MathWorks, “ThingSpeakTM.” [Online]. Available: https://thingspeak.com/

[33] myDevices, “Cayenne - The world’s first drag-and-drop IoT project builder.” myDevices.

Accessed: Nov. 28, 2022. [Online]. Available:

https://developers.mydevices.com/cayenne/features/

[34] MongoDB, Inc., “MongoDB.” MongoDB, Inc. Accessed: Feb. 13, 2023. [Online].

Available: https://www.mongodb.com/

[35] Oracle, “MySQL.” Oracle. Accessed: Feb. 13, 2023. [Online]. Available:

https://www.mysql.com/

[36] S. Green, “Guide to IP (Ingress Protection) Codes for Vehicle Electrical Components,”

The Waytek Blog, Oct. 22, 2021. https://info.waytekwire.com/blog/ip-code-2/ (accessed Feb.

12, 2023).

[37] Transport Canada, “Appendix 12.1 — Bird-impact Forces — The Physics,” May 2010.

https://tc.canada.ca/en/aviation/publications/sharing-skies-guide-management-wildlife-

hazards-tp-13549/appendix-121-bird-impact-forces-physics (accessed Nov. 28, 2022).

[38] “Golden-crowned Kinglet.” All About Birds. Accessed: Nov. 28, 2022. [Online].

Available: https://www.allaboutbirds.org/guide/Golden-crowned_Kinglet/id

[39] “Varied Thrush - Identification.” All About Birds. Accessed: Nov. 28, 2022. [Online].

Available: https://www.allaboutbirds.org/guide/Varied_Thrush/id

[40] “American Robin - Identification.” All About Birds. Accessed: Nov. 28, 2022. [Online].

Available: https://www.allaboutbirds.org/guide/American_Robin/id

[41] “Fox Sparrow - Identification.” All About Birds. Accessed: Nov. 28, 2022. [Online].

Available: https://www.allaboutbirds.org/guide/Fox_Sparrow/id

[42] “Dark-eyed Junco - Identification.” All About Birds. Accessed: Nov. 28, 2022. [Online].

Available: https://www.allaboutbirds.org/guide/Dark-eyed_Junco/id

[43] T. Alerstam, M. Rosén, Johan Bäckman, Per G. P Ericson, and O. Hellgren, “Flight

Speeds among Bird Species: Allometric and Phylogenetic Effects,” PLoS Biology, vol. 5, no.

8, p. e197, Jul. 2007.

[44] DIYI0T, “Arduino vs ESP8266 vs ESP32 Comparison,” DIYI0T.

https://diyi0t.com/technical-datasheet-microcontroller-comparison/ (accessed Nov. 28,

2022).

[45] “MongoDB vs MySQL,” Software Advice. https://www.softwareadvice.com/ca/database-

management-systems/mongodb-profile/vs/mysql/ (accessed Nov. 28, 2022).

[46] “MongoDB Pricing,” MongoDB. https://www.mongodb.com/pricing (accessed Nov. 28,

2022).

[47] MathWorks, “Student License,” ThingSpeak.

https://thingspeak.com/prices/thingspeak_student?license_name=Student&number_of_devic

es=10&intervals=2&interval_type=Minutes (accessed Feb. 13, 2023).

94

[48] “ThingSpeak,” Software Advice. https://www.softwareadvice.com/ca/bi/thingspeak-

profile/ (accessed Feb. 13, 2023).

[49] S. Majocchi, “Powering MKR WiFi 1010 with Batteries,” Arduino Documentation.

https://docs.arduino.cc/tutorials/mkr-wifi-1010/powering-with-batteries (accessed Feb. 12,

2023).

Revisions

Rev. Date

(DD/MM/YYYY)

Author(s) Change description

00 16/10/2022 Mohamed Salah Initial release.

01 22/11/2022 Huawen Li

Gengran Li

Ryotaro Hokao

Benjamin Powell

Mohamed Salah

Renamed 1.0 High-level Design Diagram

to 1.0 System Architecture.

Removed 2.0 Design Decisions.

Added the following sections:

• 2.0 Bird Collision

Detection

• 3.0 Temperature

o Microcontroller

• 5.0 Data Storage & UI

• 6.0 Next Steps

• References

• Appendices

02 13/02/2023 Huawen Li

Gengran Li

Ryotaro Hokao

Benjamin Powell

Mohamed Salah

Added the following sections:

• System Architecture

• 2.5 Detection Algorithm

Development

• 5.0 Communication

System

• 7.0 Hardware

03 11/04/2023 Huawen Li

Gengran Li

Ryotaro Hokao

Benjamin Powell

Mohamed Salah

Combined Requirements, Deliverables,

Design, and Verification and Validation

Documents.

Renamed 2.0 Bird Collision detection to

Detection System

Added the following sections:

• 3.0 Detection Algorithm

• Accelerometer Fall Detection

• 6.0 Outside Ambient Air

95

Temperature Detection

• 8.0 Task scheduling algorithm

04 11/05/2023 Ryotaro Hokao

Benjamin Powell

Fixed Table and Figure references.

Fixed Multi-level list, and section

references.

Fixed misspelled words.

Added Executive Summary.

Appendices

Appendix I: Report Contribution

Section Major content Minor content Author Reviewer

Requirements GL,HL GL,HL BP,RH,MS

Deliverables BP BP RH

System

Architecture

BP,RH

 BP HL,GL,RH,MS

Detection

System

RH BP,RH BP, MS

Temperature MS HL MS HL, BP, RH,

MS, GL

Microcontroller BP, GL BP,GL HL, BP, RH, MS

Task Scheduling

Algorithm

GL BP GL RH

Communication BP BP GL, RH, MS,HL

Data Storage &

UI

HL HL BP,GL,RH, MS

Hardware MS MS BP,MS RH, MS

V&V BP,RH,MS,GL,

HL

 MS,GL,HL BP,RH,MS,GL,

HL

96

Appendix II: Impact force estimation

This section outlines the process of estimating the impact force for bird-window collisions.

Impact force can be computed using the following formula: 𝐹 = 𝑚𝑣2/2𝑑 [37], where 𝑚 is the

mass of different bird species, 𝑣 is the velocity of bird, and 𝑑 is the distance over which impact is

delivered (length of the bird). Calculated force in Newtons can then be converted to g-force by:

𝐹/9.8.

As discussed in section 2.2.3, impact force is estimated for the following five bird species:

• Varied Thrush

• American Robin

• Fox Sparrow

• Darkeyed Junco

• Golden-Crowned Kinglet

Mass, length, and velocity data for each species are collected, and impact force is estimated.

Table 22: Mass, speed, and lengths data for each bird species [38]–[43].

Species Min mass [g] Max mass [g]
Min speed

[m/s]

Max speed

[m/s]

Min length

[cm]

Max length

[cm]

Varied Thrush 65 100 1 15 19 26

American

Robin
77 85 1 15 20 28

Fox Sparrow 26 44 1 15 15 19

Darkeyed

Junco
18 30 1 15 14 16

Golden-

Crowned

Kinglet

4 8 1 15 8 11

Table 23: Estimated minimum and maximum g-force for each bird species. The minimum and maximum g-force for

all five species are highlighted.

Species Min g-force [g] Max g-force [g]

Varied Thrush 0.01275510204 6.04189044

American Robin 0.01403061224 4.878826531

Fox Sparrow 0.006981740064 3.367346939

Darkeyed Junco 0.005739795918 2.459912536

Golden-Crowned Kinglet 0.00185528757 1.147959184

97

Appendix III: Complete list of accelerometer candidates

Table 24: Full list of accelerometer candidates.

Sensor candidates Price Sensor type Measurement range

[+/-g]

Sensitivity Operating

temperature [℃]

Operating voltage [V] Interface URL Notes

Adafruit Industries
LLC, ADXL345

Breakout Board

CA$25.76 Capacitive, Digital 2,4,8,16 selectable 31.2mg/LSB for +/-
16g

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d
etail/adafruit-industries-

llc/1231/4990764

Arduino library
available

DFRobot, ADXL345

Breakout Board

CA$11.63 Capacitive, Digital 2,4,8,16 selectable 31.2mg/LSB for +/-

16g

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/dfrobot/SEN0032/6588489

Arduino library

available

STMicroelectronics,

AIS3624DQ
Breakout Board

CA$23.49 Capacitive, Digital 6,12,24 selectable 5.9mg/LSB for +/-

12g

-40 to 105 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/stmicroelectronics/STEVAL-
MKI158V1/5180532

May arrive with I/O

pins soldered. No
library available

Analog Devices Inc.,
ADXL357

Evaluation Board

CA$67.08 Digital 10,20,40 selectable 0.039mg/LSB for +/-
20g

-40 to 125 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d
etail/analog-devices-inc/EVAL-

ADXL357Z/8554443

May arrive with I/O
pins soldered. No

library available

SparkFun

Electronics,

STMicroelectronics
H3LIS331DL

Evaluation Board

CA$19.87 Capacitive, Digital 100, 200, 400 selectable 49mg/LSB for +/-

100g

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/sparkfun-electronics/SEN-

14480/8032538

Arduino library

available

SparkFun

Electronics,
STMicroelectronics

LIS331HH

Evaluation Board

CA$21.86 Capacitive, Digital 6,12,24 selectable 6mg/LSB for +/- 12g -40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/sparkfun-electronics/SEN-
10345/5140799

Example firmware

for AVR
microcontroller

available

Adafruit Industries

LLC, ADXL343
Evaluation Board

CA$8.76 Capacitive, Digital 2,4,8,16 31.2mg/LSB for +/-

16g

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/adafruit-industries-
llc/4097/9951931

Arduino library

available

Senther Technology,
540C Embedded

Piezoelectric

Accelerometer

CA$55.85 Piezoelectric,
Analog

50 - 2000 40mV/g for +/- 50g -40 to 125 3.3V and 5V
compatible

Analog https://www.digikey.ca/en/products/d
etail/senther-

technology/540C/16634003

Decoupling capacitor
and other

components required.

Arduino needs to be
able to resolve the

measurement

Senther Technology,

540A Embedded
Piezoelectric

Accelerometer

CA$59.48 Piezoelectric,

Analog

500 5mV/g typical -55 to 150 3.3V and 5V

compatible

Analog https://www.digikey.ca/en/products/d

etail/senther-
technology/540A/13574361

Decoupling capacitor

and other
components required.

Arduino needs to be

able to resolve the
measurement

https://www.digikey.ca/en/products/detail/adafruit-industries-llc/1231/4990764
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/1231/4990764
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/1231/4990764
https://www.digikey.ca/en/products/detail/dfrobot/SEN0032/6588489
https://www.digikey.ca/en/products/detail/dfrobot/SEN0032/6588489
https://www.digikey.ca/en/products/detail/stmicroelectronics/STEVAL-MKI158V1/5180532
https://www.digikey.ca/en/products/detail/stmicroelectronics/STEVAL-MKI158V1/5180532
https://www.digikey.ca/en/products/detail/stmicroelectronics/STEVAL-MKI158V1/5180532
https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL357Z/8554443
https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL357Z/8554443
https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL357Z/8554443
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4097/9951931
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4097/9951931
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4097/9951931
https://www.digikey.ca/en/products/detail/senther-technology/540C/16634003
https://www.digikey.ca/en/products/detail/senther-technology/540C/16634003
https://www.digikey.ca/en/products/detail/senther-technology/540C/16634003
https://www.digikey.ca/en/products/detail/senther-technology/540A/13574361
https://www.digikey.ca/en/products/detail/senther-technology/540A/13574361
https://www.digikey.ca/en/products/detail/senther-technology/540A/13574361

98

Appendix IV: Complete Comparison Table of Microcontroller candidates

Table 25: Microcontroller Candidates vs. Imperative Criteria for Project Success [44].

 Arduino

Uno WiFi

Rev2

Raspberry

Pi 3

Model B+

Arduino

NANO 3

Arduino

Uno R3

Arduino

Mega

ESP32

NodeMCU

ESP8266

Thing

 Arduino MKR

WiFi 1010

Number /

type of I/O

(Digital)

14 26 14 14 54 36 17 14

Number I/O

pin (Analog)

6/0 9

8/0

6/0

16/0 15 16/0

7/1

Price (＄) 44.9 135 22 22 38.5 17.8 18.5 38.6

Size 69*35mm

85

*56mm

45*18mm 69*53mm 102*53mm 52*31mm 80*30mm 61.5*25mm

Programming

Language

C/C++/

Python

C/C++/

Python

C/C++

C/C++

C/C++

python python

C/C++

Bluetooth no yes no no no yes yes yes

USB yes yes yes yes yes yes yes yes

Temperature

Sensor

no no no no no yes yes no

WIFI

Availability

yes yes no no no yes yes yes

Flash

Memory

48KB [use flash

card]

32KB 32KB 256KB 4M 512KB 256KB

Power jack yes yes no yes yes no no [Has external

power jack

shell]

Weight 25g 50g 5g 25g 37g 10g 11g 32g

Processor

speed

20MHz 1.2Ghz 16MHz 16MHz 84MHz 80 MHz 160MHz 48MHz

Cayenne

Supported

Yes Yes No

No

No

Yes Yes Yes

99

ThingSpeak

Supported

Yes Yes No

No

No

No Yes Yes

Appendix V: Flash Memory Calculations

In this section, the process of determining the minimum flash memory capacity for the microcontroller is

discussed.

To begin with, the team utilized the code for the base detection system and tested it on the Arduino Uno WiFi Rev2

to assess its flash memory requirements. Considering that the flash memory capability of Arduino Uno WiFi Rev2

falls within the mid-range among the candidate microcontrollers, the amount of flash memory needed to run the

bird impact data detection system on Arduino Uno WiFi Rev2 was found to be 200% of its flash memory capacity.

This resulted in a minimum requirement of 96KB of flash memory for the entire detection system, calculated as

200% of 48KB [200% x 48KB =96KB]. The minimum flash memory requirement for the data transfer code was

determined to be 43.2KB. Hence, the total minimum flash memory capacity needed for the microcontroller was

determined to be 140KB.

Appendix VI: Sample Collected Data

100

101

Figure 39: Example of ThingSpeak data exported as a spreadsheet.

Appendix VII: Minimum Data Storage Calculation Process

102

Appendix VIII: Complete Comparison Table of Data Storage Candidates

Table 26: Data Storage Evaluation Comparison [7], [33], [45]–[48].

Feature Cayenne MongoDB MySQL ThingSpeak

Storage Size Unlimited 512GB Unlimited ~8200 messages/day

Data Segment

Length

Unlimited Unlimited Unlimited Unlimited

Unique Data

Segments

Unlimited Unlimited Unlimited ~8200 messages/day

Build-in Analytics

Tool

No Yes Yes Yes

Self-Contained

User Interface

Tool

Yes Yes No Yes

Deployments - Cloud, SaaS,

 Web-Based

-Desktop:

Windows,

 Mac, Linux

-Mobile: Android,

 iPhone

- Cloud, SaaS,

 Web-Based

-Desktop: Windows,

 Mac, Linux

-Mobile: not

 available

- Cloud, SaaS,

 Web-Based

-Desktop: Windows,

 Mac

-Mobile: not available

- Cloud, SaaS, Web-

Based

Appendix IX: User Interface Visualisation

103

104

Figure 40: ThingSpeak dashboard with counters and charts to visualize the collision count, heat flow rate, temperatures, and

accelerometer status.

Appendix X: Communication Protocols and Authorizations

Table 27: Definitions of varying types of communication protocols and authorizations.

HTTP (Hypertext Transfer Protocol)

An application protocol that enables the transfer of data over the internet. It is the foundation of data

communication for the World Wide Web and is used to fetch resources such as HTML files,

images, and videos from web servers to web browsers. HTTP runs on top of the TCP/IP network

protocol and generally uses port 80.

HTTPS (Hypertext Transfer Protocol Secure)

An extension of HTTP that provides security features such as data encryption and server

authentication. It operates on top of the SSL/TLS encryption protocol to ensure that data transmitted

between the client and server is secure and cannot be intercepted by third parties. HTTPS typically

uses port 443.

MQTT (Message Queuing Telemetry Transport)

A lightweight messaging protocol designed for use in constrained environments with limited

bandwidth and low computational power. It is commonly used in IoT applications where devices

need to communicate with each other and with servers. MQTT is ideal for machine-to-machine

(M2M) communication because it requires minimal network bandwidth, supports bi-directional

communication, and allows for disconnected operation. Its efficiency and scalability have made it a

popular choice for IoT applications, especially those involving sensors and remote devices.

IEEE 802.11

A set of standards for wireless local area networks (WLANs) developed by the Institute of

Electrical and Electronics Engineers (IEEE). The standards specify the physical and data link layer

protocols for wireless communication, ensuring that devices from different manufacturers can

interoperate with each other.

OAuth 2.0

An authorization protocol that enables third-party applications to obtain limited access to a user's

data on another web service without requiring the user's credentials. It provides a secure way to

access an API by using a token that represents the authorization granted to the application. OAuth

105

2.0 can be used with various types of APIs and is commonly used for social networking, digital

media, and cloud computing services.

API Key

A unique identifier that grants access to an API (Application Programming Interface) to an

application or user. It serves as a security measure by preventing unauthorized access and tracking

API usage. An API Key is usually included in API requests and is validated by the server to

determine if the request is authorized. It is commonly used for payment gateways, social

networking, and other web-based services.

LPWAN

LPWAN, or Low-Power Wide-Area Network, is a wireless communication protocol designed for

Internet of Things (IoT) devices. LPWAN allows for long-range communication with low power

consumption, making it ideal for IoT applications that require devices to operate for years on a

single battery charge. LPWAN protocols use unlicensed frequency bands and spread-spectrum

technology to transmit data wirelessly over long distances with minimal infrastructure requirements.

Appendix XI: Microcontroller Battery Charging Calculation

This section focuses on calculating the power consumption and battery charge life of the microcontroller when

running the required program. Based on research [30], [49], the WiFi connection is the key function of the Arduino

MKR WiFi 1010 board that impacts battery life: when linked to an access point and data transfer is in progress, it

consumes roughly 100mA [29]. If the WiFi NINA module is not in use, the microcontrollers continual running

tasks use roughly 20 mA at that time. Based on the battery life calculation equation:

Battery Life = (Battery Capacity)/(Average Current Consumption) *0.9

[The factor of 0.9 is used because it considers other factors that may affect battery life, such as ambient

temperature, cycling, and battery chemistry.]

On average, the WiFi module takes 1 minute to transfer information to ThingSpeak. The average number of times

it is used in a day is once, and the total time used is 1*1 = 1 minutes, which occupies 0.006944% of the time in a

day. Therefore, the average energy consumption for a day is 0.006944 % * 100mA + 99.305%*30mA = 20.04859

mA. Using our selected 3.7v 3200mAH lithium-ion battery, the microcontroller can be powered for up to [(3200 /

24) / (30.4859)] *0.9 = 6.648days.

Appendix XII: Ranking of Criteria for microcontroller

Table 28: Ranking of Criteria Points with respect to success of the project via requirements and constraints.

Criteria Importance

Number / type of I/O (Digital) High

106

WiFi Availability High

Flash Memory High

Number I/O pin (Analog) Mild-High

Power jack Mild-High

Price ($) Mild-High

Size Medium

Weight Medium

Processor speed Medium

USB Connection Low

Bluetooth Low

Programming Language Low

Integrated Temperature Sensor Low

Appendix XIII: Cayenne Information

Cayenne, a free data service platform provided by myDevices [33], was initially considered as the primary option

for data storage and user interface in our system. It meets or exceeds all our minimum requirements for data

storage and offers customizable dashboards to satisfy our user interface needs. Additionally, it supported data from

multiple microcontrollers and other hardware through unique identifiers and wireless networks. These were the

main reasons why we implemented Cayenne in the early stages of our system.

However, as we looked to simplify the system and reduce costs, we replaced Cayenne with ThingSpeak.

ThingSpeak was able to analyze the collected data using its built-in analytics tools, whereas Cayenne failed to

calculate the heat flow rate by sharing surface temperature data from two separate sensors. As a result, Cayenne

was not included in the final design of the system.

	Executive Summary
	Requirements
	1.0 Background and Outcome
	2.0 System Process Diagram
	3.0 Functional Requirement
	4.0 Non-Functional Requirement
	5.0 Constraints

	Deliverables
	Design
	1.0 System Architecture
	1.1 Hardware
	1.1.1 Introduction
	1.1.2 Microcontroller: Arduino MKR WiFi 1010
	1.1.3 Accelerometer: ADXL343
	1.1.4 Sensors: Dragino LHT65 and DS18B20 Thermocouples
	1.1.5 Power Options: Wall Outlet and Battery
	1.1.6 Hardware Enclosure

	1.2 Communications
	1.2.1 I2C Communication
	1.2.2 WiFi Communication
	1.2.3 LoRaWAN Communication
	1.2.4 Serial Communication

	1.3 Data Pathways
	1.3.5 Arduino MKR WiFi 1010 Data Pathway
	1.3.6 Dragino LHT65 Sensors Data Pathway
	1.3.7 Data Integration on ThingSpeak
	1.3.8 External Temperature Data Pathway

	1.4 State Transitioning and Tasks
	1.4.1 Idle Task
	1.4.2 Sampling Task
	1.4.3 Collision Detected Task
	1.4.4 Accelerometer Fall Detection Task
	1.4.5 Data Upload Task
	1.4.6 CPU and Kernel
	1.4.7 Task Selection
	1.4.8 Task Execution
	1.4.9 Task Interaction

	2.0 Detection System
	2.1 Summary of Previous Capstone Design
	2.2 Accelerometer
	2.2.1 Sensor Specification
	2.2.2 Sensor Type
	2.2.3 Measurement Range
	2.2.4 Detection Window Size
	2.2.5 Sensitivity
	2.2.6 Bandwidth
	2.2.7 Operating Voltage
	2.2.8 Operating Temperature
	2.2.9 Interface

	2.3 Limitations and Trade-offs
	2.4 Other Accelerometers Considered and Noise Estimation
	2.5 Other Sensor Technology Explored

	3.0 Detection Algorithm
	3.1 Analysis of Previous Capstone Design
	3.2 Detection Algorithm Design
	3.2.1 Sampling
	3.2.2 Pre-processing
	3.2.3 Processing
	3.2.4 Output

	3.3 Detection Algorithm Performance
	3.4 Limitations and Other Designs Explored

	4.0 Accelerometer Fall Detection Algorithm
	4.1 Algorithm and Functionality
	4.2 Design Decisions
	4.2.1 Design Considerations

	4.3 Advantages and Disadvantages
	4.3.1 Advantages
	4.3.2 Disadvantages

	4.4 Alternative Approaches

	5.0 Temperature
	5.1 Heat Flow Rate Measurement
	5.2 Other Candidates

	6.0 Outside Air Temperature Detection
	7.0 Microcontroller
	7.1 Significance and Function of Microcontrollers
	7.2 Microcontroller Decision
	7.3 Other Microcontroller Candidates and Screening Process
	7.3.1 Criteria 1: Digital Input Pins
	7.3.2 Criteria 2: WiFi and Database Connection
	7.3.3 Criteria 3: Flash Memory
	7.3.4 Criteria 4: Price and Power Socket

	8.0 Task Scheduling Algorithm
	8.1 System Context for Design and Architecture
	8.2 Design
	8.3 Alternative Design for Scheduling Algorithm
	8.4 Task Scheduling Performance
	8.5 Detail Explanation of FreeRTOS Operation
	8.5.1 Advantages of FreeRTOS
	8.5.2 Disadvantages of FreeRTOS
	8.5.3 Alternative Options

	9.0 Communication System
	9.1 WiFi for Arduino MKR WiFi 1010
	9.2 LoRaWAN for Dragino LHT65 Sensors
	9.3 MQTT for ThingSpeak Integration
	9.4 HTTP for External Temperature Data

	10.0 Data Storage and User Interface
	10.1 Significance to requirements
	10.2 Context with respect to system, design, architecture
	10.3 Design
	10.3.1 Design Decision
	10.3.2 Data Storage Design Consideration
	10.3.3 Minimum Specification Description for Data Storage
	10.3.4 User Interface Design Considerations
	10.3.5 Other Options Evaluated

	10.4 Evidence it works

	11.0 Hardware
	11.1 Hardware Enclosure
	11.1.1 Hardware Enclosure for inside
	11.1.2 Hardware Enclosure for outside

	11.2 Battery Powered Option
	11.2.1 Design Decisions
	11.2.2 Advantages
	11.2.3 Disadvantages
	11.2.4 Alternative Approaches
	11.2.5 Battery-Saving Design Decisions
	11.2.6 Battery Life Calculation

	Verification & Validation
	1.0 Temperature Communication System Verification
	1.1 Purpose
	1.2 Equipment
	1.3 Set up
	1.4 Testing Tasks
	1.5 Results
	1.5.1 Task 1
	1.5.2 Task 2

	2.0 Microcontroller FreeRTOS and data Communication System Verification
	2.1 Purpose
	2.2 Equipment
	2.3 Set up
	2.4 Testing Tasks
	2.5 Results
	2.5.1 Test 1
	2.5.2 Test 2
	2.5.3 Test 3

	3.0 Verification of Codes in the ThingSpeak’s Built-in Analytics Tools
	3.1 Purpose
	3.2 Equipment
	3.3 Tasks
	3.4 Results
	3.4.1 Task 1
	3.4.2 Task 2
	3.4.3 Task 3
	3.4.4 Task 4

	4.0 Hardware System
	4.1 Purpose
	4.2 Set up for inside case
	4.3 Set up for outside case
	4.4 Equipment
	4.5 Task Results

	References
	Revisions
	Appendices
	Appendix I : Report Contribution
	Appendix II : Impact force estimation
	Appendix III : Complete list of accelerometer candidates
	Appendix IV : Complete Comparison Table of Microcontroller candidates
	Appendix V : Flash Memory Calculations
	Appendix VI : Sample Collected Data
	Appendix VII : Minimum Data Storage Calculation Process
	Appendix VIII : Complete Comparison Table of Data Storage Candidates
	Appendix IX : User Interface Visualisation
	Appendix X : Communication Protocols and Authorizations
	Appendix XI : Microcontroller Battery Charging Calculation
	Appendix XII : Ranking of Criteria for microcontroller
	Appendix XIII : Cayenne Information

