
    

 

 

 

 

 

Capstone Project 68: Designing Window Sensors  
to Advance Bird- Friendly and Energy Saving Building 

Design Strategies on UBC Vancouver Campus 
   

 

Prepared by: Huawen Li, Gengran Li, Ryotaro Hokao, Benjamin Powell, Mohamed Salah 

Prepared for: UBC Campus and Community Planning 

Course Code: ELEC 491 

University of British Columbia   

Date: 27 April 2023 
 

 

 

  
 

Disclaimer: “UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, 
as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that 
this is a student research project and is not an official document of UBC. Furthermore, readers should bear in mind that 
these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned 
in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a report”. 

 

University of British Columbia  

Social Ecological Economic Development Studies (SEEDS) Sustainability Program  

Student Research Report 



2 

   

 

Executive Summary 

Bird collisions with windows represent a growing environmental concern, as one of the leading 

causes of human-related bird mortality. The consequences of these collisions extend beyond the 

immediate loss of individual birds; they also pose a threat to overall biodiversity and ecosystem 

health. To address this issue, our engineering capstone project aims to develop a comprehensive 

system that detects bird collisions while also calculating the heat flow rate of windows. This 

project builds upon the past capstone project design that performs the bird collision detection 

using an accelerometer and Arduino.  

The motivations behind this project stem from the need to better understand and mitigate bird 

collisions, as well as to improve the energy efficiency of buildings. By providing researchers and 

building managers with valuable data on the frequency and circumstances of bird collisions, we 

aim to contribute to the development of targeted strategies and solutions that can reduce bird 

mortality rates and protect biodiversity. Additionally, by analyzing the energy efficiency of 

windows via heat flow rate, our project can inform decisions about building design and 

materials, potentially leading to more energy-efficient and environmentally friendly construction 

practices.  

Our proposed monitoring system consists of:   

1. Collision Detection: accelerometer attached to the window to measure the window 

vibration. Data is sent to the Arduino for analysis.  

2. Temperature: two Dragino LHT65 temperature sensors to measure the inside/outside 

surface temperatures of a window. Surface temperatures are transmitted to ThingSpeak 

via LoRaWAN, and used for heat flow rate calculation.  

3. Microcontroller: Arduino MKR WiFi 1010 to analyze and infer a collision from the 

accelerometer data. It also monitors whether the accelerometer has fallen from the 

window. Once a collision is detected, or when the accelerometer falls, relevant data is 

transmitted to ThingSpeak via WiFi. Multiple tasks are managed by FreeRTOS.  

4. ThingSpeak: a cloud-based database and user-configurable dashboard to monitor 

relevant data. Data received from Arduino and Dragino sensors are processed and 

automatically displayed. In case of accelerometer falling, ThingSpeak sends an email 



3 

   

 

notification. Users can also input the U-Value and the dimension of the window, allowing 

the system to compute the heat flow rate.  

5. Hardware: two 3D printed enclosures. One of them is designed to be weather resistant, 

and is for outdoor use.   

Researchers and other users can view not only the collision data and heat flow rate, but also other 

environmental data such as outside air temperature and the time of the collision on ThingSpeak. 

This information can be invaluable for understanding the factors that contribute to collisions and 

developing effective mitigation strategies, to potentially identify patterns and correlations with 

bird collisions.  

This iteration of the project adds more functionalities to the previous design, with increased cost 

and size to the previous design. Our design, however, takes a modular design approach; 

depending on the users’ needs (i.e., monitoring bird collision, or measuring heat flow rate), they 

can choose to purchase only the components required for their use case. Throughout this 

document, the alternative approaches and recommendations are discussed for future 

improvements.  
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Requirements 
1.0 Background and Outcome 

Through the release of the Green Building Action Plan (GBAP) in 2018 and climate action plan 

2030 that addresses climate change and biodiversity, University of British Columbia (UBC) is 

continually working on building a green sustainable environment among the campus. The goal of 

these plans is that by 2035, all newly constructed and rebuilt buildings on the UBC campus will 

achieve high performance through meeting low cost, low energy consumption, and low 

environmental emissions requirements [1]. Most importantly, those buildings should also avoid 

and cut back on environmental control and costs related to natural health deterioration. For this 

ambitious goal to be successful in safeguarding campus ecology, and encouraging energy 

balance, bird-friendly building design is a crucial element. According to a study by UBC [1], 

more than 10,000 birds perish each year by colliding windows because they cannot perceive 

translucent glass as solid [2].  In response to the GBAPs request as well as to maintain bird 

species number, UBC Social Ecological Environment Development Studies (SEEDS) and Green 

Building Manager have begun looking into solutions to lessen the number of fatalities caused by 

bird impacts on windows. In 2019, a student team in UBC had already thought about and created 

a basic model for this issue. However, the previous bird strike monitor model which can only 

keep track of the time and number of impacts is no longer an efficient way to monitor the data. In 

this project, the bird strike monitor will be redesigned to allow UBC green building researchers 

to better collect and visualize bird strike data and analyze sustainable factors such as heat 

transfer and insulation of windows. 

The final design can accurately count collisions and provide associated details of each incident, 

including season, location, temperature inside and outside, time and date of collision occurrence. 

Data mentioned above enables UBC green building researchers to identify potential causes 

behind bird strikes and examine the efficacy of various window treatments when designing bird 

friendly window treatments or choosing glazing materials. Furthermore, the heat transfer through 

a glass window is calculated from temperature data collected, which assists green building 

researchers to assess the thermal insulation of various glazing materials [Different window 

glazing has different factors that influence the heat mitigation measurement] for better energy 
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savings. UBC green building researchers therefore could create more thorough strategies for the 

protection and conservation of bird populations. Improved bird friendly strategies enlighten 

green building managers and UBC building developers for challenges arising from compliance 

with the GBAP, the UBC Climate Action Plan 2030 (CAP 2030) and Bird Friendly Building 

Design Guideline. Parts of these strategies such as examination results of bird friendly window 

treatments and the thermal insulation of various glazing materials offers UBC building 

developers practical guidance window design and glazing materials selection. Moreover, an 

online database with a researcher-friendly interface is provided for multiple researchers to 

operate and export data without assistance. In short, this design will not only provide reliable and 

accurate data for researchers to build better bird-friendly strategies, but also helps provide 

practical guidelines for building developers and managers.  

2.0 System Process Diagram 

This system's flowchart clearly demonstrates how the complete bird strike monitor model 

operates and how it interacts with researchers. 
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Figure 1: System Operation Flowchart. 

The system collects data from various sensors placed on the windows and processes it uses a 

central processor. The processed data, including bird impact-related information, as well as 

window insulation performance data, is then sent to the backend of the user interface. The 

backend further processes the data with accuracy and transmits it to the frontend for display to 

the user. This enables users to conveniently and efficiently observe and record data, facilitating 

further research and implementation of GBAP measures for bird conservation. 

3.0 Functional Requirement 

Functional requirements which include the services, capabilities or functions delivered by the 

product, are identified as follows: 

F1: The system must detect collisions with windows and infer whether it is a false-positive 

collision based on calculated force and frequency metrics of the collision. 
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F2: The system must record the cumulative number of birds strikes along with the time of day, 

season, and date at which the strikes occurred1 [3]. 

F3: The system must record the latitude and longitude of the building that window placed.   

F4: The system must record the data packet for the fall detection. 

F5: The system must record the surface temperature of the window inside and outside. 

F6: The system must record the air temperature outside of the building. 

F7: The device must have the ability to secure itself to the window and no part of the device can 

be left unattached to, or separated from, the window under normal operation and avoid dropping 

in adverse weather conditions.  

F8:  The user interface must graphically display stored data. 

F9:  The user interface must export historical data from the database to the user's computer as a 

file. 

F10:  The system must alert the user in the case of the accelerometer falling from its attached 

position on the selected window.  

4.0 Non-Functional Requirement  

Non-functional requirements which include the quality attributes the product needs to exhibit 

(the “ilities”: reliability, security, portability, interoperability) are identified as follows: 

NF1: The accuracy of bird strike detection must be higher than 95%. (Using simulated bird 

strikes.) 

NF2: The calculation error of the heat flux2 should be within ±0.001 𝑊𝑎𝑡𝑡𝑠/𝑚2  

 
1 According to the UBC science faculty research, 19 bird strike fatalities occur every 225 days in one building on the 

Vancouver campus. 

2 |𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  −  𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒| / 𝑅 𝑣𝑎𝑙𝑢𝑒 
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NF3: The measurement error of the window’s surface temperature and air temperature must be 

within ±2°C.  

NF4: The data recording must be fully functional for a minimum of 30 days before requiring 

maintenance. 

NF5: The outside part of the device must be waterproof to avoid water ingress in the event of 

rain. Reach the IP standard IP33 [4].   

NF6: The device must not have color or shape features that attract bird species and/or other 

animals [5].                                                                                                                                      

NF7: The database must have sufficient storage size to store at least 10 bird impact events per 

day. 

NF8: The temperature sensors should measure the temperature per hour.  

5.0 Constraints  

Constraints which identify conditions the product must meet in terms of how it is implemented 

are identified as follows: 

C1:  The whole project cost (including hardware, software, and auxiliary supplies) should be 

under $1803. 

C2: Materials chosen for the device must withstand the operating temperature of between -20°C 

~ 40°C. (±6°C based on maximum and minimum temperatures of the past year) [6].   

C3: The device must operate on a wireless network. 

C4:  The device should support both battery charging and wall outlet 120VAC charging 

methods. 

 
3 Because many of these devices may be required by researchers in the future. For several of the model to be used 

for bird strike monitoring, the cost option needs to pick the most affordable one in order to maintain the overall cost 

within the researcher's means. [Database must be free for the user.] 
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C5: The external and internal hardware design should be within 15cm x 6cm x 6cm dimensions 

to achieve a compact design. 

C6: The weight of the entire hardware design (Both external and internal) should be within the 

200 g.  

C7: The system must function on a window with dimension 80cm x 50cm. Bird collision 

detection model must work on typical windows on the UBC campus. 
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Deliverables 

The Table below lists the deliverables that will be submitted at the end of the project, agreed 

upon between the clients and the project group.  

Table 1: List of Deliverables: Hardware, Software, and Documents. 

Item Description 

Hardware 

Device • Detect collisions with windows  

• Record the collision vibration metrics via an accelerometer 

• Infer whether the collision is a bird strike or a false-positive 

• Detect accelerometer falling from position on window 

• Record: 

o the location of the bird strikes (by location of the 

placed hardware component) 

o the time, day, and date of the bird strikes 

o the temperature: 

▪ inside surface temperature of the window being 

monitored 

▪ outside surface temperature of the window 

being monitored 

• Periodically upload recorded data to cloud repository, through 

UBC’s visitor WiFi 

• Immediately upload accelerometer-fall and notify the user 

Software 

Cloud Repository • Display all constituents of received data (time of day, 

temperatures, etc.) 

• Retrieve outside ambient temperature from weather website 

• Allow U-Value and Window dimension input  

• Calculate Heat Flow Rate 

• Allow the user to aggregate selected groups of recorded data 

into a covarying table representation 

• Visually represented the data, in the form of co-varying 

histograms (i.e., strikes vs time of day). 

• Allow the user to export all data, formatted, off the cloud, to 

the working computer that is accessing the repository.  

Documents 
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Key documents • Verification and Validation Document 

• Requirements Document 

• Design Document 

• Presentation Slides 

User Manual • Installation of hardware component 

• Connecting hardware component to cloud repository 

• Traversal of cloud repository features 

CAD files • Computer aided design files for designs of the 3D printed 

hardware model encapsulation 

Blueprints • Engineering drawings of entire device assembly 

o Arduino 

o Temperature Sensors 

o Vibration Sensors and attachment to window 

o Power Supply 

o 3D-printed case attachment to windowsill 

o 3D-printed case enclosure 

Bill of materials • Parts list 

• Manufacturer 

• Quantity of each part 

• Price of eat part 

Capstone Video • Video explaining project/problem and our solution 
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Design 

1.0 System Architecture 

1.1 Hardware 

1.1.1 Introduction 

In this section, we will discuss the various hardware components used in the bird detection 

system, their roles, and their integration to form a fully functioning system. The system is 

comprised of an Arduino MKR WiFi 1010 microcontroller, an ADXL343 accelerometer, two 

Dragino LHT65 sensors, two DS18B20 thermocouples, two 3D printed hardware enclosures, and 

a power cable (or lithium-ion battery). Figure 2 illustrates the setup of the system.  
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Figure 2: Hardware System Setup  

1.1.2 Microcontroller: Arduino MKR WiFi 1010 

The Arduino MKR WiFi 1010 serves as the central processing unit for the bird detection system.  

It is responsible for processing data from the ADXL343 accelerometer, as well as handling 

communication with the ThingSpeak platform for bird collision uploading.  
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1.1.3 Accelerometer: ADXL343 

The ADXL343 accelerometer is responsible for taking samples of vibration signals collected 

from the window it is attached to. The ADXL343 is a digital accelerometer, handling the analog-

to-digital conversion itself. The ADXL343 communicates with the Arduino MKR WiFi 1010, 

sending vibrational data for further processing. 

1.1.4 Sensors: Dragino LHT65 and DS18B20 Thermocouples 

The system uses two Dragino LHT65 sensors and two DS18B20 thermocouples to measure the 

surface temperatures of the windows. These sensors communicate this data to ThingSpeak 

through their built-in LoRaWAN modules, providing the necessary data for calculating heat flow 

rates across windows. 

1.1.5 Power Options: Wall Outlet and Battery 

The bird detection system can be powered in two ways: through a wall outlet or a battery. When 

powered by a wall outlet, the system has a continuous power supply, ensuring uninterrupted 

operation. Alternatively, the system can be powered by a 3.7V 3200mAh lithium-ion battery, 

allowing for up to four days of operation without recharging. This versatility allows for the 

system to be deployed in various locations without being constrained by the availability of power 

outlets. 

1.1.6 Hardware Enclosure 

The system has two 3D printed enclosures. They are printed using FDM technology to ensure 

robustness and being able to withstand pressure.  

1.2 Communications 

In this section, we will discuss the communication aspects of the bird collision detection system 

and heat flow monitoring system within the context of the System Architecture (see section 9.0 

for a more detailed overview). Efficient and reliable communication between the various 

hardware components and the cloud platform (ThingSpeak) is essential for meeting functional 

requirements F2 and F3, and constraint C3. The system utilizes different communication 

technologies and protocols to achieve this goal: 
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1.2.1 I2C Communication 

The connection between the Arduino MKR WiFi 1010 and the accelerometer relies on the I2C 

communication protocol. This protocol enables a simple, two-wire interface for exchanging data 

between the devices, allowing the Arduino to receive vibration data from the accelerometer. 

1.2.2 WiFi Communication 

The Arduino MKR WiFi 1010 is equipped with built-in WiFi capabilities, enabling wireless 

communication with the ThingSpeak platform. The WiFi communication allows the Arduino to 

transmit bird collision data to ThingSpeak for further analysis and visualization. 

1.2.3 LoRaWAN Communication 

The Dragino LHT65 temperature sensors utilize LoRaWAN technology for long-range, low-

power communication. This technology allows the temperature sensors to transmit data over a 

wide area while consuming minimal power. The transmitted data is received by a LoRaWAN 

gateway, which then forwards the data to The Things Network (TTN). TTN processes the data 

and forwards it to ThingSpeak for further analysis and visualization. 

1.2.4 Serial Communication 

The Arduino communicates with the user's computer via a USB connection, employing serial 

communication for debugging and configuration purposes. This connection enables the user to 

monitor the system's operation, upload new firmware, or modify existing configurations as 

needed. 
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Figure 3: System Data Pathway Flowchart 

Figure 3 illustrates the flow of data between various components for both the Arduino MKR 

WiFi 1010 and the Dragino LHT65 sensors in the overall system. Each section is assigned a 

different color to help visually distinguish the various components of the system.  

1.3 Data Pathways 

In this section, we will go over the specific data pathways of the components within our system, 

including the Arduino, Dragino sensors, and external data sources. 

1.3.5 Arduino MKR WiFi 1010 Data Pathway 

The data pathway for the Arduino MKR WiFi 1010 with an attached accelerometer involves the 

sampling of data to detect bird collisions on the window. When a collision or fall is detected, the 

Arduino processes the data and sends the relevant information to ThingSpeak over WiFi for 

further analysis and visualization. 
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1.3.6 Dragino LHT65 Sensors Data Pathway 

The data pathway for the two Dragino LHT65 sensors, responsible for measuring the surface 

temperature of the window's inside and outside surfaces, involves communication with the 

LoRaWAN network. The network transmits the temperature data to The Things Network (TTN), 

which then forwards the data to ThingSpeak. 

1.3.7 Data Integration on ThingSpeak 

The data pathways for the Arduino MKR WiFi 1010 and the Dragino LHT65 sensors converge 

at ThingSpeak, where the platform consolidates and visualizes the information. This allows users 

to view detected bird collisions, input window-specific parameters, and analyze the heat flow 

rate through the window. 

1.3.8 External Temperature Data Pathway 

The data pathway for the ambient air temperature outside the building is fetched from a weather 

report website (weather.eos.ubc.ca). A ThingSpeak MATLAB-script is used to retrieve this data, 

where it is then integrated with the data from the Arduino and Dragino sensors.  

1.4 State Transitioning and Tasks 

In the bird collision detection system, we leverage the capabilities of FreeRTOS to replicate 

concurrent threading, ensuring that multiple tasks run seamlessly and efficiently.  

FreeRTOS is an open-source real-time operating system designed specifically for 

microcontrollers, such as the Arduino MKR WiFi 1010 used in this project. The operating 

system allows for the efficient scheduling and management of tasks, providing a framework for 

handling real-time events and system states. By assigning priorities to the various tasks involved 

in our system, we effectively manage the execution of these tasks concurrently, allowing for a 

seamless transition between states. High-priority tasks, such as collision sampling, are given 

precedence over lower-priority tasks, such as idle waiting.  

In the following section, we will discuss the task scheduling model for our bird collision 

detection system, detailing the different tasks the system executes, their functionalities, and their 

priorities.  
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Figure 4: Kernel Task Selector. 

Figure 4 illustrates the interaction between the CPU, the kernel, and the five tasks in our bird 

collision detection system. The diagram aims to provide an overview of how tasks are selected 

and executed by the CPU, with the help of the kernel. 

1.4.1 Idle Task 

The Idle Task is the lowest priority task that runs when no other tasks are being executed. It is 

executed at the beginning of the system start-up, before any sampling starts, and serves as a 

default state during the running of the system when other tasks are not active. 
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1.4.2 Sampling Task 

The Sampling Task is the highest-priority task that samples the accelerometer at a fixed sampling 

frequency. It is designed to run concurrently with other tasks, allowing the system to maintain 

data collection even during the execution of other tasks. 

1.4.3 Collision Detected Task 

This task is called every 256 samples and is responsible for checking the collected samples for 

possible collisions using the collision detection algorithm. If a collision is detected, the task 

updates the collision-array with the time of the collision and then terminates. It runs concurrently 

with the Sampling Task, ensuring continuous data collection even while processing collision 

events. 

1.4.4 Accelerometer Fall Detection Task 

The kernel executes this task every 5 minutes, checking for a fall. The y-axis of the 

accelerometer is checked against a threshold. If the y-axis value surpasses the threshold, the 

system suspends all other tasks and calls the Uploading Task to email the client about the fallen 

accelerometer. It then waits for the reset button to be pressed before allowing other tasks to 

resume. If no fall is detected, this task terminates, until called again.  

1.4.5 Data Upload Task 

The Uploading Task is called every 24 hours to upload the collision data stored in the collision 

array. It is also called when the Fall Detection Task detects a fallen accelerometer; emailing the 

client that the accelerometer has fallen from the window.  

1.4.6 CPU and Kernel 

At the core of the system is the CPU, responsible for executing tasks, and the kernel, which 

manages the tasks and their scheduling. The kernel plays a crucial role in coordinating the 

operation of all tasks, ensuring that they are executed in the correct order and with the right 

priority. 
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1.4.7 Task Selection 

 The kernel determines which task should be executed next. The task scheduler considers the 

priority and state of each task and selects the highest-priority task that is ready to run. This 

ensures that high-priority tasks, such as the sampling task, are executed at the correct sampling 

frequency and with minimal delay. 

1.4.8 Task Execution 

 Once a task has been selected, the CPU executes the task according to its corresponding 

instructions. During the execution, the task may transition between different states, such as 

running, waiting, or suspended, depending on the task requirements. 

1.4.9 Task Interaction 

 Figure 4 also highlights the relationships and dependencies between the five tasks: idle, 

sampling, collision detection, fall detection, and uploading. These tasks interact with each other 

through shared resources, inter-task communication, and synchronization mechanisms provided 

by the kernel. 

2.0 Detection System 

Bird collision detection subsystem is comprised of two components: sensor and detection 

algorithm. When a bird-window collision occurs, the impact force imparted by the bird causes a 

vibration across the window panel. As shown in Figure 2, the sensor picks up the vibration, and 

transmits signal to the microcontroller. On the microcontroller, the received signal is processed 

through the detection algorithm to check if the impact is indeed a bird collision, or if it is a false 

positive (e.g., tree branches, human, or random objects hitting a window). Functional 

requirement F1, and non-functional requirement NF1 capture the goal of bird collision detection 

system. See Requirements section for details.   

Section 2.2 summarizes the accelerometer sensor used for collision detection. The following 

section 3.0 summarizes the developed detection algorithm that utilizes the wavelet denoising and 

a simple score-based detection logic.  
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2.1 Summary of Previous Capstone Design 

As a starting point, the detection system design used by the previous Capstone team is reviewed  

[7]. Table 2 summarizes the key design choices made by the previous Capstone team.  

Table 2: Summary of bird collision detection system by the previous Capstone team. 

Sensor 

Sensor Type 3-axis analog accelerometer (only 1 axis data used) 

Sensor Cost $16 

Sensor Placement Attached to a window with duct putty 

Sensor Location Minimum 7.26cm (3inches) away from window frames 

Detection Window Size Undefined or undocumented 

Detection algorithm 

Data Processing Methodology Voltage thresholding, Frequency peak check, and impact 

duration check 

2.2 Accelerometer 

This section summarizes the sensor selected for collision detection.  

2.2.1 Sensor Specification 

The following table summarizes the minimum design specification identified based on 

preliminary research and testing, and the finalized sensor specification. Details and justifications 

are provided below.  

Table 3: Specification for a sensor used in bird collision detection. 

Criteria Design specification Adafruit Industries LLC, 

ADXL343 Evaluation Board 

Sensor Type 3-axis accelerometer 3-axis MEMS accelerometer 

(only 1 axis data used for 

collision detection) 

Sensor Cost  $8.72 

Measurement Range 

(g-force) 
Minimum ±15𝑔 ±16𝑔  



26 

   

 

Detection Window Size TBD Tested on 180cm by 80cm 

window 

Sensitivity TBD 3.9𝑚𝑔/𝐿𝑆𝐵  

Bandwidth Cover 0-250Hz range 200Hz (up to 1.6kHz) 

Operating Voltage 3.3V or 5V 3.3V 

Operating Temperature -20 to 40 degrees Celsius -40 to 85 degrees Celsius  

Interface Analog or digital Digital (Connected via I2C) 

2.2.2 Sensor Type 

Accelerometers are chosen over other types of sensor technology (refer to section 2.5 for other 

sensors considered). Accelerometers are relatively low cost compared to other sensor types and 

are often deployed in collision detection applications [8].  

Just like the previous Capstone design, one axis data is used for collision detection (see section 

3.0 for more details on detection algorithm). Additionally, another axis data is used for fall 

detection of the accelerometer as described in section 4.0. Although this still leaves one axis not 

being used, a 3-axis accelerometer is used as two-axis accelerometers are less common on the 

market, and cost more than a typical 3-axis accelerometers.  

Among other accelerometer options, ADXL343 Evaluation Board is selected for its 1) lowest 

cost of CA$8.72, and 2) lowest RMS noise performance of ~6.7989𝑚𝑔. See section 2.4 for 

other accelerometers considered. Evaluation board (or breakout board) is a small PCB that 

contains the accelerometer chip, and components such as resistors and capacitors required for 

signal conditioning and/or for communication. Many commercial evaluation boards, including 

ADXL343 Evaluation Board, come tested at the factory [9]. The use of evaluation board saves 

substantial development time and cost to design a PCB and validate the accelerometer 

functionalities.  

2.2.3 Measurement Range 

Measurement range refers to a range of acceleration a particular accelerometer is designed to 

reliably measure. It is expressed in g-force where 1g is equivalent to Earth’s gravity (1𝑔 =

 9.81𝑚/𝑠2).  
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To determine the measurement range required for our application, the g-force imparted by birds 

upon collision is estimated. The previous Capstone team has identified Golden-crowned kinglet 

as a bird species affected by the window collisions and estimated the impact g-force using 

kinglet data [7].  

According to the study conducted by De Groot et al., however, the following five bird species 

had the highest number of bird collisions throughout their 225-day study period, January 2015 to 

March 2017 [10]: 

1. Varied Thrush 

2. American Robin 

3. Fox Sparrow 

4. Darkeyed Junco 

5. Golden-Crowned Kinglet 

Impact g-forces are therefore estimated for these five species. See Appendix II for more details. 

Based on the estimation, the minimum measurement range required for our application is ±3𝑔, 

which is the same as the previous Capstone design. However, enDAQ Blog suggests a margin 

that is 5x larger than the minimum specification, so ±15𝑔 is used to provide margins around the 

estimated measurement range [11].  

As shown in Table 3, ADXL343 accelerometer is capable of measuring ±16𝑔 range.  

2.2.4 Detection Window Size 

The previous Capstone team did not define or document the maximum window size their design 

can operate. Various window sizes are identified across UBC Vancouver campus buildings. 

Depending on the sensitivity of the accelerometer, sensor location, and impact location, 

accelerometer may not pick up the impact that happens far away from the sensor. This is a 

possible scenario particularly on large windows.  

Due to the time constraints, and the lack of data about impact vibration dissipation across a 

window surface of varying sizes, maximum detection window size is not finalized in our design. 

The challenge with determining the maximum detection window size is the impact force used for 

estimation. If the minimum estimated impact g-force is used, then the maximum detection 

window size is very small, as the smaller impacts get drowned in the noise faster. On the other 

hand, if the maximum estimated impact g-force is used to determine the maximum distance away 
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from the sensor at which the impact is not picked up by the sensor, then the maximum detection 

window size is very big and cannot reliably detect minimum impact g-force.  

2.2.5 Sensitivity 

Sensitivity depends on the estimated impact force. ADXL343 accelerometer has the sensitivity 

of 3.9𝑚𝑔/𝐿𝑆𝐵, meaning the smallest increment of g-force it can measure. This, however, is not 

entirely accurate in real accelerometers. Accelerometers are susceptible to thermos-mechanical 

noise internally, which impacts the “effective” sensitivity of the accelerometer. This is discussed 

further in section 2.4.  

2.2.6 Bandwidth 

Bandwidth refers to the frequency range that the accelerometer can accurately capture.  

According to the previous Capstone team, a typical bird collision results in spikes in frequencies 

between 0-200Hz, which is used to identify bird collisions in the previous Capstone design [7, p. 

27]. In our preliminary accelerometer testing, the frequency response of simulated bird-window 

collisions ranged from 8-250Hz. The test is done using the same test window the previous 

Capstone team has used.  

Depending on the sampling rate, or the output data rate (ODR), the ADXL343 accelerometer has 

the bandwidth of up to 1600Hz. As discussed in section 3.2, the bandwidth of the accelerometer 

does not need to cover the entire frequency spectrum associated with the simulated bird-window 

collisions for our detection algorithm to function.   

2.2.7 Operating Voltage 

3.3V or 5V is specified to ensure compatibility with a typical microcontroller. ADXL343 

accelerometer operates at voltage between 2.0V and 3.6V [12], and therefore can be powered by 

the Arduino MKR WiFi 1010 (which runs on 3.3V) without extra power management circuitry. 

See section 7.0 for details on microcontrollers.  

2.2.8 Operating Temperature 

The sensor is attached onto a window surface on the inside of the building at UBC Vancouver 

campus. -20℃ to 40℃ is chosen as the operating temperature based on constraints C2. As 

shown in Table 3, ADXL343 accelerometer can safely operate within this temperature range. 
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2.2.9 Interface 

Accelerometers are interfaced with microcontrollers using either analog or digital pins. Analog 

accelerometers require Analog-to-Digital Converter (ADC) to digitize analog output voltage. 

Digital accelerometers perform analog-to-digital conversion internally on the accelerometer chip; 

many digital accelerometers output data via SPI and/or I2C communication protocol.  

ADXL343 accelerometer is a digital accelerometer. Data is read by the microcontroller via I2C 

communication protocol (see section 3.2 for details on sampling). This eliminates the 

dependency on the on-board ADC on the microcontroller, which provides flexibility with the 

microcontroller choice in future iterations.  

2.3 Limitations and Trade-offs 

Selected accelerometer, ADXL343, is unable to detect the estimated minimum impact g-force 

discussed in Appendix II due to the following two reasons:  

1. The internal noise of the accelerometer is not low enough to resolve the minimum 

estimated g-force.  

2. The external environmental noise is higher than the minimum estimated g-force.  

Figure 5 shows a typical noise signal collected by ADXL343 at 400Hz sampling rate, ±16𝑔 

measurement range, mounted on a test window of ~180cm by 80cm.  
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Figure 5: Typical noise readings at 400Hz sampling rate. 

Peak-to-peak value of this signal is measured to be 80𝑚𝑔, which is substantially larger than the 

minimum impact force estimated (~1.855𝑚𝑔), meaning such impact is inevitably drowned in 

the noise. This limitation stems from the lack of sources on the minimum speed of birds used for 

minimum impact g-force estimation.  

Additionally, the external environmental noise contributes to this signal. The root-mean-squared 

value of this noise signal is ~37.2𝑚𝑔, which is approximately 5x larger than the estimated 

(internal) RMS noise as described in the next section. This suggests the external noise is larger 

than the estimated minimum impact g-force, and that improving the internal noise performance 

of the accelerometer does not resolve this limitation.  

2.4 Other Accelerometers Considered and Noise Estimation 

This section briefly discusses the other accelerometer options considered.  

Based on the sensor specification defined in Table 3, two other accelerometers are initially 

selected as shown below. These sensors are selected to cover a wide range of measurement 
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range, and sensitivity. See Appendix III for a full list of selected sensor candidates and their 

details.  

Table 4: Selected accelerometers. 

Name Measurement range [±𝒈] 

SparkFun Electronics, STMicroelectronics H3LIS331DL 

Evaluation Board [13] 

100,200,400 selectable 

SparkFun Electronics, STMicroelectronics LIS331HH 

Evaluation Board [14] 

6,12,24 selectable 

 

To determine the optimal sensor for our application, the effective resolution of the 

accelerometers is estimated following the guidelines by NXP Semiconductors [15]. 

The effective resolution refers to the minimum impact g-force an accelerometer can measure 

without the sensor’s internal noise interfering. Figure below shows the effective resolution of 

two accelerometers above, as well as ADXL343 accelerometer.  

 

Figure 6: Comparison of effective resolutions of three accelerometer candidates and the estimated minimum impact 

g-force. 

As the resolution of three accelerometer candidates are not sufficient to resolve the estimated 

minimum impact g-force, the effective resolutions of three industrial-grade accelerometers are 

calculated to evaluate the performance improvement. 
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Figure 7: Comparison of effective resolutions of additional accelerometers with the estimated minimum impact g-

force. 

As shown in the figure above, high-performance accelerometers such as ADXL355 is 

theoretically capable of resolving the estimated minimum impact. However, these accelerometers 

are not chosen for this project for the following two reasons: 

1. The estimated minimum impact is based on an educated guess of minimum flying speed, 

and therefore has room to make tradeoff between minimum detectable impact, and the 

cost.  

2. The industrial-grade accelerometers are more expensive. For instance, ADXL355 

accelerometer evaluation board costs $65.88 [16].  

Among the initial three accelerometer options, H3LIS331DL accelerometer clearly exhibits the 

worst noise performance, which is expected as it is designed for high-g applications such as 

crash detection, and therefore is not suitable for our application. ADXL343 accelerometer has 

the better resolution than LIS331HH accelerometer, and thus is selected for our project.  

2.5 Other Sensor Technology Explored 

This section briefly discusses other sensor technology considered for collision detection. The 

following four additional sensor types are initially identified as potential candidates:   

1. Camera: capturing collision footage 

2. Microphone: capturing the air vibration (sound) of collisions 

3. Force sensor: capturing the impact force 
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4. IR sensor: sensing presence of bird on collision surface 

Candidates 3 and 4 are immediately eliminated. Force sensors are designed to sense the force 

applied onto them, and not around them. Since the collision can occur at any point on a given 

window, we cannot guarantee that the collision happens on the force sensor without covering the 

entire surface with force sensors. For IR sensors, they need to be placed on the outside of the 

window as identified by the previous Capstone team [7, p. 34]. The issue that arises from placing 

the IR sensor outside is that the infrared light used for sensing can be absorbed by the rainwater; 

therefore, we cannot always guarantee the proper operation of IR sensors on the outside.  

The remaining two sensor types are compared against the accelerometer, and eliminated based 

on the three criteria: cost, ease of integration, and accuracy. Cost requirement is captured in the 

constraint C1, while the accuracy of the detection system is captured in the functional 

requirement NF1. Ease of integration refers to the relative difficulty of R&D activity required to 

integrate the given sensor as the centerpiece of the collision detection system.   

Cost and accuracy criteria are given the equal weight of five as they are both 

requirements/constraints. Ease of integration, on the other hand, is given the weight of four. Each 

criterion is then scored out of five. The resulting decision matrix is shown in Table 5 below.  

Table 5: Decision matrix for sensor type selection. 

Sensor type Cost (5) Ease of integration (4) Accuracy (5) Score 

Camera 4 2 5 53 

Microphone 5 4 4 61 

Accelerometer 5 5 4 65 

 

Camera is scored four out of five for cost, as camera modules tend to be slightly more expensive 

than the other two sensor types (ranging $10 - $70) [17]. Although both microphones and 

accelerometers can be as expensive as camera modules, they can be had for less than $10.  

For ease of integration, camera and microphone scored lower than accelerometer. The use of 

camera necessitates a development of image recognition algorithm. This is discussed in section 

3.4 as well. Microphone is scored four due to the lack of prior works available that utilize the 

microphone as the main sensor in the collision detection system. Accelerometer, on the other 

hand, is given a score of five as there are prior works that validate the accelerometer’s 

performance in collision detection applications, serving as resources that aid the development in 

our project.  
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Lastly, camera is given a score of five for accuracy. Assuming the adequate image recognition 

algorithm is developed, the use of camera improves the detection accuracy, as each collision can 

be verified with recorded image/video. Microphone and accelerometer are more susceptible to 

environmental noise, which increases the potential false detection rate; however, their accuracies 

are also improved with accompanying detection algorithm, granting them the score of four.  

Based on the decision matrix, accelerometer is selected as the sensor for detection system in this 

project. Future iteration of the project may choose to re-evaluate these sensor options.  

3.0 Detection Algorithm 

The following sections summarize the developed detection algorithm used to identify bird-

window collisions.  

3.1 Analysis of Previous Capstone Design 

Figure 8 below shows the algorithm used in the previous Capstone design.  

 

Figure 8: Detection algorithm used in the previous Capstone design. 

This algorithm utilizes a combination of 1) voltage thresholding, 2) signal duration check, and 3) 

frequency peak check using Fast Fourier Transform [7]. When all three characteristics of an 
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impact signal matches the expected values, the algorithm identifies that the bird-window 

collision has occurred. Strength and weaknesses of this algorithm are identified below: 

Table 6: Strength and weaknesses of detection algorithm in previous Capstone design. 

Strength 

Checking for signal duration may allow the algorithm to distinguish shorter impulse event 

(such as noise) from actual collisions.  

Weakness 

Thresholding is done without filtering/denoising. Lower energy impact may be drowned in the 

noise.  

Frequency peaks may vary based on window size.  

3.2 Detection Algorithm Design 

Based on the potential for improvement in previous Capstone design, a new collision detection 

algorithm is devised. Figure 9 shows the high-level flowchart of the detection algorithm. The 

algorithm is broken up into four stages. Each stage is described in detail in the following 

sections.  

1. Sampling: collecting vibration signal from accelerometer. 

2. Pre-processing: denoising signal using wavelet denoising.  

3. Processing: a score-based detection logic that checks for nearly consecutive data points 

above/below the threshold, and infers a collision based on the number of such data points.  

4. Output: if collision is detected, fetch current time as the time of impact. 
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Figure 9: Flowchart of detection algorithm. 

3.2.1 Sampling 

First, the vibration signal is collected using the accelerometer. Since ADXL343 is a digital 

accelerometer, the accelerometer itself handles the analog-to-digital conversion. Three design 

decisions are involved in this stage: 1) sampling rate of the signal, 2) buffer configuration to 

store accelerometer data, and 3) overlapping samples to avoid loss of information in pre-

processing stage.  

Sampling Rate 

The accelerometer is sampled at 400Hz (every 2.5ms), and new data point is stored in the data 

buffer. Nyquist-Shannon sampling theorem states that the sampling rate needs to be at least 2x 

the highest frequency component of the signal to accurately capture a signal [18]. As mentioned 

in section 2.2, the highest frequency component of typical impact signal is ~250Hz; therefore, 

sampling rate of 500Hz is theoretically required at minimum to ensure that the impact signal is 

accurately captured. 400Hz sampling rate is technically smaller than the Nyquist rate of ~500Hz, 

resulting in undersampling.  

The justification for this trade-off is that: 
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• Our detection logic does not perform frequency analysis, and instead uses g-force 

magnitude information to infer an impact. As long as the accelerometer reading is 

sufficiently above the typical noise floor upon impact, the detection algorithm is able to 

detect a collision even when some frequency components are lost due to aliasing. As 

shown in Figure 10, sampling rate of 400Hz still captures the characteristics of impact 

signal (i.e., decaying oscillation).  

• Undersampling at 400Hz results in less noisy data. As shown in Figure 10, the signal 

sampled at 400Hz contain smaller noise variation when no collision is happening.  

 

Figure 10: Comparison of a simulated impact signal (dummy weight = 50 grams) sampled at 3200Hz and 400Hz. 

2048 data points are collected at each sampling rate. The signal sampled at 3200Hz is shorter because it takes less 

time to collect 2048 samples. Note that the signal sampled at 400Hz still captures a clear decaying oscillation 

signature of simulated bird-window collision despite not meeting the Nyquist-Shannon sampling theorem. 

Buffer Configuration 

Detection algorithm utilizes two 256-sample buffer arrays. At any given point in time, one buffer 

is serving as a “data buffer” where the latest accelerometer readings are actively stored at 400Hz. 

At the same time, another buffer is serving as a “processing buffer” where the microcontroller is 
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actively processing its content through wavelet denoising, and detection logic described in the 

following section [19]. Figure 11 shows the flowchart of this process.  

 

Figure 11: Flowchart depicting how dual-buffer configuration works. At any point in time, one buffer is used as a 

data buffer, while data in the other buffer is processed by the detection algorithm. 

This “dual buffer” configuration is necessary to avoid overwriting part of the data that is actively 

being processed by the detection algorithm. When 256 data points are collected, without the 

second buffer, the sampling task described in section 8.2 keeps sampling and starts overwriting 

the array while the data is still being processed.  

The main advantages of dual-buffer approach are:  

• Detection algorithm can have a more relaxed timing constraint. Without the second 

buffer, detection algorithm is required to start processing after 256 samples are collected, 

and finish processing before the next sample (257th sample) arrives (i.e., timing budget of 

2.5ms). Dual-buffer configuration gives the detection algorithm 640𝑚𝑠 

(2.5𝑚𝑠 × 256 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) to finish processing and enables task scheduling using 

FreeRTOS described in section 8.0.  
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• Storage use on microcontroller is more predictable, as both buffers are allocated at 

compile, with no dynamic memory allocation involved.     

Overlapping Samples 

Wavelet denoising described in the next section is implemented using filters, and therefore 

inevitably introduce filter delay to the denoised signal. This results in denoised signal delayed by 

the total filter delay compared to the original accelerometer data. Since the total number of 

samples are kept constant (i.e., 256), there are certain number of signals lost at the end of each 

frame (“pushed” out of the frame by the filter delay).  

The discontinuity is particularly not desirable when the impact signal happens across two (or 

more) frames, which could skew the result of the score-based detection logic. Fortunately, the 

filter bank is designed in such a way that the filter delay is easy to compute (total filter delay is 

15 samples). To counteract the border effect, the consecutive frames are overlapped by the 

number of total delay samples as shown below:  

 

Figure 12: Overlapped sampling. The last 15 samples of current data buffer, and the first 15 samples of the next 

buffer are overlapped to avoid loss of information. 

3.2.2 Pre-processing 

Sampled signal may contain an impact signal indicating a bird impact has occurred, but also 

contains noise due to different factors. Preliminary research shows that the vibration signal from 

accelerometer is contaminated by pulse noise and white noise [20]. Accelerometers also 

naturally fluctuate slightly when no acceleration is applied to it (known as “zero g offset”) [21].  
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Noisy signals pose a challenge when detecting a lower energy impact; therefore, noise 

component should be removed as much as possible before further processing is performed.  

Wavelet denoising is a technique that makes use of wavelet transform, which has been shown to 

handle nonstationary signals well [22].  Nonstationary signal is a type of signal whose frequency 

response changes over time. This applies to our signal of interest, where the bird-window impact 

is an infrequent event and persists for a very short period of time compared to the total number of 

hours the device is operational.  

Wavelet denoising filter bank is implemented by utilizing FIR Decimator and FIR Interpolator 

functions in ARM CMSIS DSP library [23]. CMSIS library is an open-source library with a set 

of functions and APIs developed for ARM Cortex-M microcontrollers [24]. Arduino used in our 

project, Arduino MKR WiFi 1010, uses SAMD21 Cortex-M0+ microcontroller, and therefore is 

compatible with CMSIS library.  

The following table summarizes the key wavelet denoising design choices and justifications:  

Table 7: Summary of important wavelet denoiser parameters and justifications. 

Parameters Design Choice Justification 

Wavelet Basis Type Bior 2.2 Filter bank designed using biorthogonal 

wavelet has a linear phase delay, which 

is needed to compensate for delays in 

real-time applications [25].  

Number of denoising levels 2 Theoretical limit is 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑁)) =

8 where 𝑁 = 256. More levels result in 

smoother denoised signal, but also 

increase execution time per processing, 

and introduce longer filter delay. 

Moreover, the improvement in 

denoising for level > 2 is minimal and 

hard to justify.   

Thresholding method for noise 

coefficients 

Hard thresholding Hard thresholding result in better 

denoising on the noise portion of the 

signal, while preserving the majority of 

the impact signal component 

unmodified.  
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3.2.3 Processing 

Once pre-processing is complete, the denoised signal is checked for potential bird-window 

collision. The detection logic consists of 1) thresholding and 2) a score-based scheme that checks 

for nearly consecutive data points above threshold.  

Thresholding is the simplest way to determine if a collision has occurred based on the 

accelerometer readings, since a collision results in irregular (i.e., larger reading than typical) data 

points. Thresholding alone works well in simple cases; however, it can falsely recognize random 

spikes in sensor reading (which can be due to random noise spikes, or someone tapping the 

window) as collision. A typical simulated bird-window collision results in a signal with multiple 

(nearly) consecutive data points that are above threshold, as opposed to just one random spike. 

Those (nearly) consecutive data points eventually decay out and sensor readings return to typical 

noise level.  

A score-based scheme is implemented to take advantage of this nearly consecutive data points:   

1. First, it initiates a detection logic when a data point is above the detection threshold for 

the first time.  

2. It then counts the number of nearly consecutive data points that are above threshold.  

3. The detection logic keeps counting (i.e., scoring) until there are certain number of exactly 

consecutive data points that are below threshold. This ensures that the impact signal has 

completely decayed out, and that the readings are back to the typical noise level. 

4. If the score is above a certain value, that means that there were multiple nearly 

consecutive data points that were above the threshold, which likely means that the impact 

has occurred. Otherwise, it likely was a random noise spike, and can be disregarded. 

5. Once the output of the detection logic is picked up by the appropriate process, the 

detection logic resets the score. It will wait for the next instance where the data point is 

above the detection threshold, and repeat. 

This detection logic design ensures that 1) the random spikes in accelerometer readings are not 

falsely identified as collisions, and 2) nearly consecutive data points above the g-force threshold 

is considered as one collision instead of individual collisions.  
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3.2.4 Output 

If the detection logic determines that the bird-window collision has occurred, the current time is 

fetched and used as the time of collision. This time data is eventually sent to ThingSpeak. See 

section 8.2 for more details.  

Note that the time fetched in this stage is not the actual time of the impact. There is a delay 

between the time the collision data is sampled, and the time that chunk of data gets processed (as 

discussed earlier, the detection system operates on 256-sample frames per processing). This 

delay, however, has been measured to be approximately 7-8 sampling intervals, or ~17.5 – 20ms 

(sampling rate is 400Hz, so one sampling interval is 2.5ms), which is a negligible difference.  

3.3 Detection Algorithm Performance 

The detection algorithm including wavelet denoising using FIR Decimators and Interpolators are 

first developed on MATLAB for easier troubleshooting and visualization. Figure 13 shows the 

demonstration of detection algorithm. See section 2.0 in Verification & Validation for 

demonstration of detection algorithm deployed on Arduino.  
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Figure 13: Demonstration of detection algorithm on MATLAB model. The orange spike shows that the collision is 

detected in the time between the spike and the next orange point. 

3.4 Limitations and Other Designs Explored 

The main limitation of our detection system design is that it only uses vibration information from 

the accelerometer. This means that the detection algorithm identifies a collision as long as the 

expected signature (i.e., decaying oscillation) is present in the signal. That is, our detection 

system identifies any object with enough mass to cause such vibration as a bird-window impact. 

The fundamental assumption of our detection system is that the detection window (window used 

for collision monitoring) is free from people or object accidentally hitting the window.  

This is assumption is necessary because the detection system need to be tested by the simulated 

bird-window collision setup, which consists of a ball made from cloth and rice as a filling. By 

assuming such object represents a bird-window impact and can be used verify the functionality 
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of detection system, our detection system also assumes that anything hitting a window is a 

collision.  

An alternative design that has the potential to alleviate this limitation is the use of camera and 

image recognition to verify if the impact is indeed caused by a bird. This design, however, 

increases cost and the complexity of the detection system as mentioned in section 2.4.  

Another design explored utilizes a neural network model to detect anomaly (i.e., collision) in 

sampled signals. Collision detection system with neural network classifier developed for wind 

turbines demonstrates an improvement over a simple thresholding system [8].  

Despite its advantages, machine learning approach is removed from consideration due to high 

R&D overhead. Future improvements to our design could be made by considering machine 

learning algorithm from the earlier stages of design process.  

Lastly, the detection algorithm that use data from all three axes of the accelerometer was 

considered, inspired by design described in [8].    
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Figure 14: Plots of vibration signals from three axes. Z-axis is orthogonal to the windowpane and therefore has 

captured the largest magnitude of impact signals. 

Figure 14 shows the impact signals from each axis. The axis orthogonal to the windowpane, z-

axis, has captured the largest impact signals, while other two axes still contain the signature of 

small bird-window impact. Signal from other axes may contain a useful impact signal especially 

when the collision happens at an angle, where the impact vector is more evenly split across three 

axes. Due to the time constraints, and the fact that the x and y axis impact is significantly smaller 

than the z axis impact (approximately 1/10x), x and y axis information are not used in our final 

design.  

4.0 Accelerometer Fall Detection Algorithm 

Fall detection is a crucial feature for meeting the functional requirement F10, as it ensures the 

reliability of the accelerometer and the overall system. The fall detection algorithm is designed to 

identify if the accelerometer has fallen off the window surface, which causes inaccurate 

measurements.  
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4.1 Algorithm and Functionality 

The fall detection algorithm is designed to be power-efficient and ensure the reliability of the 

accelerometer and the overall system. It works by periodically monitoring the y-axis 

accelerometer readings every 5 minutes. This interval was chosen to minimize power 

consumption and reduce the computational load on the microcontroller. 

The algorithm uses a two-step process to detect a fall. In the first step, when the fall detection 

task is called, it checks the y-axis accelerometer value and sets a flag if the value indicates a 

possible fall. At this point, fall detection task finishes executing with the flag set. This flag serves 

as a preliminary indication of a fall and is used in the second step to further confirm the event. 

In the second step, when the fall detection task is called again after the next 5-minute interval, it 

checks the y-axis value again. If the value still indicates a possible fall and the flag set in the first 

step is still active, the algorithm confirms that a fall has occurred. This two-step process helps to 

reduce false positives by ensuring that the accelerometer readings consistently indicate a fall 

over two consecutive checks. 

4.2 Design Decisions 

In this section, we explore the fall detection design decisions, focusing on power efficiency, 

reliability, and computational load. We will discuss the periodic execution of the task, the two-

step process for improved accuracy, and the reduction of the microcontroller's computational 

load. 

4.2.1 Design Considerations 

Power efficiency: As the system can be battery-powered, minimizing power consumption is 

essential. The chosen design periodically executes the fall detection task, reducing power usage 

and computational load (see section 11.2, for more details on battery operation).  

Reliability: The two-step process improves the reliability of fall detection by minimizing false 

positives, ensuring that the system only acts when a fall is detected. 

Computational load: By executing the fall detection task at 5-minute intervals, the 

computational load on the microcontroller is reduced, allowing it to perform other tasks 

efficiently. 
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4.3 Advantages and Disadvantages 

4.3.1 Advantages 

Power-efficient: The periodic execution of the fall detection task reduces power consumption. 

Reliable: The two-step process minimizes false positives, ensuring accurate fall detection. 

Reduced computational load: The 5-minute interval between task executions allows the 

microcontroller to perform other tasks more efficiently. 

4.3.2 Disadvantages 

Potential delay in fall detection: The 5-minute interval between task executions may cause a 

delay in detecting a fall. 

Reduced sensitivity: The two-step process might not detect falls with less impact on the y-axis 

value. 

4.4 Alternative Approaches 

Several alternative approaches to fall detection were considered during the design process: 

Continuous monitoring: This approach involves constantly monitoring the accelerometer 

readings to detect a fall. While this approach may provide faster fall detection, it increases power 

consumption and computational load on the microcontroller. 

Single-step detection: A single-step detection approach checks the accelerometer value only 

once to determine a fall. While this method may be simpler, it can result in a higher rate of false 

positives. 

Machine learning-based detection: This approach uses machine learning algorithms to predict 

falls based on accelerometer data. While this can be more accurate, it requires significant 

computational resources and may not be suitable for a low-power microcontroller like the 

Arduino MKR WiFi 1010. 

The chosen design balances power efficiency, detection reliability, and computational load, 

making it a suitable choice for this application. 
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5.0 Temperature 

This section describes the heat detection process in our project and how the collected 

temperature measurements play a role in the UBC sustainable green building policies. It also 

describes how the temperature measurement are collected and displayed to the users for further 

analysis. 

5.1 Heat Flow Rate Measurement  

We are required to measure the efficacy of windows and how well they mitigate heat flow rate 

through them to quantify how well they perform against other windows. This design helps with 

UBC enacting sustainable green building policies. The researchers for whom this device is 

designed for will study the data provided by temperature sensors on the inside and outside of the 

surface of the windows being observed. Together with a U-value and the dimensions of the 

window (that will be provided by the researchers), the heat flow rate is calculated, and this value 

is used to measure the efficacy of windows and hence quantify the comparisons of different 

windows on UBC campus.  

According to F3, the minimum allowed range we could have for any temperature sensor chosen 

is between -40C to 50℃ which our temperature sensor satisfies. In addition, our temperature 

sensor of choice is required to be wireless, connect to internet, waterproof and easily mountable 

to insure user-friendliness according to F2, F3, F5, NF5. 

 

Our temperature sensor connects to ThingSpeak via LoRaWAN and will send two surface 

temperature packets to ThingSpeak every thirty minutes. We decided to collect the data every 

thirty minutes as maximum the temperature change recorded in Vancouver is ±2℃ which is a 

minimal change in a collision detection analysis. 

A set of two thermocouple temperature sensors (DS18B20) are selected for gathering the heat 

mitigation data. One temperature sensor is used on the outside surface of the window one on the 

inside of the surface of the window. The sensors are touching the surface of the window and are 

attached to the window using duck puddy as a barrier between the surface of the window and the 

outside air to prevent the thermocouple from reading the outside air temperature. The 
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temperatures we chose can read a range of temperatures ranging from -40 to 200℃. This fits in 

perfectly with the expected temperature of the outside surface of the window.  

These two thermocouples are attached to the device called Dragino LHT65 which has a built-in 

2400mAh non-rechargeable battery which can be used for more than 10 years. The Dragino 

sensor includes a built-in SHT20 Temperature & Humidity sensor with an external sensor 

thermocouple temperature sensor. Moreover, the device records up to 3200 data records with 

date/time which can be retrieved with ThingSpeak for further analysis [26]. The LHT65 also 

connects directly with ThingSpeak meaning that no extra microcontroller needs to be placed on 

the outside the window, eliminating extra safety and technical risks. These temperature values 

are then be stored in the ThingSpeak database for further analysis.  

With the collected surface temperature data, the heat flow rate across the window is calculated 

using the window surface area and the U-value provided by the user (which is a characteristic of 

windows) to assess the efficacy of windows mitigating heat transfer, and consequently their 

efficiency saving energy by keeping the heat trapped in a room. This allows researchers to know 

which windows to use for building green and sustainable buildings. 

Table 8: Hardware/software used to measure heat flow rate. 

Function Selected Candidate 

Surface Temperature Data Measurement Dragino LHT65 

Heat Flow Rate Calculation  The built-in analytics tools of 

ThingSpeak to gather data from 

the UBC weather website 

 

The section 1.0 in Verification & Validation has proven to work, and measurements taken from 

ThingSpeak showed that our sensors are in fact measuring the temperatures and displaying them 

for the user. 

The section 3.0 in Verification & Validation has proven the pre-set codes for heat flow rate 

calculation in the MATLAB Analysis can give the accurate calculation result, which is updated 

and stored every 30 minutes, and displayed in the dashboard of ThingSpeak as expected. More 

detailed testing processes are recorded in the Verification & Validation Document. 
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5.2 Other Candidates 

As for the other designs that we decided not to move forward with, the first option considered 

was a heat flux sensor. This method gives the user a U-Value which is a quantitative way of 

determining the efficacy of windows mitigating heat transfer. However, this method requires a 

specific DAC that cannot connect to the Arduino. In addition, the heat flux sensor requires a 

voltage resolution which the Arduino does not offer.  

Moreover, one thing that was proven ineffective was using a heat flux paste to use as a middle 

ground between the thermocouple of the temperature sensor and the window to better conduct 

the temperature. However, after comparing it to a control thermocouple, both thermocouples 

output the same value for surface temperature which suggests that the effect that the thermal 

paste is at best minimal. 

Table 9: Complete list of temperature sensor candidates [27], [28]. 

 DHT11 DHT22  LM335 BMP180 TMP36 LM75 BME280 DS18B20 LHT65 

temp          

pressure          

humidity          

Communication protocol One wire One wire Analog 

output 

I2C Analog 

output 

I2C i2C or 

SPI 

One wire ThingSpeak  

Power supply range 3 to 5.5V 3 to 6v 4 to 30 v 1.8 to 3.6v for 

chip 

3.3 to 5V for 

module 

2.7 to 

5.5 V 

+-1c 

3 TO 

5.5 V 

1.7 to 3.6 

for chip 

3.3 to 5v 

for board 

3-5.5 V  2400mAh non-

chargeable battery  

Temp range 0 to 50c 

+-2c 

-40 TO 

80c 

-55 to 

150C 

+-0.5c 

0 to 65c 

+-0.5C 

-40 to 

125 c 

+-1C 

-55 to 

125 c 

+-2c 

-40 to 

85c 

+-0.5c 

-55c to 

125c 

+-0.5c 

-40c to 80c 

+-0.8 

Humidity range 20 to 90% 

+-5% 

0 TO 

100% 

+-2% 

      0 to 99.9% 

+-10% 

Sampling period 1 second 2 seconds  128 

samples/sec 

3 

seconds 

 0.21 

seconds 

  

waterproof          

 

LEGEND 

 no 

 yes 
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 NA 

6.0 Outside Air Temperature Detection  

For researchers to be able to identify the conditions when collisions occur, as per F2, the outside 

temperature is recorded at the time of impact. The data is collected from the UBC ESB Rooftop 

Weather Station website. 

Table 10: Function and selected candidate for outside air temperature measurement. 

Function Selected Candidate 

Outside Air Temperature Measurement UBC ESB Rooftop Weather 

Station Website  

 

Through the ThingSpeak’s MATLAB Analysis function, we programmed MATLAB code to 

specify the web address string of the UBC ESB Rooftop Weather Station as the URL that we 

want to scrape the web temperature data. The web temperature data is fetched every 30 minutes, 

parsed to find the air temperature, and store the data into the data field specified. 

The stability and accuracy of codes that used to collect the outside air temperature collection 

from the UBC ESB Rooftop Weather Station website is verified in the section 3.0 in Verification 

& Validation.   

This has proven to work, and measurements taken from ThingSpeak showed that our sensors and 

weather website are in fact displaying the correct temperatures. 

7.0 Microcontroller 

This chapter mainly discusses the role of microcontrollers in the project, as well as the final 

selection of microcontrollers and the filtering process. 

7.1 Significance and Function of Microcontrollers 

The microcontroller holds a pivotal position in our project, serving as the central processing unit 

of our system. It efficiently gathers and processes data from sensors strategically placed on 

windows, allowing for real-time analysis and provide accurate collision and heat flow rate 

information to researchers. This data aids researchers in identifying and addressing the multiple 



52 

   

 

factors contributing to bird-window collisions, supporting the implementation of UBC Green 

Building Action Plan (GBAP) and the protection of birds and the natural environment.  

The microcontroller will interface with an accelerometer and a reset button. The accelerometer 

captures window vibration data, which is processed by the microcontroller using detection 

algorithm as described in detection algorithm. In the event of a collision detection, the 

microcontroller will log the timestamp and transmit the data along with the event count to the 

user interface at the end of each day. (To optimizes power utilization, the microcontroller will 

employ a data transmission interval of 24 hours. However, users have the option to increase data 

frequency by connecting the system to a wall power source and upload an alternative code to 

make the data transfer interval more frequent, every 5 minutes.) 

7.2 Microcontroller Decision 

The Arduino MKR WiFi 1010 is chosen as the microcontroller for the project, following a 

detailed selection process. 

The Arduino MKR WiFi 1010 satisfies the highest priority criteria's that are critical to the 

success of the project, including availability of WiFi which correspond to C4, enough input 

digital pins, compatibility with power socket module (C1), ample flash memory capacity (NF4), 

and cost-effectiveness within the project budget when compared to other microcontrollers. 

Moreover, its compact size and weight make it ideal for meeting the requirements of C5 and C6. 

For a comprehensive comparison, please refer to the detailed comparison table provided in 

Appendix IV. 

The stability of Arduino MKR WiFi 1010 has been rigorously tested using various methods, 

including testing the detection algorithm and data transmission code on the Arduino. The testing 

results have successfully recorded the time and data of simulated bird-window collisions, which 

were then transmitted to the user interface. For detailed testing results, please refer to the 

Verification & Validation section. 

7.3 Other Microcontroller Candidates and Screening Process   

Eight widely used microcontrollers are assessed using 14 criteria points based on the project 

constraints. The assessed microcontrollers include:  

1. Arduino Uno WiFi Rev2 
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2. Raspberry Pi 3 

3. Arduino NANO 3  

4. Arduino Uno R3 

5. Arduino Mega 

6. ESP32 NodeMCU  

7. ESP8266 Thing  

8. Arduino MKR WiFi 1010 

The 13 criteria points were prioritized based on their essentiality for the success of the project. 

The weight of each criterion in microcontroller selection was determined by its importance. To 

facilitate comparison, a decision table was constructed (Appendix IV). In Table 11, the minimum 

criteria used to filter out unsatisfactory microcontrollers are listed. 

Table 11: Minimum Microcontroller Requirements. 

Microcontroller Feature Minimum Requirement 

Number / type of I/O (Digital) 4 

WiFi Availability Yes 

Flesh Memory 130KB 

Power Could be powered by both battery 

and 120 VAC wall outlet 

7.3.1 Criteria 1: Digital Input Pins  

The hardware model of the project requires multiple input pins on the selected microcontroller to 

receive digital data coming from impact force/vibration readings. As seen in Figure 2, the 

detection section's collision data, recorded from the vibration sensor, requires, at minimum, 2 

digital input pins of the microcontroller to function. In the fall-detection system, two input pins 

are required for the reset button to receive data. The selection of the microcontroller considered 

over-designing, allowing for potential future additions or alternative solutions, such as using 

multiple vibration sensors for larger windows, which would require additional digital input pins. 

This approach enables scalability and cost reduction in the final design. A detailed comparison of 

data from different microcontrollers can be found in Appendix IV. 
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7.3.2 Criteria 2: WiFi and Database Connection 

The hardware-to-software connection component of the model necessitates the secure transfer of 

data over a wireless network, specifically WiFi, as indicated by C4. In line with section 10.0, the 

chosen database framework is ThingSpeak. To comply with NF4, the microcontroller must 

consistently transfer data to the ThingSpeak database. According to the findings in Appendix IV, 

microcontrollers such as Arduino Uno WiFi Rev2, Raspberry Pi, ESP8266 Thing, ESP32 

NodeMCU, and Arduino MKR WiFi 1010 fulfill the criteria as they possess WiFi capabilities 

and a direct link to the database. 

7.3.3 Criteria 3: Flash Memory 

While the Arduino is operating and executing code, flash memory is needed to store program 

code and gather data. It shows that the microcontroller used in this project needs to have a flash 

memory that is big enough to store and evaluate the data needed by the client. Following some 

experiments, it was discovered that the collision detection system needed a specific amount of 

flash memory from the microcontroller for data gathering, noise reduction, and processing. At 

the same time, the microcontroller also needs to transfer the temperature data for calculation, 

which leads to the microcontroller's flash memory capacity must reach 130KB (See detail 

calculation in Appendix V). Only microcontroller Arduino Uno WiFi Rev2 from the previous 

round did not match this requirement and was eliminated, leaving Raspberry Pi, ESP8266 Thing, 

ESP32 NodeMCU and Arduino MKR WiFi 1010 with flash memory levels that were far greater 

than the minimum necessary and provided the project with considerable fault tolerance. 

7.3.4 Criteria 4: Price and Power Socket 

In order to satisfy C14, and NF45, the microcontroller candidates’ prices and power supply need 

to be carefully selected. Based on the empirical findings from research references [29], [30] and 

detailed calculations, it has been shows that the utilization of a 3200mAh battery, with a data 

 
4 For several of the model to be used for bird strike monitoring, the whole project cost (including hardware, 

software, and auxiliary supplies) needs to choose the most economical one within the available options and the cost 

of an entire system should be under $180. [Database must be free for the user.] 

5 The data recording must be fully functional for a minimum of 30 days before requiring maintenance. 
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transmission frequency of once a day to ThingSpeak, would provide the microcontroller with an 

operational lifespan of approximately 6 days. The incorporation of batteries into the system 

enhances its flexibility and availability, allowing users to deploy the device in locations without 

access to wall outlets (Comprehensive calculations and analysis can be found in Appendix XI). 

However, for more frequent data monitoring requirements, reliance on power outlets becomes 

necessary to sustain the device's power consumption. Therefore, the selected microcontroller 

must possess the capability to receive power from both batteries and external power outlets. 

Among the remaining microcontroller options from the previous rounds of screening, only 

Arduino MKR WiFi 1010 and Raspberry Pi 3 demonstrate the ability to accept power from both 

batteries and external power outlets. Among these options, Arduino MKR WiFi 1010 stands out 

as a more competitive choice compared to Raspberry Pi 3, considering that the latter is priced 

approximately four times higher than Arduino MKR WiFi 1010. 

8.0 Task Scheduling Algorithm 

8.1 System Context for Design and Architecture 

FreeRTOS is an open-source, real-time operating system designed specifically for 

microcontrollers and small embedded systems. It offers a simple, efficient, and lightweight 

solution for managing tasks, time, and resources, which makes it a popular choice for developers 

working on IoT and embedded projects [31]. 

The purpose of using FreeRTOS is that timing constraints can be set for each task, and the whole 

system has a pre-determined, predictable behaviour. FreeRTOS is responsible for managing and 

scheduling the tasks that collect, process, and transmit data from the accelerometer, and it 

simplifies the development of complex systems with multiple tasks, and ensuring reliable 

operation and efficient utilization of CPU resources in the microcontroller. Through the 

utilization of FreeRTOS in our system architecture, the requirements of F2 and NF4 are met, 

enabling concurrent execution, and recording of multiple tasks while ensuring system reliability 

and smooth operation. 
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8.2 Design  

In FreeRTOS, there are five different tasks assigned to our system, the timing schedule is 

showed in Figure 15 and Figure 16. The priority of these five tasks gradually decreases from 

Task 1 to Task 5. 

• Task 1 and Task 2 handle collision detection. Task 1 collects data from accelerometer 

and wakes up Task 2 every time 256 data points are collected for further noise reduction 

and analysis, to determine if a bird collision event has occurred.  

• Task 3 is responsible for checking the accelerometer's proper attachment to the window 

being tested every five minutes.  If the accelerometer is detected to have fallen during the 

first check, Task 3 will perform a second check after 5 minutes. If the result of the second 

check is also a fall, Task 3 will stop other tasks, send a message to ThingSpeak to notify 

the user of the fallen accelerometer, and wait for the user to reattach the accelerometer 

and press the reset button to resume other tasks. Task 2 will be resume and finish the 

remaining analysis after the reset button is pressed, and Task 4 will be re-initialized as 

well. After a delay of five seconds, Task 1 will be restarted, giving Task 2 enough time to 

complete the remaining work from the previous session. See Figure 16.  

• Task 4 is responsible for sending bird collision data and fall detection to ThingSpeak. 

Depending on user’s needs, Task 4 can run once every 24 hours or once every 5 minutes. 

Task 4 sends the time and count of bird collision events that occurred during the time 

elapsed since the last data transmission to ThingSpeak. 

• Task 5 is the system's default idle task, which runs when no other tasks can run such as 

sampling task. 
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Figure 15: Time scheduling diagram depicting tasks running with FreeRTOS. Solid line means forward operation; 

dashed line means response. 

 

Figure 16: Fall detection detailed Time scheduling diagram. 

8.3 Alternative Design for Scheduling Algorithm 

The previous design of the bird collision detection system relied on a state machine, illustrated 

below, by Figure 17, which executed tasks sequentially based on a set of predefined states and 
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transitions. While this approach was functional, it had certain limitations, particularly when it 

came to handling multiple tasks simultaneously and efficiently managing resources. One 

significant drawback of the state machine model was its inability to sample in “real-time,” which 

led to the potential for missed bird collisions if the system was in the wrong state. Likewise, fall 

detection could not successfully be deployed for this same reason. Further, in a task-based 

design, tasks are executed concurrently, allowing the processor to perform multiple operations 

simultaneously. As a result, the processor spends less time idling and waiting for tasks to be 

executed sequentially, as it would in the state machine model. This efficient use of resources 

results in a lower overall power consumption, which in turn extends the battery life. 

 

Figure 17: Previous State Machine Design. 

To address these shortcomings, we decided to switch from the state machine-based design to a 

real-time operating system that facilitates concurrent programming. FreeRTOS enables the 

creation and management of multiple tasks that can run concurrently, effectively simulating 

parallelism in a single-core microcontroller environment. 
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8.4 Task Scheduling Performance 

The task scheduling and coordination capabilities of FreeRTOS have been thoroughly evaluated, 

including task execution time, regularity, and potential latency. Test Results Demonstrate 

FreeRTOS as an effective tool for achieving project objectives with consistent and reliable 

operation.  We tested the state machine functionality of FreeRTOS, as well as the compatibility 

of FreeRTOS with the detection algorithm and the code for sending messages. For detailed 

testing results, please refer to the Verification & Validation section. 

8.5 Detail Explanation of FreeRTOS Operation 

In this section, we will discuss how FreeRTOS works, its advantages and disadvantages, and 

other alternatives that can be considered for implementing real-time systems. 

FreeRTOS employs a pre-emptive, priority-based scheduling algorithm that allows multiple 

tasks to share a single CPU. Each task is assigned a priority level, and the scheduler ensures that 

the highest-priority task is always running [31]. When two tasks share the same priority level, 

they are executed in a rotating sequence, alternating between the tasks in a fair and balanced 

manner. Tasks can be in different states such as running, ready, blocked, or suspended. A tick 

interrupt (periodic interrupt generated by a hardware timer in a microcontroller or 

microprocessor) is used to manage the passage of time and facilitate context switching between 

tasks. When the tick interrupt fires, the scheduler checks if a higher-priority task is ready to run. 

If so, the context of the current task is saved, and the new task is executed. This enables effective 

multitasking and ensures that the system remains responsive to external events.  

8.5.1 Advantages of FreeRTOS 

Lightweight and efficient: FreeRTOS has a small memory footprint, making it suitable for 

resource-constrained environments like microcontrollers. It is designed for efficiency and can be 

easily configured to use only the required features, further reducing memory usage. 

Scalability: FreeRTOS is highly scalable, allowing developers to manage a wide range of tasks 

and resources on various hardware platforms. 

Portability: FreeRTOS supports a wide variety of microcontrollers and processor architectures, 

making it easy to port applications across different hardware platforms. 
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Extensive documentation and community support: FreeRTOS has a large and active 

community, which ensures that developers have access to extensive documentation, example 

code, and support forums. 

8.5.2 Disadvantages of FreeRTOS 

Limited features: FreeRTOS lacks some features found in more comprehensive operating 

systems, such as file systems, networking, and advanced memory management. 

Learning curve: Developers new to real-time operating systems may experience a learning 

curve when working with FreeRTOS, as it requires understanding concepts like tasks, priorities, 

and scheduling.  

8.5.3 Alternative Options 

ChibiOS/RT: While ChibiOS/RT is another lightweight RTOS with features comparable to 

FreeRTOS, it has a smaller community and less extensive documentation compared to 

FreeRTOS. The availability of comprehensive documentation, example code, and community 

support for FreeRTOS played a significant role in our decision-making process. Furthermore, the 

performance differences between ChibiOS/RT and FreeRTOS were not significant enough to 

justify choosing ChibiOS/RT over FreeRTOS for our project. 

Zephyr: The Zephyr Project is a more feature-rich RTOS, offering advanced features such as 

networking, file systems, and security. However, these additional features come at the cost of 

increased complexity and memory usage. Given the resource constraints of our microcontroller-

based system, the lightweight and efficient nature of FreeRTOS was more suitable for our needs. 

Moreover, our project did not require many of the advanced features provided by Zephyr, 

making it unnecessary to adopt a more complex RTOS. 

RIOT: RIOT is designed specifically for IoT devices and low-power microcontrollers, offering a 

user-friendly API and support for various communication protocols. However, RIOT's focus on 

IoT devices meant that some of its features were not applicable to our project. Additionally, like 

ChibiOS/RT, RIOT has a smaller community and less extensive documentation compared to 

FreeRTOS. Given the need for robust community support and documentation, FreeRTOS was a 

more attractive choice for our project. 
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9.0 Communication System 

When developing the overall system, several design decisions are made concerning 

communication protocols. These decisions were influenced by factors such as power 

consumption, data transfer speed, reliability, ease of implementation, and compatibility with 

existing systems. In this section, we will discuss the chosen protocols in-depth, comparing them 

to alternative options and discussing the advantages and disadvantages of each. 

 

Figure 18: Communication System Initialization Parameters 

Figure 18 illustrates the initialization parameters passed from the Arduino MKR WiFi 1010 and 

Dragino sensors to establish a connection with and to write to ThingSpeak.  

9.1 WiFi for Arduino MKR WiFi 1010 

WiFi is chosen as the communication protocol for the Arduino MKR WiFi 1010 because of its 

widespread availability, ease of use, and compatibility with the IoT platform ThingSpeak. WiFi 

allows for efficient and reliable data transfer with minimal latency. Although it consumes more 

power compared to some low-power wireless protocols like Zigbee or Bluetooth Low Energy 

(BLE), it provides a higher data transfer rate. Zigbee and BLE are low-power alternatives, but 

they lack the data transfer speed and widespread availability of WiFi. WiFi's higher bandwidth 

capacity and seamless integration with IoT platforms outweigh its power consumption 

disadvantage in this case. 

By default, microcontrollers are unable to access the UBC visitor WiFi network. To resolve this, 

the MAC address of the microcontroller(s) is registered with UBC IT.  
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During the uploading task of the microcontroller, a connection protocol is executed, through the 

onboard WiFi-module, to establish a connection between the microcontroller and the WiFi 

network at UBC. With the use of two libraries: WiFiNINA and SPI, the WiFi-module passes the 

network SSID (domain of the desired WiFi network: char ssid[] = "ubcvisitor"), along with the 

corresponding network password (char pass[] = ""), establishing the microcontroller as a client of 

the UBC visitor WiFi network. After authentication, the microcontroller obtains an IP address 

from the network's Dynamic Host Configuration Protocol (DHCP) server, which provides it with 

network configuration parameters (i.e., subnet mask, default gateway, DNS server). 

With a valid IP address, the microcontroller can establish an internet connection and securely 

communicate with the ThingSpeak database.  

To communicate with ThingSpeak, the microcontroller passes channel ID and write API keys. It 

uses the MQTT communication protocol (Appendix X) to transmit data. ThingSpeak relies on 

token-based authentication for secure communication between the device and the platform. The 

microcontroller sends the channel ID to associate the device with the user's account and the write 

API key to authorize data uploads to the corresponding ThingSpeak channel. 

9.2 LoRaWAN for Dragino LHT65 Sensors 

LoRaWAN was selected as the communication protocol for the window-surface sensors due to 

its low power consumption, long-range capabilities, and ability to handle many devices. The 

LoRaWAN protocol is specifically designed for low-power, wide-area networks (LPWANs) and 

is well-suited for IoT applications such as this project. Alternative options like NB-IoT and 

Sigfox are possible, but LoRaWAN was chosen for its wider coverage, flexibility, and ease of 

deployment. NB-IoT and Sigfox are also LPWAN options, but they have some limitations. NB-

IoT requires more infrastructure and is more suitable for dense urban environments, while Sigfox 

has lower data rates and may not be available in all regions. LoRaWAN offers a more versatile 

and adaptable solution for this project. 

LoRaWAN also uses a star-of-stars network topology, which means that individual devices can 

communicate with one or more gateways connected to the internet. This allows for many devices 

to be connected to the network without creating a bottleneck: affecting communication speed. In 

addition, LoRaWAN uses a spread spectrum modulation technique that allows for a high degree 
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of immunity to interference and noise. This means that the network can maintain high levels of 

reliability and availability even in noisy or crowded environments. 

The Dragino temperature and humidity sensors are connected to LoRaWAN through their built-

in LoRa module, which enables it to communicate with LoRaWAN gateways. To establish a 

connection between the sensors and the LoRaWAN network, the sensors use an AppEUI and 

AppKey. The AppEUI is a unique identifier for the application, while the AppKey is a secret key 

that is shared between the sensor and the network to ensure secure communication. As the 

sensors periodically take temperature measurements, packets of data are sent using the LoRa 

modulation to the nearest gateway (there are two located on the UBC campus). The gateway then 

forwards these packets to a LoRaWAN network server, which authenticates the devices and 

decrypts the packets. From there, the LoRaWAN network server sends the data to The Things 

Network (TTN) along with a DevEUI. 

9.3 MQTT for ThingSpeak Integration 

MQTT was chosen for its lightweight design, low power consumption, and efficient use of 

bandwidth. It is a widely adopted protocol for IoT applications and is natively supported by 

ThingSpeak. This protocol enables seamless communication between the Arduino, Dragino 

sensors, and the ThingSpeak platform. Alternative protocols like CoAP and AMQP are possible, 

but MQTT's simplicity, minimal overhead, and broad support made it the preferred choice. 

CoAP, while also lightweight, is more suited for constrained environments and uses a request-

response model, which is not ideal for this application. AMQP, although reliable and suitable for 

complex messaging, has a larger overhead compared to MQTT and is less optimal for low-power 

IoT devices. 

The DevEUI is a 64-bit globally unique Extended Unique Identifier (EUI-64) assigned by the 

manufacturer of the end-device (Dragino) to distinguish it from other devices in a network and is 

a key component of the device authentication and secure communication process. Once the 

DevEUI is passed to TTN and the connection between the sensors, through LoRaWAN, and 

TTN is established, data can then be passed from TTN.  To transmit the window-surface 

temperature data to ThingSpeak, TTN uses the MQTT (Appendix X) protocol, but first must be 

configured with the appropriate Channel ID and Write API Keys. The Channel ID is a unique 
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identifier for the ThingSpeak channel, while the Write API Keys provides access to write data to 

the channel. 

9.4 HTTP for External Temperature Data 

The external temperature data from the weather report website is retrieved using the HTTP 

protocol. HTTP was chosen for its simplicity, widespread use, and compatibility with web-based 

data sources. It is a stateless protocol that allows easy fetching of data from web servers, making 

it suitable for integrating the ambient air temperature data into the project. Alternatives such as 

FTP or WebSocket are possible, but HTTP was deemed more suitable due to its widespread 

adoption and ease of use. FTP, while designed for file transfer, is more complex and less suited 

for fetching simple data from web servers. WebSocket, on the other hand, is more appropriate for 

real-time, bi-directional communication, which is not required in this case. 

10.0 Data Storage and User Interface 

10.1 Significance to requirements 

The data storage system acts as the central repository for all the information gathered from 

various sources, necessitating adequate capacity to accommodate the collected data. 

Additionally, it is crucial to design data storage systems with accessibility as a priority. 

Researchers need convenient access to the required data to perform their studies efficiently. 

Consequently, a user-friendly interface that is simple to navigate and comprehend enables 

researchers to access data promptly, thereby promoting effective data analysis.  

10.2 Context with respect to system, design, architecture 

The user interface establishes communication with multiple devices, such as the microcontroller, 

The Things Network, and the temperature webpage of the UBC ESB Rooftop Weather Station. 

The microcontroller is programmed to check for new impacts every 5 minutes. Upon detecting a 

new impact, it sends a data packet containing the cumulative collision count and timestamp. The 

interface processes the received cumulative collision count using its built-in analytics tools 

before updating the database. This ensures that only the latest collision data is stored and 

analyzed. Additionally, if the accelerometer falls, the microcontroller sends a flag, as outlined in 
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the fall detection algorithm. ThingSpeak's built-in analytics tools include pre-set codes that run 

every 5 minutes to identify falls. If fall detection data is received, the interface automatically 

sends an email notification to the user. 

The Things Network transmits two distinct data packets at 30-minute intervals, each containing 

surface temperature readings from separate sensors. These readings are used to compute the heat 

flow rate across the window. The updated results are then stored in the database and displayed on 

the user interface at the same frequency. 

Furthermore, the built-in analytical tool's pre-set code gathers external air temperature 

information from the UBC ESB rooftop weather station website every 30 minutes. This ensures a 

comprehensive and up-to-date data analysis and visualization for users. 

10.3 Design 

10.3.1 Design Decision  

ThingSpeak, an IoT platform and analytics tool, is chosen as the data storage and user interface 

solution for our system. It allows users to collect, analyze, and visualize data from multiple 

connected devices. ThingSpeak's capacity is measured in units: one unit of the free plan provides 

the ability to process and store up to 3 million messages per year (~8,200 messages/day) and 

create up to 4 channels (customizable container for storing and visualizing data collected from 

IoT devices or other data sources) [32].  

Each channel can have up to 8 data fields that represent different types of data collected from 

devices or websites. A data field is a container that holds a single data value, such as a 

temperature reading, humidity level, or any other sensor measurement. For our project, the 8200 

messages per day available in ThingSpeak are more than sufficient to handle the maximum of 

196 data entries (calculated in section 10.3.3) collected daily. Additionally, ThingSpeak has a 

deprecated version of MATLAB built in for analysis, allowing us to read surface temperature 

data from two separate data fields, calculate heat flow rates in real-time, and store the results in 

other data fields. We can also send an email notification to users using pre-set codes in the 

analytics tools when an accelerometer fall message is detected. Moreover, the TimeControl app 

in ThingSpeak provides a flexible way to automate tasks such as heat flow rate analysis and web 

temperature data scraping by setting recurring intervals of 30 minutes. 
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For the user interface, ThingSpeak enables us to plot data fields on charts, visualize them in 

gauges, display them in tables, and export them to other tools for further analysis. Researchers 

can export all stored data from the channel, or specific data from a single data field, in one of 

three file formats. The dashboard created in ThingSpeak is presented in Appendix IX. 

10.3.2 Data Storage Design Consideration 

Research conducted by the UBC Science faculty indicates that the highest number of collision 

deaths occurred during the fall sampling period, with a rate of 1.38 collisions per day for 8 

buildings, compared to other seasons [10]. Based on this data, the number of impacts per 

building per day is approximately 0.17. For estimating the data storage requirements, one impact 

per building per day is used. Additionally, we tested the equipment and determined that it would 

only fall once per month. As a result, we assume that the device will be dropped at most once a 

month. To ensure the selected database has sufficient storage size for 1 bird strike, and 

constituent data, per day, the choice for data storage must meet the minimum specifications in 

Table 12. 

Table 12 illustrates the components considered in the selection of data storage to meet F2, F3, 

F4, F5, F6: 

Table 12: Data Storage Criteria. 

Store one data entry for each bird impact, which includes the total number of collisions for a 

specific window in a building along with the date and time of the bird collision. 

Store two separate data segments for each impact received from the microcontroller, detailing: 

• The cumulative number of bird collisions for a specific window in a building. 

• The corresponding timestamp of the bird impact. 

Store 1 individual data segment for the fall detection sent from the microcontroller. 

Store 4 individual temperature data segments updated every 30 minutes: 

• Outside air temperatures 

• Inside surface temperatures   

• Outside surface temperatures 

• Heat flow rate for window’s insulation analysis 

Store the latitude and longitude of the building that window placed when the location needs to be 

changed each time. 

Maximum data segment size of 32 characters. 
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 For the storage of collision data, each set of detection data from the microcontroller is first 

stored in a specific location and then read out during data analysis, after which it is decided 

whether the received collision data needs to be stored in a collision-specific database and 

displayed. As a result, 3 distinct data segments need to save for each impact. Additionally, since 

the microcontroller checks every 5 minutes to see if the device has been dropped, it will send the 

fall detection data only if a fall is detected.  

The maximum data segment size of 32 characters is made by observing the sample data 

(Appendix VI) downloaded from our existing channel created on the ThingSpeak platform. 

The sample data in Appendix VI shows that the timestamp has the longest data segment size of 

20 characters; therefore, 32 characters is sufficient for every individual data segment that needs 

to be stored for each bird strike.  

Given that the location of all strikes detected by a specific device is the same, the building's 

latitude and longitude only need to be stored once when the device is set up. 

10.3.3 Minimum Specification Description for Data Storage  

Minimum specifications (Table 13) are based on the size of the sample data file (Appendix VI), 

which contains 102 data entries received and stored within a 12-hour period, with a maximum 

size of 3790 bytes. This means that a maximum of 7.1 kilobytes (7283 bytes) of data storage is 

required each day to store the 196 data entries that need to be collected per day, including:   

• 48 outside surface temperature data segments 

• 48 inside surface temperature data segments 

• 48 outside air temperature data segments  

• 48 heat flow rate data segments   

• 2 collision data segments sent from the microcontroller as the impact detected  

• 1 analyzed bird impact counts data segments being stored in the database  

• 1 fall detection data sent from the microcontroller if the accelerometer falls down 

Thus, our database must have at least 213 kilobytes data storage size to store 5910 data entries 

per 30 days period. To ensure sufficient storage remaining at the end of 30-day maintenance 

period, the minimum storage size within one maintenance period needs to be at least 300 
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kilobytes to meet F2, F3, F4, NF4 and NF7. Equations used for the values contained in this 

paragraph are attached in the Appendix VII. 

Table 13: Data storage minimum specifications. 

Feature Minimum Specifications 

Storage Size 300KB 

Data Segment Length 32 

Maximum Entries of Data/day  196 

10.3.4 User Interface Design Considerations 

The following components are considered to satisfy requirements of F6 and F7 and 

characterized as minimum specifications for the UI design: 

• Display all required data through various parts 

• Represent historical data graphically 

• Export all stored data from the database to Excel 

10.3.5 Other Options Evaluated 

Other candidates that were evaluated for data storage and user interface are: 

• Cayenne [33] 

• MongoDB [34] 

• MySQL [35] 

Appendix VIII compares ThingSpeak and Cayenne to the two options that were not chosen. 

Cayenne meets all minimum requirements for data storage and user interface and was 

implemented in early iterations of the system. Due to issues encountered with the complexity of 

the system design, it was removed from the final version of the system. More details on why 

Cayenne was not implemented are presented in the Appendix VIII.  

MongoDB was excluded due to its limited free storage size, while other three options offer 

sufficient storage size, with no fee.  Although MySQL meets or exceeds the minimum 

requirements for data storage, MySQL was not selected because it does not provide dashboards 

that can be customized to satisfy the requirements for user interface, while both custom 
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dashboards of ThingSpeak and Cayenne offer a flexible way for users to manage and display 

data through multiple widgets. 

10.4 Evidence it works  

ThingSpeak is the best option for data storage and user interface in the system design. The 

calculation accuracy and stability of the heat flow rate by codes in MATLAB Analysis are tested 

in section 3.0 in Verification & Validation. The test results indicate that the heat flow rate 

calculated by the MATLAB Analysis codes is accurate, and the update interval of every thirty 

minutes meets our requirements. In addition, section 2.0 in Verification & Validation indicates 

that the timestamp received from microcontroller is correctly converted and stored into the 

ThingSpeak with its corresponding impact counts. The email that is triggered to notify the user 

that the accelerometer falling is also tested in section 3.0 in Verification & Validation, more 

detailed testing results please see the Verification & Validation section.  
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11.0 Hardware  

11.1 Hardware Enclosure 

 

 

Figure 19: Current hardware design for the outside temperature sensor. 
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Figure 20: Current hardware design for the inside temperature sensor. 

Since our device is susceptible to encountering conditions such as rain, someone dropping water 

on it, wind and being hit by objects such as tree leaves, the device’s casing must be made secure 

and able to withstand these conditions. To satisfy F5 requirement, the case is attached on the 

windowsill using Velcro and is aligned in such a way that doesn’t compromise the holes in the 

case to severe weather conditions according to NF5. The cases are printed using FDM (Fused 

Deposition Modeling) technology using PLA plastic material.  

11.1.1 Hardware Enclosure for inside  

For our inside device, the Arduino and temperature sensors are placed in a 3D printed case with 

adequate openings for wires coming in and out of the case. The case must be placed on a 

windowsill and will be secured using Velcro that is going to be attached to the bottom of the 

case. To satisfy our requirements (F5 and NF5), the case on the inside will have to satisfy an IP 

rating of 2x or above. This will mean that the case must be protected against solid objects over 

12mm (such as a finger).  
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11.1.2 Hardware Enclosure for outside  

On the outside, the case is more prone to rain and random objects, such as leaves, hail or birds, 

hitting it. This means that the outside case must have an outside rating of IP23 or higher which 

entails that it should be secure enough to be protected against solid objects over 12mm (such as a 

finger) and water spraying on it for 3 min for up to a 60-degree angle [36]. Again, the case is 

printed using the same method and will contain the Dragino sensor with openings for wires (the 

inputs and outputs of the system). The case for the outside will have 4 screw holes on the lid to 

secure the lid. In addition, the case will have a seam where a rubber cable gland will be placed to 

prevent water from going into the case. This rubber cable gland will be secured tightly when the 

lid is tightened with the screws. The case also has a rubber gasket to allow wires to come out of 

the case without compromising the case to water going in through the wholes. This is because 

the gasket is tightened on the wires.  

Velcro strip is attached to the bottom of the case. The case is attached to the window still to 

make sure it does not fall off the sill. This also helps make sure that the case will withstand wind 

and rain.  

The chosen colors for the outside and inside modules will be white as certain studies show that 

white and other bright colors are signs of danger for birds and other flying mammals. This means 

that birds will try and avoid it meaning that the modules set on the windowsill inside and outside 

are less prone to be directly hit by birds. 

11.2 Battery Powered Option 

11.2.1 Design Decisions 

The bird collision detection system was designed to be self-sufficient, environmentally friendly, 

and versatile by utilizing a lithium-ion battery with a capacity of 3.7V 3200mAh. Several factors 

influenced this decision, with the primary focus being on compatibility, longevity, efficiency, 

and flexibility in system placement. 

11.2.2 Advantages 

• Lithium-ion batteries possess a high energy density, ensuring that our compact system 

has a long-lasting and reliable energy storage solution. 
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• They exhibit a relatively low self-discharge rate compared to other rechargeable batteries, 

thus prolonging the system's operational time between recharges. 

• Lithium-ion batteries experience minimal memory effects, preventing the loss of capacity 

if they are not fully discharged before recharging. 

• Being battery-powered allows the system to be placed on numerous windows, even those 

not near a power outlet, providing increased flexibility and broader monitoring coverage. 

11.2.3 Disadvantages 

• Lithium-ion batteries can be temperature-sensitive, which could impact their performance 

and lifespan in extreme environments. 

• A dedicated charging circuit is often necessary to prevent overcharging and potential 

damage. 

11.2.4 Alternative Approaches 

Although other battery types such as nickel-metal hydride (NiMH) or lead-acid could have been 

considered, lithium-ion batteries were ultimately chosen due to their superior energy density, 

favorable discharge characteristics, and the added advantage of flexible system placement. 

11.2.5 Battery-Saving Design Decisions 

• Scheduled Data Upload: The Arduino uploads data to ThingSpeak only once every 24 

hours, reducing the frequency of wireless communication and conserving battery life. 

• Optimized Fall Detection: Fall detection tasks are called every 5 minutes, as opposed to 

continuous monitoring of the accelerometer, which reduces power consumption. 

• Efficient Task Management: The system leverages FreeRTOS tasks to manage the 

concurrent execution of tasks, ensuring minimal power consumption by running tasks 

only when necessary. 

11.2.6 Battery Life Calculation 

Based on the battery life calculations (see Appendix XI), the system can run using a rechargeable 

Lithium-ion battery (3.7V / 3200mah) for 4 days. This extended battery life has greatly increased 
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the system's versatility, allowing it to monitor a wide variety of windows without being 

dependent on a wall outlet for power. 
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Verification & Validation 
1.0 Temperature Communication System Verification 

1.1 Purpose 

The purpose of testing a temperature communication system is to evaluate its performance and 

reliability in accurately measuring, transmitting, and receiving temperature data. This test 

ensures that users are provided with accurate data on the thermal insulation performance of 

windows, thereby facilitating the achievement of low-energy objectives in new building 

construction. This test also ensures that ThingSpeak does in fact output the temperature 

measurements and is able to calculate the heat flow rate accurately.  

1.2 Equipment 

Table 14: Temperature Communication System testing equipment. 

Equipment 

1 Dragino LHT65 

2 Test window 

3 Computer [Development tool] 

1.3 Set up 

1. Register the Dragino LHT65 in The Things Network V3 by using AppEUI, DevEUI and 

the AppKey 

2. Connect the external temperature sensor DS18B20 to the Dragino LHT65 

3. Use ACT button to activate LHT65 and it will automatically join the TTN network 

4. On TTN, replace downlink queue with the command “0xA201” to set external sensor 

type to E1 Temperature Sensor to read the surface temperature data from DS18B20 

5. On TTN, replace downlink queue with the command “0x01000708” = 1800 seconds to 

change LoRaWAN End Node Transmit Interval to 30 minutes 

6. Observe the uplink data message sent from LHT65 in the Live data section 

7. Select the ThingSpeak in the Webhooks of the integrations section in the TTN 
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8. Input the ChannelId and Write API Key given in the API keys section of ThingSpeak 

9. Go to the Payload formatters section of the End devices webpage in the TTN 

10. Change the Formatter type to Custom JavaScript formatter  

11. Copy the codes given in the type of Use Device Repository formatter  

12. Add the commands to assign measured surface temperature data to the specified data 

field in ThingSpeak 

13. Open the data field used to collected data from TTN networks 

14. Observe the measured temperature data in the Dashboard of ThingSpeak 

1.4 Testing Tasks 

The testing process involves evaluating the efficiency of the communication protocols and 

interfaces used for data transmission, and analyzing the system's performance under varying 

conditions, such as temperature ranges, environmental factors, and communication loads. 

Table 15: Dragino-TTN and TTN-ThingSpeak Connection Results. 

Task Result 

1 Dragino LHT65 connection to TTN Pass 

2 TTN sending data to ThingSpeak Pass 

 

Criteria: 

• Pass: connection success 

• Fail: connection fail  

1.5 Results 

1.5.1 Task 1 

Figure 21 illustrates the smooth communication between the Dragino LHT65 and TTN through 

the LoRaWAN Network. The “TempC_DS” indicates the temperature in degree of the external 

temperature sensor (Window surface temperature) and the “field 1” indicates the specified data 

field connected in ThingSpeak. In the figure, it can be seen that both Dragino LHT65 sensors 

send temperature data (Uplink Message) once every 30 minutes verifying that the connection is 

in fact successful. 
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Figure 21: Dragino LHT65 sensor connection to TTN. 

1.5.2 Task 2 

Figure 22 depicts the connection status of the Dragino sensors with ThingSpeak. Both 

connections use the LoRaWAN network to then pass through to TTN (The Things Network). 

The connection is verified as the “Healthy” status indicates that the connection is established and 

secured. 

 

Figure 22: TTN webhook connection. 

 

Figure 23: Two surface temperature data’s display on the dashboard of ThingSpeak. 

The line charts the right side of Figure 23 illustrate the field 1 and field 2 in this ThingSpeak 

channel is connected to two separate Dragino sensors. ThingSpeak receives two surface 

temperature data packets every 30 minutes from TTN through the LoRaWAN Network. After 

that, it displays their updated values and represent these received data in line chart on the 

Dashboard of ThingSpeak.  

The line charts on the right side of Figure 23 show historical stored data in the data fields 1 and 2 

of the ThingSpeak channel. These two data fields receive surface temperature data every 30 

minutes from The Things Network (TTN) via the LoRaWAN network. The updated values are 



78 

   

 

displayed and represented in a line chart on the ThingSpeak dashboard, which also satisfy the 

requirement F8 for the user interface. This verifies that the data is read and stored on 

ThingSpeak which can later be accessed by researchers for analysis. 

2.0 Microcontroller FreeRTOS and data Communication System 

Verification  

2.1 Purpose 

The goal of the testing is to assess FreeRTOS's ability to provide deterministic and reliable task 

scheduling, meet real-time deadlines, manage system resources efficiently, and ensure overall 

system stability and robustness.  

2.2 Equipment 

Table 16: Microcontroller testing equipment. 

Equipment 

1 Arduino MKR WiFi 1010 

2 Test window 

3 Development tool [IDE] 

4 ThingSpeak Page 

5 Accelerometer 

6 Jumper wires 

7 Duct seal putty 

2.3 Set up 

1. Connect the accelerometer to the Arduino MKR WiFi 1010 

2. Fixing the accelerometer to the test window using duct seal putty   

3. Connect the Arduino MKR WiFi 1010 to the computer 

4. Verify the connections and ensure that the accelerometer is properly powered 

5. Create a new test file for FreeRTOS in the Arduino IDE  

6. Download any needed library 
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7. Complete the corresponding code for testing 

8. Open the ThingSpeak webpage to ensure real-time data visualization 

2.4 Testing Tasks 

The testing process involves running FreeRTOS on a microcontroller, executing different tasks 

with varying priorities and timing requirements, and measuring the system's performance in 

terms of task scheduling, and context switching. 

Table 17: Microcontroller testing tasks and result. 

Test Result 

1 

Plan the execution sequence of the corresponding 

threads and achieve the expected results in FreeRTOS 

by setting different priority orders and delay time 

Pass 

2 

Testing microcontroller's time data transmission 

accuracy to ThingSpeak page during simulated bird 

impact event on glass surface 

Pass 

3 

Removing the accelerometer from the window to 

simulate a fall and observing if the microcontroller can 

detect the occurrence and send correspond information 

to ThingSpeak 

Pass 

2.5 Results 

2.5.1 Test 1 

This is the conclusive outcome of Test 1, illustrating that FreeRTOS effectively and reliably 

scheduled the various tasks as per our predetermined objectives. This attests to the stability and 

dependability of FreeRTOS in the context of our project.  
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Figure 24: FreeRTOS Timing testing sequence case 1 result. 

 

Figure 25: FreeRTOS Timing testing sequence case 2 result. 

2.5.2 Test 2 

The outcome of Test 2 demonstrates that under the coordination and scheduling of the 

microcontroller and FreeRTOS, the bird impact events were accurately detected, recorded, and 

transmitted to the backend of ThingSpeak. Figure 24 shows the initialization stage of the system, 

which includes the initialization of Task 3 and 4, as well as the WiFi connection. Figure 25 

displays the information of impact detection and timestamp logging. 
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Figure 26: Initialization of the system. 

 

Figure 27: Detecting simulated bird collisions. 

The data was sent to ThingSpeak after a 3-minute interval for faster result monitoring. Figure 28 

illustrates the sending processes with three loops for collision time and total collision number. 

Figure 29 displays how the data is shown on the user interface, accurately capturing impact count 

and timing. The timing of the second collision shown on the user interface matches the detection 

time printed on Figure 27. This validates the successful implementation of our system for 

collecting and presenting bird impact data using FreeRTOS. 
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Figure 28: Sending data to ThingSpeak process. 

 

Figure 29: ThingSpeak demonstration. 

2.5.3 Test 3 

The results of Test 3 indicate that our microcontroller successfully detected the fall of the 

accelerometer and sent the information to ThingSpeak, as evident from the graph below. In 

Figure 30, during the execution of Task 3, the microcontroller detected a Y-value of -0.15 for the 

accelerometer, which is significantly lower than our threshold, indicating a fall event. In Figure 

31 and Figure 32, we observed that Task 3 ran again after 5 minutes, detecting another fall event 

and immediately suspending other tasks while sending information to ThingSpeak. When the 

reset button was pressed, Task 2 and Task 3 were reactivated, followed by Task 1 after a delay of 

5 seconds, as seen in Figure 32.  
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Figure 30: First Fall detection. 

 

Figure 31: Second Fall detection. 

 

Figure 32: After Reset button is pressed. 

3.0 Verification of Codes in the ThingSpeak’s Built-in Analytics Tools  

3.1 Purpose 

The purpose of testing several codes programmed in the MATLAB Analysis which is the built-in 

analytics tools of ThingSpeak. This section evaluates each code’s performance when ThingSpeak 

interacts with multiple devices, including the microcontroller, The Things Network, and the 
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temperature webpage of the UBC ESB Rooftop Weather Station. The goal of the testing is to 

ensure the accuracy and stability of codes developed in the MATLAB Analysis. 

3.2 Equipment 

Table 18: MATLAB Analysis Testing Equipment. 

Equipment 

1 
MATLAB Analysis in 

ThingSpeak 

2 
Dashboard Page of 

ThingSpeak 

3 
Webpage of UBC ESB 

Rooftop Weather Station 

4 Mailbox 

3.3 Tasks 

The testing processing including running the codes of each task below and observing their 

corresponding testing results to determine whether it is passed or not. 

Table 19: Contents and Results of Tasks Testing. 

Task Result 

1 
Test the calculation accuracy and stability of the heat 

flow rate by codes in MATLAB Analysis 
Pass 

2 
Test the conversion accuracy of the bird impact 

timestamp by codes in MATLAB Analysis 
Pass 

3 
Test the stability of the email notification of equipment 

fall detection by codes in MATLAB Analysis 

Pass 

 

4 

Test the stability and accuracy of codes that used to 

collect the outside air temperature collection from the 

UBC ESB Rooftop Weather Station website 

Pass 

 

3.4 Results 

3.4.1 Task 1 

From the Figure 23 in section 1.5 displays two surface temperature collected are 19.12°C and 

19.18°C respectively. Using the equation provided in section 5.1 in Design, the heat flow rate 



85 

   

 

can be calculated, which is 0.028Watts. The calculation result is same with the heat flow rate 

shown in the Figure 33 below. In addition, we can verify that the heat flow rate calculation is 

updated every 30 minutes and displayed on the dashboard via the line graph in Figure 33.  

 

Figure 33: Dashboard Display of Heat Flow Rate. 

3.4.2 Task 2 

By observing Figure 27 in the section 2.5, we can see the second impact is detected at the 

timestamp of 18:35:52 2023/4/9. From Figure 29 it is clearly shown that the second impact is 

stored with its correct timestamp Apr 09, 2023, 18:35:52, which means that the timestamp 

received from microcontroller is correctly converted and stored into the ThingSpeak with its 

corresponding impact counts.  

3.4.3 Task 3 

Figure 34 indicates that the accelerometer falling is detected at 18:56:51. After the fall 

information is detected by the 5-minute recurring codes in MATLAB Analysis, an email 

notification is sent to the user. Figure 35 shows the email contents and the time when the email 

was sent out. The email just sends after the fall message is detected.  
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Figure 34: Dashboard Display of Fall Detection. 

 

Figure 35: Notification Email Received. 

3.4.4 Task 4 

From the line chart on the Figure 36 below, it can be seen that ThingSpeak successfully retrieves 

outside air temperature data from the website of UBC ESB Rooftop Weather Station every 30 

minutes. 
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Figure 36: Dashboard Display of Outside Air Temperature. 

Moreover, the temperature data accuracy is verified by comparing the temperature data in Figure 

37 with the outside air temperature stored and displayed on the dashboard of ThingSpeak in 

Figure 38. Both temperatures around 18:40 are 8.8°C, which indicates that the collection of 

outside air temperature has very high accuracy. 
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Figure 37: Temperature Data from the UBC ESB Rooftop Weather Station. 

 

Figure 38: Dashboard Display of Outside Air Temperature. 

4.0 Hardware System 

4.1 Purpose 

The purpose of testing the 3D printed enclosures is to make sure that they are in fact waterproof 

enough to prevent water from seeping into the cases in the weather conditions that the cases will 

be put in. By conducting this testing, it can be ensured that the enclosures can be safely placed 

outside of windows and will not fall when exposed to those conditions. 

4.2 Set up for inside case 

1. Put one side of Velcro on the bottom of the case 
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2. Put the other side of Velcro on the windowsill 

3. Make sure the case is set up so that the holes for inputs and outputs are facing the 

window surface instead of the inside of the room 

4. Make sure the case is secured by pressing on it to make it stick tightly to the windowsill  

5. Poke the case with a finger or any object around 12mm in diameter  

6. Validate that the 12mm object is not making its way into the case 

4.3 Set up for outside case 

1. Put one side of Velcro on the bottom of the case 

2. Put the other side of Velcro on the windowsill 

3. Make sure the case is set up so that the holes for inputs and outputs are facing the 

window surface instead of the inside of the outside 

4. Make sure the case is secured by pressing on it to make it stick tightly to the windowsill  

5. Poke the case with a finger or any object around 12mm in diameter  

6. Validate that the 12mm object is not making its way into the case 

7. Pour drops of water on the case using a syringe  

8. Validate that water is not going into the case and that the Dragino sensor is dry 

4.4 Equipment 

Table 20: Testing Equipment. 

Equipment 

1 Velcro 

2 Outside case 

3 Inside case  

4.5 Task Results 

Table 21: Task Results. 

Task Result 

1 
Test that 12mm object is not making its way into the 

outside case 
N/A 
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2 
Test that 12mm object is not making its way into the 

inside case 
Pass 

3 
Test that drops of water are not going into the outside 

case 

N/A 

 

4 
Test that drops of water are not going into the inside 

case 

Pass 

 

 

Due to a delay in the printing of the outside case, the testing has not been done to ensure 

waterproofness. The waterproofness is expected to match an IP rating of x3.  
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Appendix II: Impact force estimation 

This section outlines the process of estimating the impact force for bird-window collisions.  

Impact force can be computed using the following formula: 𝐹 = 𝑚𝑣2/2𝑑 [37], where 𝑚 is the 

mass of different bird species, 𝑣 is the velocity of bird, and 𝑑 is the distance over which impact is 

delivered (length of the bird). Calculated force in Newtons can then be converted to g-force by: 

𝐹/9.8.  

As discussed in section 2.2.3, impact force is estimated for the following five bird species:  

• Varied Thrush 

• American Robin 

• Fox Sparrow 

• Darkeyed Junco 

• Golden-Crowned Kinglet 

Mass, length, and velocity data for each species are collected, and impact force is estimated.  

Table 22: Mass, speed, and lengths data for each bird species [38]–[43]. 

Species Min mass [g] Max mass [g] 
Min speed 

[m/s] 

Max speed 

[m/s] 

Min length 

[cm] 

Max length 

[cm] 

Varied Thrush 65 100 1 15 19 26 

American 

Robin 
77 85 1 15 20 28 

Fox Sparrow 26 44 1 15 15 19 

Darkeyed 

Junco 
18 30 1 15 14 16 

Golden-

Crowned 

Kinglet 

4 8 1 15 8 11 

Table 23: Estimated minimum and maximum g-force for each bird species. The minimum and maximum g-force for 

all five species are highlighted. 

Species Min g-force [g] Max g-force [g] 

Varied Thrush 0.01275510204 6.04189044 

American Robin 0.01403061224 4.878826531 

Fox Sparrow 0.006981740064 3.367346939 

Darkeyed Junco 0.005739795918 2.459912536 

Golden-Crowned Kinglet 0.00185528757 1.147959184 
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Appendix III: Complete list of accelerometer candidates 

Table 24: Full list of accelerometer candidates. 

Sensor candidates Price Sensor type Measurement range 

[+/-g] 

Sensitivity Operating 

temperature [℃] 

Operating voltage [V] Interface URL Notes 

Adafruit Industries 
LLC, ADXL345 

Breakout Board 

CA$25.76 Capacitive, Digital 2,4,8,16 selectable 31.2mg/LSB for +/-
16g 

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d
etail/adafruit-industries-

llc/1231/4990764 

Arduino library 
available 

DFRobot, ADXL345 

Breakout Board 

CA$11.63 Capacitive, Digital 2,4,8,16 selectable 31.2mg/LSB for +/-

16g 

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/dfrobot/SEN0032/6588489 

Arduino library 

available 

STMicroelectronics, 

AIS3624DQ 
Breakout Board 

CA$23.49 Capacitive, Digital 6,12,24 selectable 5.9mg/LSB for +/- 

12g 

-40 to 105 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/stmicroelectronics/STEVAL-
MKI158V1/5180532 

May arrive with I/O 

pins soldered. No 
library available 

Analog Devices Inc., 
ADXL357 

Evaluation Board 

CA$67.08 Digital 10,20,40 selectable 0.039mg/LSB for +/- 
20g 

-40 to 125 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d
etail/analog-devices-inc/EVAL-

ADXL357Z/8554443 

May arrive with I/O 
pins soldered. No 

library available 

SparkFun 

Electronics, 

STMicroelectronics 
H3LIS331DL 

Evaluation Board 

CA$19.87 Capacitive, Digital 100, 200, 400 selectable 49mg/LSB for +/- 

100g 

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/sparkfun-electronics/SEN-

14480/8032538 

Arduino library 

available 

SparkFun 

Electronics, 
STMicroelectronics 

LIS331HH 

Evaluation Board 

CA$21.86 Capacitive, Digital 6,12,24 selectable 6mg/LSB for +/- 12g -40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/sparkfun-electronics/SEN-
10345/5140799 

Example firmware 

for AVR 
microcontroller 

available 

Adafruit Industries 

LLC, ADXL343 
Evaluation Board 

CA$8.76 Capacitive, Digital 2,4,8,16 31.2mg/LSB for +/- 

16g 

-40 to 85 3.3V compatible SPI, I2C https://www.digikey.ca/en/products/d

etail/adafruit-industries-
llc/4097/9951931 

Arduino library 

available 

Senther Technology, 
540C Embedded 

Piezoelectric 

Accelerometer 

CA$55.85 Piezoelectric, 
Analog 

50 - 2000 40mV/g for +/- 50g -40 to 125 3.3V and 5V 
compatible 

Analog https://www.digikey.ca/en/products/d
etail/senther-

technology/540C/16634003 

Decoupling capacitor 
and other 

components required. 

Arduino needs to be 
able to resolve the 

measurement 

Senther Technology, 

540A Embedded 
Piezoelectric 

Accelerometer 

CA$59.48 Piezoelectric, 

Analog 

500 5mV/g typical -55 to 150 3.3V and 5V 

compatible 

Analog https://www.digikey.ca/en/products/d

etail/senther-
technology/540A/13574361 

Decoupling capacitor 

and other 
components required. 

Arduino needs to be 

able to resolve the 
measurement 

https://www.digikey.ca/en/products/detail/adafruit-industries-llc/1231/4990764
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/1231/4990764
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/1231/4990764
https://www.digikey.ca/en/products/detail/dfrobot/SEN0032/6588489
https://www.digikey.ca/en/products/detail/dfrobot/SEN0032/6588489
https://www.digikey.ca/en/products/detail/stmicroelectronics/STEVAL-MKI158V1/5180532
https://www.digikey.ca/en/products/detail/stmicroelectronics/STEVAL-MKI158V1/5180532
https://www.digikey.ca/en/products/detail/stmicroelectronics/STEVAL-MKI158V1/5180532
https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL357Z/8554443
https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL357Z/8554443
https://www.digikey.ca/en/products/detail/analog-devices-inc/EVAL-ADXL357Z/8554443
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-14480/8032538
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799
https://www.digikey.ca/en/products/detail/sparkfun-electronics/SEN-10345/5140799
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4097/9951931
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4097/9951931
https://www.digikey.ca/en/products/detail/adafruit-industries-llc/4097/9951931
https://www.digikey.ca/en/products/detail/senther-technology/540C/16634003
https://www.digikey.ca/en/products/detail/senther-technology/540C/16634003
https://www.digikey.ca/en/products/detail/senther-technology/540C/16634003
https://www.digikey.ca/en/products/detail/senther-technology/540A/13574361
https://www.digikey.ca/en/products/detail/senther-technology/540A/13574361
https://www.digikey.ca/en/products/detail/senther-technology/540A/13574361
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Appendix IV: Complete Comparison Table of Microcontroller candidates 

Table 25: Microcontroller Candidates vs. Imperative Criteria for Project Success [44]. 

 Arduino 

Uno WiFi 

Rev2 

Raspberry 

Pi 3 

Model B+ 

Arduino 

NANO 3 

Arduino 

Uno R3 

Arduino 

Mega 

ESP32 

NodeMCU 

ESP8266 

Thing 

 Arduino MKR 

WiFi 1010 

Number / 

type of I/O 

(Digital) 

14 26 14 14 54 36 17 14 

Number I/O 

pin (Analog) 

6/0 9 

 

8/0 

 

6/0 

 

16/0 15 16/0 

 

7/1 

 

Price (＄) 44.9 135 22 22 38.5 17.8 18.5 38.6 

Size 69*35mm 

 

85 

*56mm 

45*18mm 69*53mm 102*53mm 52*31mm 80*30mm 61.5*25mm 

Programming 

Language 

C/C++/ 

Python 

 

C/C++/ 

Python 

C/C++ 

 

C/C++ 

 

C/C++ 

 

python python 

 
C/C++ 

Bluetooth no yes no no no yes yes yes 

USB  yes yes yes yes yes yes yes yes 

Temperature 

Sensor 

no no no no no yes yes no 

WIFI 

Availability 

yes yes no no no yes yes yes 

Flash 

Memory 

48KB [use flash 

card] 

32KB 32KB 256KB 4M 512KB  256KB 

 

Power jack yes yes no yes yes no no [Has external 

power jack 

shell] 

 

Weight 25g 50g 5g 25g 37g 10g 11g 32g 

Processor 

speed 

20MHz 1.2Ghz 16MHz 16MHz 84MHz 80 MHz 160MHz 48MHz 

Cayenne 

Supported 

Yes Yes No 

 

No 

 

No 

 

Yes Yes Yes 
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ThingSpeak 

Supported 

Yes Yes No 

 

No 

 

No 

 

No Yes Yes 

 

Appendix V: Flash Memory Calculations 

In this section, the process of determining the minimum flash memory capacity for the microcontroller is 

discussed. 

To begin with, the team utilized the code for the base detection system and tested it on the Arduino Uno WiFi Rev2 

to assess its flash memory requirements. Considering that the flash memory capability of Arduino Uno WiFi Rev2 

falls within the mid-range among the candidate microcontrollers, the amount of flash memory needed to run the 

bird impact data detection system on Arduino Uno WiFi Rev2 was found to be 200% of its flash memory capacity. 

This resulted in a minimum requirement of 96KB of flash memory for the entire detection system, calculated as 

200% of 48KB [200% x 48KB =96KB]. The minimum flash memory requirement for the data transfer code was 

determined to be 43.2KB. Hence, the total minimum flash memory capacity needed for the microcontroller was 

determined to be 140KB. 

Appendix VI: Sample Collected Data  
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Figure 39: Example of ThingSpeak data exported as a spreadsheet. 

Appendix VII: Minimum Data Storage Calculation Process 
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Appendix VIII: Complete Comparison Table of Data Storage Candidates 

Table 26: Data Storage Evaluation Comparison [7], [33], [45]–[48]. 

Feature Cayenne MongoDB MySQL ThingSpeak 

Storage Size Unlimited 512GB Unlimited ~8200 messages/day 

Data Segment 

Length 

Unlimited Unlimited Unlimited Unlimited 

 

Unique Data 

Segments 

Unlimited Unlimited Unlimited ~8200 messages/day 

Build-in Analytics 

Tool 

No Yes Yes Yes 

Self-Contained 

User Interface 

Tool 

Yes Yes No Yes 

 

Deployments - Cloud, SaaS, 

  Web-Based 

-Desktop: 

Windows,     

  Mac, Linux 

-Mobile: Android,   

  iPhone 

- Cloud, SaaS, 

  Web-Based 

-Desktop: Windows,   

  Mac, Linux 

-Mobile: not  

  available 

- Cloud, SaaS, 

  Web-Based 

-Desktop: Windows,  

  Mac 

-Mobile: not available 

- Cloud, SaaS, Web-

Based 

 

Appendix IX: User Interface Visualisation 
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Figure 40: ThingSpeak dashboard with counters and charts to visualize the collision count, heat flow rate, temperatures, and 

accelerometer status. 

Appendix X: Communication Protocols and Authorizations 

Table 27: Definitions of varying types of communication protocols and authorizations. 

HTTP (Hypertext Transfer Protocol) 

An application protocol that enables the transfer of data over the internet. It is the foundation of data 

communication for the World Wide Web and is used to fetch resources such as HTML files, 

images, and videos from web servers to web browsers. HTTP runs on top of the TCP/IP network 

protocol and generally uses port 80. 

HTTPS (Hypertext Transfer Protocol Secure) 

An extension of HTTP that provides security features such as data encryption and server 

authentication. It operates on top of the SSL/TLS encryption protocol to ensure that data transmitted 

between the client and server is secure and cannot be intercepted by third parties. HTTPS typically 

uses port 443. 

MQTT (Message Queuing Telemetry Transport) 

A lightweight messaging protocol designed for use in constrained environments with limited 

bandwidth and low computational power. It is commonly used in IoT applications where devices 

need to communicate with each other and with servers. MQTT is ideal for machine-to-machine 

(M2M) communication because it requires minimal network bandwidth, supports bi-directional 

communication, and allows for disconnected operation. Its efficiency and scalability have made it a 

popular choice for IoT applications, especially those involving sensors and remote devices. 

IEEE 802.11 

A set of standards for wireless local area networks (WLANs) developed by the Institute of 

Electrical and Electronics Engineers (IEEE). The standards specify the physical and data link layer 

protocols for wireless communication, ensuring that devices from different manufacturers can 

interoperate with each other. 

OAuth 2.0 

An authorization protocol that enables third-party applications to obtain limited access to a user's 

data on another web service without requiring the user's credentials. It provides a secure way to 

access an API by using a token that represents the authorization granted to the application. OAuth 
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2.0 can be used with various types of APIs and is commonly used for social networking, digital 

media, and cloud computing services. 

API Key 

A unique identifier that grants access to an API (Application Programming Interface) to an 

application or user. It serves as a security measure by preventing unauthorized access and tracking 

API usage. An API Key is usually included in API requests and is validated by the server to 

determine if the request is authorized. It is commonly used for payment gateways, social 

networking, and other web-based services. 

LPWAN 

LPWAN, or Low-Power Wide-Area Network, is a wireless communication protocol designed for 

Internet of Things (IoT) devices. LPWAN allows for long-range communication with low power 

consumption, making it ideal for IoT applications that require devices to operate for years on a 

single battery charge. LPWAN protocols use unlicensed frequency bands and spread-spectrum 

technology to transmit data wirelessly over long distances with minimal infrastructure requirements.  

Appendix XI: Microcontroller Battery Charging Calculation 

This section focuses on calculating the power consumption and battery charge life of the microcontroller when 

running the required program. Based on research [30], [49], the WiFi connection is the key function of the Arduino 

MKR WiFi 1010 board that impacts battery life: when linked to an access point and data transfer is in progress, it 

consumes roughly 100mA [29]. If the WiFi NINA module is not in use, the microcontrollers continual running 

tasks use roughly 20 mA at that time.  Based on the battery life calculation equation: 

Battery Life = (Battery Capacity)/(Average Current Consumption) *0.9 

[The factor of 0.9 is used because it considers other factors that may affect battery life, such as ambient 

temperature, cycling, and battery chemistry.] 

On average, the WiFi module takes 1 minute to transfer information to ThingSpeak. The average number of times 

it is used in a day is once, and the total time used is 1*1 = 1 minutes, which occupies 0.006944% of the time in a 

day. Therefore, the average energy consumption for a day is 0.006944 % * 100mA + 99.305%*30mA = 20.04859 

mA.  Using our selected 3.7v 3200mAH lithium-ion battery, the microcontroller can be powered for up to [(3200 / 

24) / (30.4859)] *0.9 = 6.648days. 

Appendix XII: Ranking of Criteria for microcontroller 

Table 28: Ranking of Criteria Points with respect to success of the project via requirements and constraints. 

Criteria Importance  

Number / type of I/O (Digital) High 
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WiFi Availability High 

Flash Memory High 

Number I/O pin (Analog) Mild-High 

Power jack Mild-High 

Price ($) Mild-High 

Size Medium 

Weight Medium 

Processor speed Medium 

USB Connection Low 

Bluetooth Low 

Programming Language Low 

Integrated Temperature Sensor Low 

Appendix XIII: Cayenne Information 

Cayenne, a free data service platform provided by myDevices [33], was initially considered as the primary option 

for data storage and user interface in our system. It meets or exceeds all our minimum requirements for data 

storage and offers customizable dashboards to satisfy our user interface needs. Additionally, it supported data from 

multiple microcontrollers and other hardware through unique identifiers and wireless networks. These were the 

main reasons why we implemented Cayenne in the early stages of our system. 

However, as we looked to simplify the system and reduce costs, we replaced Cayenne with ThingSpeak. 

ThingSpeak was able to analyze the collected data using its built-in analytics tools, whereas Cayenne failed to 

calculate the heat flow rate by sharing surface temperature data from two separate sensors. As a result, Cayenne 

was not included in the final design of the system. 
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