Wesbrook Mall Redesign – Phase 4

Prepared by: Evan Kear, Bagas Linanda, Nish Manesh, Joshua McAllister, Joseph McNeill, Omeid Niyaz

Prepared for:

Course Code: CIVL 446

University of British Columbia

Date: 8 April 2022

Disclaimer: “UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a report”.
Disclaimer: “UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project/report and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a project/report.”
Executive Summary

BOJNOJ Consultants has created a detailed design report which describes our suggested design for Phase 4 of the Wesbrook Mall Redesign from W 16th Avenue to Thunderbird Avenue. In recent years, the University of British Columbia campus has experienced consistent development and growth. As the population of both the campus and the Point Grey area in general continues to increase, ensuring accessibility is key to maintaining the well-being of all residents. Therefore, the main objective of the redesign is to provide a sustainable, resilient, and efficient solution to the transportation needs of the UBC community. Our team considered criteria from a wide range of perspectives and have created a design that prioritizes both mobility and environmental protection to improve the experience for all users.

BOJNOJ Consultants’ proposed design will create a separate raised cyclist lane in both the northbound and southbound direction. The positioning of the parking lanes will be swapped with the current cycling lanes to eliminate conflicts between vehicles and cyclists and prevent accidents. An overpass will be added near the Panhellenic Village to comply with UBC’s desires. Additionally, several green infrastructure upgrades will be implemented throughout the corridor to improve rainwater infiltration.

Additionally, the necessary maintenance has been accounted for and our team has provided the advised procedures to ensure proper function of all key corridor components. Taking into consideration geometry rearrangements, infrastructure upgrades, and overpass construction, the overall project is estimated to cost $6,047,901.61. Construction is scheduled to begin early May 2022 and be completed over 12-week period. The following report documents our detailed design solution, the decision-making process used to arrive at that design and important constraints and criteria evaluated.
Table of Contents

Executive Summary ... 2

1.0 Introduction .. 1

2.0 Site Overview .. 3

3.0 Project Overview ... 4

3.1 Objectives .. 4

4.0 Design Criteria ... 5

4.1 Technical Considerations ... 5

4.2 Economic Considerations ... 5

4.3 Construction Planning Considerations ... 6

4.4 Regulatory Considerations .. 6

4.5 Environmental Considerations ... 6

4.6 Community and Societal Considerations .. 6

5.0 Description of Detailed Design ... 7

5.1 General Layout .. 7

5.2 Traffic Infrastructure .. 9

5.2.1 Road and Curb Design ... 9

5.3.1 Raised and Protected Bike Lane ... 11

5.4.1 Pedestrian Sidewalk .. 13

5.5 Pedestrian Overpass .. 15

5.5.1 Design Considerations .. 15

5.5.2 Roadway Span .. 15
5.5.3 Design Loads ... 16
5.5.4 Description Overview ... 16
5.5.5 Structural Components ... 17
5.5.6 Art Barrier .. 17
5.5.7 Planters .. 18
5.5.8 Drainage .. 18
5.5.9 Other Elements ... 19
5.5.10 Materials and Dimensions ... 19

6.0 Environmental Infrastructure .. 20

6.1 Green Infrastructure .. 20
6.1.1 Technical Considerations .. 21
6.1.2 Green Space ... 21
6.1.3 Raised Planters on Overpass ... 21
6.1.4 Permeable Asphalt Cyclist Lanes .. 22
6.1.5 Rain Gardens .. 23

6.2 Hydrological & Stormwater Impacts .. 24

7.0 Vehicle Traffic Flow Analysis (Synchro) .. 26

8.0 Service Life Maintenance Plan .. 30

8.1 Roadway ... 30
8.2 Green Infrastructure ... 30
8.3 Pedestrian Overpass .. 31
9.0 Construction Work and Schedule

9.1 Construction Sequence

9.2 Traffic Management Plan

9.3 Construction Requirements

9.4 Anticipated Issues

10.0 Standards, Codes, Guidelines, and Software Utilized

11.0 Detailed Cost Estimate (Class A*)

12.0 Conclusion

13.0 Appendices

Appendix A: References

Appendix B: Sample Calculations

Green Infrastructure Calculations

Overpass Preliminary Structural Analysis Calculations

Appendix C: Construction Schedule

Appendix D: Cost Estimate Breakdown

Appendix E: Project Management Documentation

Project Charter

Appendix F: Environmental Aspects

Appendix G: Detailed Design Drawings
LIST OF FIGURES

Figure 1: Overhead View of the Site... 3

Figure 2: Paving Issues ... 4

Figure 3: Sections of Wesbrook Mall Corridor ... 7

Figure 4: Illustration of Design in Section 3 Near the 2900 Block Bus Stop ... 8

Figure 5: Overpass Footprint ... 17

Figure 6: Typical Overpass Cross-Section .. 18

Figure 7: Cross Section of Raised Planters .. 22

Figure 8: Cross Section of Permeable Pavement Cyclist Lane ... 23

Figure 9: Rain Gardens 1, 2, and 3 (from left to right) ... 23

Figure 10: Cross Section of Rain Garden 1 ... 24

Figure 11: Syncrh06 Model ... 27

Figure 12: Wesbrook Mall & W 16th Ave Roundabout Synchro Simulation ... 28

Figure 14: R4 Bus Diversion ... 36

Figure 15: Phase 1 Traffic Management .. 37

Figure 16: Phase 2 Traffic Management .. 37

Figure 17: Phase 3 Traffic Management .. 38
LIST OF TABLES

Table 1: Road Pavement Thickness and Material ... 9
Table 2: Road Lane Widths ... 9
Table 3: Bicycle Lane and Buffer Widths ... 11
Table 4: Bike Lane Pavement Thickness and Material .. 11
Table 5: Benefits of Raised and Protected Bike Lane .. 12
Table 6: Pedestrian Sidewalk Thickness and Material ... 14
Table 7: Design Loads for Overpass .. 16
Table 8: Primary Overpass Dimensions ... 19
Table 9: Materials for Pedestrian Overpass .. 20
Table 10: Approximate Green Roof Water Absorption ... 25
Table 11: Approximate Rain Garden Water Absorption ... 25
Table 12: Approximate Permeable Concrete Water Absorption .. 26
Table 13: Wesbrook Mall & Thunderbird Blvd Peak Flow Data ... 27
Table 14: Wesbrook Mall & W 16th Ave Peak Flow Data ... 27
Table 15: Thunderbird Blvd & Wesbrook Mall Intersection Analysis 28
Table 16: W 16th Ave & Wesbrook Mall Roundabout Analysis ... 28
Table 17: Phase 1: Construction of northbound phase ... 33
Table 18: Phase 2: Construction of southbound phase (pedestrian side) 34
Table 19: Phase 3: Construction of southbound phase (median side) 34
Table 20: All Phases: Pedestrian Overpass ... 35
Table 21: List of Construction Requirements ... 38

Table 22: Standards, Codes, Guidelines, Software Utilized ... 40

Table 23: Total Cost Summary ... 41

Table 24: Annual Operations and Maintenance Cost .. 42

Table 25: Consulting Services Costs .. 54

Table 26: Construction Activities Cost .. 54

Table 27: Total Cost Summary ... 57
1.0 Introduction

BOJNOJ Consultants have been given the opportunity by UBC SEEDS to develop a detailed design report for phase 4 of the redesign of Wesbrook Mall, specifically the area between Thunderbird Boulevard and W 16th Avenue. As one of the primary arterial roads in the region, Wesbrook Mall is a critical corridor in funneling thousands of users to and from UBC each day. Wesbrook Mall serves as the primary access road to the eastern edge of the UBC campus, along which several residences, university buildings, and amenities are situated. Due to both the natural aging of infrastructure and the changes in the needs of its userbase, Wesbrook Mall has been undergoing a significant makeover, with two of the planned four segments having already undergone modernization, and construction for the third stage set to commence in early 2022.

This development is crucial for improving the quality of transportation at UBC. BOJNOJ Consultants' process began with fact-finding and site visits, to determine the existing geometry, facilities, and traffic patterns. Additionally, BOJNOJ Consulting was provided with a set of demands, preferences, and constraints by the University of British Columbia. This information was utilized as the basis to create a proposal and multiple design options for the project. The advantages and disadvantages of each of these options were considered, and our final design option was selected using a weighted decision matrix.

This report will breakdown, in detail, all requirements and constraints considered and the various components of our design. The design was completed to improve the efficiency, accessibility, safety, and aesthetic appeal of the area. In addition, the design will be comprehensively broken down and shown in terms of materials, drawings, and our rationale behind these decisions.
The following table outlines the key tasks completed by various team members:
2.0 Site Overview

The project site for Phase 4 of the Wesbrook Mall Redesign is located between the streets of W 16th Avenue and Thunderbird Boulevard. It is important to note that since the entire university resides on First Nations’ territory, the appropriate First Nations have been consulted by our team regarding the proposed project. The current roadway does not accommodate all modes of transportation very well and can be dangerous to use. This is due to the natural aging of the site and the unclear or cluttered layout of the street. Figure 1 below displays an overviewed image of the site analyzed in this report:

![Figure 1: Overhead View of the Site](image)

One of the main flaws with the area that was noticed is that the current roadway paving is in poor quality. There are potholes and cracks as shown in Figure 2 below. New paving will be needed along much of the roadway. Examples can be seen below:
3.0 Project Overview

3.1 Objectives

The main objective of the Phase 4 Wesbrook Mall Redesign is to provide a sustainable, resilient, and efficient solution to the transportation needs of the UBC community. The following objectives were included into the project scope and guided our design process.

- Provide seamless connection with previous developments (Phase 2) completed north of the project site and the roundabout at W 16th Avenue to the south.
- Design to prioritize transit, cyclists, and pedestrians over private vehicles
- Minimize overall costs and optimize construction scheduling
- Construct a pedestrian tunnel or overpass south of Thunderbird Arena
- Integrate green infrastructure into the design to improve stormwater management
- Include efficient and safe pick-up/drop-off/short-term parking facilities for field users with separated bike lane.
- Minimize loss of existing parking space
- Minimize removal of trees and vegetation loss
4.0 Design Criteria

4.1 Technical Considerations

The following were the primary technical criteria used to inform the general design:

- Ensure an efficient and improved traffic flow for transit riders, cyclists and pedestrians
- Ensure an efficient short-term parking system for sporting events pick up/drop off
- Ensure a coherent connection with the Phase 2 design and roundabout on W 16th Avenue
- Maintain the same amount of parking vehicles available for private vehicles as before
- Retain substantial rainwater with green infrastructure
- Must provide a 50-year design life

Specific to the overpass design are the following parameters:

- An expected annual usage of 80,000 pedestrians
- Limited interference with bicycle, transit, and vehicle traffic
- Creation of additional infiltration area, and appropriate drainage pathways
- Reduce likelihood of pedestrian-vehicle collisions along Wesbrook Mall corridor

4.2 Economic Considerations

BOJNOJ Consultants strived to create a design that is both economical and feasible for the current economic conditions. With the world still reeling from the effects of the COVID-19 pandemic, there are additional considerations that must be made in terms of the economic feasibility of the project. The global supply chain issue has impacted almost every aspect of the economic system. Material prices around the world have gone up in addition to transportation and labour costs. Inflation has reached a high of 7.9% in February of 2022. These economic factors influenced our decision making in terms of the budget and design.
4.3 Construction Planning Considerations

The following considerations were taken into account with regard to construction planning:

- The time period over which the project will be completed
- Material/material removal needs for overpass or underpass
- Maintaining adequate traffic flow during disruptions
- Determine necessary construction services (paving, concrete pouring, etc.)

4.4 Regulatory Considerations

BOJNOJ Consultants followed all the standards and codes as set out by the relevant authorities. This includes engineering manuals and building codes from both government and non-government organizations. See Section 10.0 for a full list of standards and regulations consulted in the design process.

4.5 Environmental Considerations

With the ongoing impact of climate change on the local community, it was important to consider the environmental impacts of the project. To this effect, a range of green infrastructure was integrated throughout the corridor to mitigate the impacts of excess rainfall. More specifically, the team focused on improving the stormwater management of the corridor. Some of the key criteria during the design process are listed in the 2.0 Project Objectives section above. A full description of the green infrastructure incorporated into the design and the environmental analysis conducted is provided in Section 7.0 Environmental Aspects.

4.6 Community and Societal Considerations

Stakeholder engagement was a major priority throughout the design process. This engagement allowed to BOJNOJ to gain an understanding of the community priorities and values, which ultimately influenced the design process. Key stakeholders incorporated include the following:
The key feedback received from this consultation was regarding the bike lane, which current in its location causes conflicts with vehicles. Cyclists may not be comfortable with buses crossing into their space to access the bus stops, and cars crossing into their space to access the parking.

5.0 Description of Detailed Design

5.1 General Layout

The proposed modifications to the Wesbrook Mall corridor that spans between Thunderbird Blvd and W 16th Ave can be seen in Appendix G (Detailed Design Drawings). Due to the length of the corridor, the corridor will be split into four sections for the purposes of this report. Figure 3 below displays the sections and their corresponding titles.
To describe some of the features in the design, a close-up illustration of Section 3: RCMP, specifically around the 2900 Block bus stop, is shown below in Figure 4. The illustration below displays all the key facilities on the corridor such as a bus stop, parking lane, bike lane and standard travel lane. On the left side of the figure, the new position of the raised and protected bike lane can be seen in between the parking lane and green space. On the right side of the figure, a protected bike lane is shown curving around a bus stop with the pedestrian sidewalk to its right.

Figure 4: Illustration of Design in Section 3 Near the 2900 Block Bus Stop
5.2 *Traffic Infrastructure*

5.2.1 Road and Curb Design

To determine the necessary thicknesses for road design, our team consulted the City of Vancouver Engineering Design Manual. Based on these guidelines, the following dimensions were determined for the material thicknesses. These specifications meet the requirements for bus routes and therefore will be used for the entire road section. The thickness and type of material that will be used for the road and curb design is based on the City of Vancouver’s Engineering Design Manual. These extend to specifications for bus routes and therefore can be applied to the entire road section.

<table>
<thead>
<tr>
<th>Pavement Structure Type</th>
<th>Minimum Required Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Surface Course</td>
<td>50</td>
</tr>
<tr>
<td>AC Lower Course</td>
<td>180</td>
</tr>
<tr>
<td>Granular Base</td>
<td>150</td>
</tr>
<tr>
<td>Subbase</td>
<td>300</td>
</tr>
</tbody>
</table>

Table 1: Road Pavement Thickness and Material

Dimensions for the travel and parking lanes were all compared with City of Vancouver Engineering Design Manual which is assumed to reflect the requirements in the BC Ministry of Transportation Design Guidelines. The width of the two northbound travel lanes as well as the southbound travel lane will be slightly reduced, however, their lane widths throughout the corridor will be consistent.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Lane Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Travel Lane without Curb</td>
<td>3.3</td>
</tr>
<tr>
<td>General Travel Lane with Curb</td>
<td>3</td>
</tr>
<tr>
<td>Bus Lane</td>
<td>3.3</td>
</tr>
<tr>
<td>Parking Lane</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 2: Road Lane Widths
A road grade of 2.5% is applied to the entire road corridor for stormwater runoff to be diverted into the stormwater management facilities implemented in our design. As the road corridor will not be symmetrical due to different road lane widths, the road grade will still begin at the centerline of each road direction. Stormwater runoff will be diverted away from the centerline and onto the curb. The grade is visualized in the Cross-Section View detailed drawing shown in Appendix G (Detailed Design Drawings).

The curb that will be used throughout the corridor will be Concrete Curb Type F which is a curb specifically designed to be adjacent to bicycle lanes. The detailed dimensions of the Concrete Curb Type F are shown in Appendix G (Detailed Design Drawings).

The dimensions of the bus bays followed specifications from TransLink's Bus Infrastructure Design Guidelines. Specifically, the bus bays were designed to accommodate the larger articulated bus which is a major component of TransLink’s fleet. A detailed drawing of the area and the cross-section of it is available in Appendix G (Detailed Design Drawings).

Even though the road widths meet the minimum requirements, almost all the road widths have been reduced by approximately 0.1-0.7 meters depending on the section in the corridor. While this will reduce the LOS of private vehicle usage, the reduction in road widths was necessary to accommodate for space for the new raised and protected bike lanes and buffer. This reflects the prioritization of cycling and multi-modality in our design philosophy. On top of accommodating the new bike lanes, the reduction in road widths results in a net increase in green space which will improve stormwater management. The net increase in green space will be elaborated in Section 7.0 Environmental Infrastructure. There was heavy emphasis on keeping the existing features such as parking and minimizing any tree loss which resulted in very limited space constraints. These aspects ultimately led to the reduction in road width for entire corridor.

A grade of 2.5% was utilized as per road design guidelines. Given the large volume of precipitation that falls on Vancouver throughout the year, a steeper grade of 2.5% versus 2% would allow for the water to runoff more quickly which prevents any sediment collection on the road.
The use of Concrete Curb Type F was determined based on its suitability to be placed adjacent to a bicycle lane as stated in the City of Vancouver Engineering Design Manual. Its applicability is demonstrated by the curb width, which matches with buffer requirements for a raised and protected bike lane of 0.15 meters. This will be elaborated in the following section.

5.3.1 Raised and Protected Bike Lane

Like the road design, the dimensions for the raised and protected bike lanes meet the minimum requirements set out in the City of Vancouver Engineering Design Manual.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle Lane</td>
<td>2</td>
</tr>
<tr>
<td>Bike Lane Buffer next to Travel Lane</td>
<td>0.15</td>
</tr>
<tr>
<td>Bike Lane Buffer next to Parking</td>
<td>0.7</td>
</tr>
</tbody>
</table>

The curb ramp that will connect the road to the protected and raised bike lane will have a grade of 1:12.8 or a length of 1.8 meters. It will have a height of 150 mm above the road grade.

The material thicknesses of the bike lane meet the minimum specifications stated in the Metro Vancouver Stormwater Source Control Guidelines. The main material that allows for the permeability is the permeable asphalt. The thicker layer underneath the top surface is reflective of the need for extra support for this type of road design as it is generally considered to be weaker compared to standard road pavement.

<table>
<thead>
<tr>
<th>Pavement Structure Type</th>
<th>Minimum Required Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeable Asphalt</td>
<td>80</td>
</tr>
<tr>
<td>Aggregate Bedding</td>
<td>50</td>
</tr>
</tbody>
</table>
A raised and protected bike lane was determined to be the most optimal solution due to the safety and compatibility of the facility in providing the best experience for cyclists. The following table presents the benefits of implementing a raised and protected bike lane along this corridor. In addition to the clear benefits of comfort and safety, some of the benefits stated below such as preventing cyclists from using sidewalk were based on research by NACTO.

Table 5: Benefits of Raised and Protected Bike Lane

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminate Vehicle Conflicts</td>
<td>The raised and protected bike lane will provide riders with dedicated lanes that eliminate the presence of cars and buses which pose the greatest risk to cyclists' safety. The separation of bikes from vehicles will provide the most impactful change in terms of improving the safety and comfort of cyclists.</td>
</tr>
<tr>
<td>Integration with Phase 2 of Wesbrook Redesign</td>
<td>The previous phases of the Wesbrook Mall development implemented raised and protected bike lanes as well. The consistency of the raised and protected bike lanes along the corridor will improve the overall experience of cycling along Wesbrook Mall.</td>
</tr>
<tr>
<td>Separation of Cyclists and Pedestrians</td>
<td>As a result of the poor existing cycling infrastructure, cyclists may be tempted to use the sidewalks to travel along the corridor. By providing a dedicated lane to cyclists, it will deter cyclists from using the sidewalks which improves the safety of pedestrians.</td>
</tr>
<tr>
<td>User Accessibility</td>
<td>It is likely that the current cycling infrastructure deters some number of potential cyclists. By providing a more safe and comfortable experience, it may encourage more people to travel along this corridor using bikes.</td>
</tr>
</tbody>
</table>
Because buses and private vehicles will not need to cross and drive over the bike lane, the loads that the bike lanes will experience will be significantly reduced. This will extend the lifespan of the bike lane and reduce overall maintenance required on the bike lane.

With a width of 2 meters, the new bike lanes will provide sufficient space for cyclists to comfortably travel along the corridor. It will allow cyclists to overtake one another if they that situation arises which is a key feature of any bike lane. Furthermore, the width of the bike lane will stay the same throughout the corridor which provides key benefits. These include simplified construction procedures and an improved cycling experience for riders.

The width of the bike lane will stay the same throughout the corridor which provides key benefits. These include simplified construction procedures and an improved cycling experience for riders.

The grade of 1:12.8 used for the on and off ramp exceeds the minimum grade of 1:12 which will provide a smoother transition for cyclists as they cycle up and down the ramp. Additionally, the on and off ramps built in previous phases of the Wesbrook Mall development uses the same grade which will provide consistency of facilities across the entire corridor.

While the buffer of 0.15 - 0.7 meters meet minimum requirements, there is still sufficient space for the cyclists to feel safe and comfortable during their ride. The 0.15 m buffer will be placed along bike lanes that are adjacent to the travel lanes and the 0.7 m buffer will be for bike lanes adjacent to parking. The larger 0.7 m buffer has been provided to neutralize the effect of car passengers opening their doors in the direction of the bike lane.

5.4.1 Pedestrian Sidewalk

The width of the new pedestrian sidewalk will be 2.1 meters. This is in accordance with the City of Vancouver’s Engineering Design Manual. It is important to note that the 2.1-meter sidewalks will be instituted in sections where alterations are necessary due to other design changes, such as the bike lane.
More specifically, these changes will be located around the corridor’s bus stops. The width of the existing sidewalk will largely remain the same.

The material thickness for the new sidewalks meets the specifications laid out in City of Vancouver’s Engineering Design Manual. Compliance of material components and design with existing guidelines allow for standardization of the work being done which will simplify the procurement and construction process.

Table 6: Pedestrian Sidewalk Thickness and Material

<table>
<thead>
<tr>
<th>Pavement Structure Type</th>
<th>Minimum Required Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMCD Upper Course</td>
<td>50</td>
</tr>
<tr>
<td>Granular Base</td>
<td>150</td>
</tr>
</tbody>
</table>

Due to the changes mainly being around the bus stop, a 2.1-meter width was determined to be appropriate due to the relatively high volume of pedestrians and bikes that will be using the facility when buses drop off and pick up passengers. A 2.1-meter sidewalk should provide sufficient space for pedestrians to comfortably walk along this corridor.

The decision to minimize changes to the widths of the existing sidewalks is due to several factors. The first is that improving cycling infrastructure was prioritized due to the poor existing cycling infrastructure throughout the corridor. Creating a raised and protected bike lane takes up a significant amount of space when including the buffer zones. Secondly, considerations for improving stormwater management through the increase in green space and the proximity of buildings and trees provided limited available space in certain areas. Given that majority of the pedestrian sidewalks are still in relatively good condition, it was determined that expansion of the sidewalks was not necessary.
5.5 Pedestrian Overpass

One of the major changes of the Phase 4 redesign is the addition of a pedestrian overpass at the Panhellenic House. This feature will accommodate pedestrian traffic and will eliminate the necessity of most vehicle-pedestrian interactions in this section of the corridor.

5.5.1 Design Considerations

The following factors were the primary aspects considered to have a major influence on the final design, in addition to the design criteria outlined in section 4.1.

There is a lack of available data concerning the soil conditions in the area surrounding the Panhellenic Village, as well as on the UBC campus as whole. What data is has been gathered indicates inconsistent soil, indicating a potential for poor bearing strength at the proposed site. To accommodate for this, the structure will allow for less concentrated disbursement of gravity loads.

5.5.2 Roadway Span

The overpass crosses two multi-lane paved regions, with areas for support only available at the median and at the on either end. With a total length of just under 36m, the longer unsupported section will be required to span approximately 20m. The lack of space available for arch supports has led to a necessarily robust design of the beams.
5.5.3 Design Loads

The following table details the design loads considered in the design of the structure:

Table 7: Design Loads for Overpass

<table>
<thead>
<tr>
<th>Load Designation</th>
<th>Load Type</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planter Weight</td>
<td>Dead</td>
<td>1.9 kPa</td>
</tr>
<tr>
<td>Art Wall Weight</td>
<td>Dead</td>
<td>1.5 kPa</td>
</tr>
<tr>
<td>Veneer Weight</td>
<td>Dead</td>
<td>0.1 kPa</td>
</tr>
<tr>
<td>Concrete Self-Weight</td>
<td>Dead</td>
<td>23.5 kN/m³</td>
</tr>
<tr>
<td>Pedestrian Load</td>
<td>Live</td>
<td>1.9 kPa</td>
</tr>
<tr>
<td>Snow Load</td>
<td>Snow</td>
<td>1.5 kPa</td>
</tr>
</tbody>
</table>

The designs of all structural elements (slab, beams, columns, footings) were governed by gravity load cases.

5.5.4 Description Overview

The overpass structure will span 35.8 meters across Wesbrook Mall, just south of the existing pedestrian crossing at the Panhellenic Village, and with a height of 4.65 meters above the roadway. This crossing will be accessible via four staircases located at the north and south approaches to the overpass along both the east and west sidewalks. The central walkway will have a width of 2m, with planters 1.5m in width bordering on either side. Each staircase will have a length of 6.5 meters, and the total staircase and platform footprint length will be 19 meters at both the east and west entrance (see Figure 5 below for visual representation). For further specific information, the complete set of detailed overpass drawings can be found in Appendix G.
5.5.5 Structural Components

The primary structural element utilized in the overpass design is reinforced concrete. Two subterranean concrete footings will be cast in place one meter below grade at both the eastern and western curbs, as well as the median, for a total of six pads supporting the structure. Each footing will support a column rising 4.65m above the road surface, meeting the bottom surface of the beams. Two laterally reinforced concrete girders will cross both the northbound and southbound lanes, integrated with the columns on either side and at the median. This will be overlaid by a reinforced concrete slab which will serve as the walkway for the overpass.

5.5.6 Art Barrier

The walls of the walkway will be composed of 2.0m tall Douglas-Fir columns spaced at 3.6m. These columns will run along both sides of the walkway and will support panels with artwork serving as the guardrails. The University of British Columbia will be able to commission local First Nations artists, as well as past graduates to create works on each panel. These panels are non-structural elements and can be swapped out or removed for maintenance easily as necessary.
5.5.7 Planters

A row of planters with seasonal flowers will run down either side of the walkway. This feature will add both colour to overpass, and provide infiltration, soaking up a large amount of water that would otherwise end up as run-off. A space of 600mm between planters has been allocated at each support to allow for easy access and maintenance to both the art panels and the planters.

5.5.8 Drainage

The slab will feature two culverts, which will run underneath the planters. The flow shall be directed towards these culverts by a 1% slope in the slab. The slab will also be cast at a 1% grade from the midpoint towards the landings to direct run-off down towards the drainage collection at the landings. From here the run-off will be collected at in one of the four drainage pipes along the stairwells and will be directed to green area at the base of the structure. The full layout of this system can be found in the detailed drawings in Appendix G.

Figure 6: Typical Overpass Cross-Section
5.5.9 Other Elements

The slab will be overlaid with a thin, waterproof veneer layer. This will give the structure an organic feel, while also insulating the top layer of concrete and limiting freeze-thaw damage. The stairs will be composed of timber beams, with steel connectors attaching the PVC drainage pipes at the side.

5.5.10 Materials and Dimensions

The following Tables 8 & 9 outline the primary dimensions and materials for the overpass design.

Table 8: Primary Overpass Dimensions

<table>
<thead>
<tr>
<th>Element</th>
<th>Dimension (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stairs</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>6.5</td>
</tr>
<tr>
<td>Width</td>
<td>1.4</td>
</tr>
<tr>
<td>Height</td>
<td>4.8</td>
</tr>
<tr>
<td>Walkway</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>35.8</td>
</tr>
<tr>
<td>Slab Minimum Thickness</td>
<td>0.2</td>
</tr>
<tr>
<td>Walkable Width</td>
<td>2</td>
</tr>
<tr>
<td>Barrier Height</td>
<td>2.15</td>
</tr>
<tr>
<td>Columns</td>
<td></td>
</tr>
<tr>
<td>Width & Breadth</td>
<td>0.5</td>
</tr>
<tr>
<td>Height (Total)</td>
<td>6.4</td>
</tr>
<tr>
<td>Height (Above Ground)</td>
<td>1.0</td>
</tr>
<tr>
<td>Footings</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>0.75</td>
</tr>
<tr>
<td>Width & Breadth</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Table 9: Materials for Pedestrian Overpass

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td></td>
</tr>
<tr>
<td>Walkway Slabs</td>
<td>Reinforced Concrete</td>
</tr>
<tr>
<td>Walkway Beams</td>
<td></td>
</tr>
<tr>
<td>Footings</td>
<td></td>
</tr>
<tr>
<td>Wall Supporting Art Panels</td>
<td>No. 2 Douglas Fir Posts</td>
</tr>
<tr>
<td>Stairs</td>
<td>Sawn Timber</td>
</tr>
<tr>
<td>Panels</td>
<td>Softwood, Mixed Types</td>
</tr>
<tr>
<td>Planters</td>
<td>Soil, Insulating Layer</td>
</tr>
</tbody>
</table>

For full dimension and material details, see the overpass design drawings in Appendix G.

6.0 Environmental Infrastructure

6.1 Green Infrastructure

One of our primary goals in this project was to increase rainwater retention and reduce runoff along the corridor. On average, the area receives 1290mm of precipitation yearly. During a rainfall or snowmelt, much of the water is held by the natural landscape, but in urban areas with less green space much of this water will go directly down storm drains. On the way to storm drains runoff picks up pollutants, (gas,
garbage, fertilizer, etc.) which then will then be routed into nearby waterways. These pollutants pose a risk to wildlife and, increased flows can also cause erosion in the areas they are being transferred to.

By adding green infrastructure, we can increase the amount of water held, absorbed, and treated by the landscape. Retaining rainwater and runoff has many benefits, it will: reduce and filter pollutants going into the environment, capture water and allow plants and soil to absorb it, and reduce the overall amount of water going down storm drains.

6.1.1 Technical Considerations

While designing our green infrastructure we considered:

- Annual Precipitation
- Existing Stormwater management
- Soil characteristics
- Ease of Maintenance
- Feasibility

6.1.2 Green Space

In areas where there is a buffer between the new bike lanes and new parking lanes there will be added green space. This greenspace can intercept and clean rainwater. There will be an overall gain in green space of 240m².

6.1.3 Raised Planters on Overpass

The original plan to have a green roof on the overpass was changed to a simpler raised planters along the sides of the overpass. The green roof would have been difficult to maintain due to its location, limited space, and lack of accessibility. Instead, we have modified the design of the overpass to include raised planters that will provide a similar amount of rainwater retention with lower maintenance costs.
6.1.4 Permeable Asphalt Cyclist Lanes

We had originally designed the top layer of the new bike lanes to be concrete pavers which posed a few potential issues. The pavers may not have had appropriate friction with bicycle tires, resulting in cyclists experiencing sliding. Also, the surrounding bike lanes are constructed using asphalt, to keep the bike lanes consistent with previous construction our final cyclist lanes will be made of permeable asphalt.

The permeable asphalt bicycle lanes will have a top layer of permeable asphalt that will allow water to pass into the layers below and percolate into the soil. Should the soil become overly saturated there is an overflow inlet. The new cyclist lane locations are shown in Appendix G. They will be designed as partial infiltration asphalt pathways. A cross section of the cyclist lane and its layers can be seen below in Figure 8.

Figure 7: Cross Section of Raised Planters
6.1.5 Rain Gardens

We have designed rain gardens at three locations along Westbrook Mall. The first rain garden will be located north of the W 16th Ave and Westbrook Mall roundabout on the southbound side of the road in Section 4 (Hampton Place). The second rain garden will be located near the entrance of Hampton Pl also in Section 4 (Hampton Place). The third rain garden will be located on the median that is south of the Doug Mitchell Thunderbird Sports Centre in Section 1 (Thunderbird Blvd).
These rain gardens are designed as partial infiltration rain gardens due to the soil type near the location. Using the outline from Metro Vancouvers Stormwater Source Control Guidelines we have come up with a design and estimates for the maximum amount of rainfall and runoff that could be contained per year.

The rain gardens will have slightly different specifications due to their differences in size but overall will be quite similar. They will have ponding depths of 200 millimetres but the total areas at maximum depths will vary, and the side slopes may vary as well (none will exceed the 2:1 maximum incline). A cross section of Rain Garden 1 is shown below and all of the detailed CAD drawings of the rain gardens and other green infrastructure are included in Appendix G.

![Cross Section of Rain Garden 1](image)

Figure 10: Cross Section of Rain Garden 1

6.2 Hydrological & Stormwater Impacts

This project aims to have a significant positive hydrological impact. The addition of several types of green infrastructure outlined in the section above will reduce runoff in the area and increase overall rainwater retention.
With the dimensions outlined in the tables below, we have estimated the amount of water they could potentially absorb in an entire year. These values have been calculated based on the area within the catchment that is non-permeable, as nearby green space will have less runoff. The raised planters on the overpass adds the least rainwater retention but does so in a unique and aesthetic way. The rain gardens make a large impact despite their relatively small size. The permeable asphalt cyclist lanes make the largest impact on runoff and also cover the most area. The approximate values for rainwater retention are shown below in Tables 10, 11, and 12. In our previous report we believe to have slightly overestimated the amounts of water retained, these values have been updated to reflect what we believe to be more accurate estimates.

Table 10: Approximate Green Roof Water Absorption

<table>
<thead>
<tr>
<th>Base Area (m²)</th>
<th>Rainfall Absorbed (m³)</th>
<th>Rainfall Absorbed (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>49</td>
<td>49,020</td>
</tr>
</tbody>
</table>

Table 11: Approximate Rain Garden Water Absorption

<table>
<thead>
<tr>
<th>Rain Garden</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Base Area (m²)</th>
<th>Tributary Area (m²)</th>
<th>Impervious Tributary Area (m²)</th>
<th>Rainfall Absorbed (m³)</th>
<th>Rainfall Absorbed (L)</th>
<th>Previous Rainfall Absorbed (L)</th>
<th>Total Gain Absorbed Rainfall (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>6</td>
<td>150</td>
<td>1,800</td>
<td>900</td>
<td>1,161</td>
<td>1,161,000</td>
<td>193,500</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>5</td>
<td>70</td>
<td>840</td>
<td>420</td>
<td>542</td>
<td>541,800</td>
<td>90,300</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>4</td>
<td>36</td>
<td>432</td>
<td>216</td>
<td>279</td>
<td>278,640</td>
<td>46,440</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>256</td>
<td>3072</td>
<td>1536</td>
<td>1,981</td>
<td>1,981,440</td>
<td>330,240</td>
<td>1,651,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bike Lane Section</td>
<td>Base Area (m²)</td>
<td>Tributary Area (m²)</td>
<td>Rainfall Absorbed (m³)</td>
<td>Rainfall Absorbed (L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>490</td>
<td>490</td>
<td>582</td>
<td>581,532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,110</td>
<td>1,110</td>
<td>1,317</td>
<td>1,317,348</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>660</td>
<td>660</td>
<td>783</td>
<td>783,288</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,260</td>
<td>2,260</td>
<td>2,682</td>
<td>2,682,168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>4,520</td>
<td>6,780</td>
<td>5,364</td>
<td>5,364,336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The decision to essentially swap the locations of bike lanes and parking lanes in some areas will require some catchment basins to be relocated. Originally, most storm drains on Westbrook Mall were located along the curb. This will continue to be the case, however, in locations where the previous storm drain is now underneath the new bike lane it will be relocated onto the parking lane. Storm drains located in the immediate vicinity of rain gardens will be converted into overflow inlets to drain excess water should it pool during an extreme rainfall event.

7.0 Vehicle Traffic Flow Analysis (Synchro)

As provided in the Preliminary Design Report. Figure 13 below displays the synchro analysis that was conducted on the Wesbrook Mall roadway section.
For the traffic flow data, AM Peak Flow were gathered (via provided data set) for cars, bus, and heavy vehicles. These results, shown in Table 13 and 14 below, were then converted to PCE for Synchro.

Table 13: Wesbrook Mall & Thunderbird Blvd Peak Flow Data

<table>
<thead>
<tr>
<th>Mode</th>
<th>PCE Ratio</th>
<th>WEST Approach</th>
<th>EAST Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L TH R</td>
<td>L TH R</td>
</tr>
<tr>
<td>Cars</td>
<td>1</td>
<td>155 235 150</td>
<td>95 110 24</td>
</tr>
<tr>
<td>Heavy Vehicles</td>
<td>2</td>
<td>0 5 0 0</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Buses</td>
<td>2.5</td>
<td>0 52 1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>PCE</td>
<td>33</td>
<td>155 235 153</td>
<td>95 110 24</td>
</tr>
</tbody>
</table>

Table 14: Wesbrook Mall & W 16th Ave Peak Flow Data

<table>
<thead>
<tr>
<th>Mode</th>
<th>PCE Ratio</th>
<th>WEST Approach</th>
<th>EAST Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L TH R</td>
<td>L TH R</td>
</tr>
<tr>
<td>Cars</td>
<td>1</td>
<td>117 39 108</td>
<td>188 312 276</td>
</tr>
<tr>
<td>Heavy Vehicles</td>
<td>2</td>
<td>3 1 1</td>
<td>0 1 1</td>
</tr>
<tr>
<td>Buses</td>
<td>2.5</td>
<td>0 14 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>PCE</td>
<td>166</td>
<td>243 111 50</td>
<td>188 314 323</td>
</tr>
</tbody>
</table>

To assess the current vehicle traffic flows, a performance report was generated for the network through Synchro. The results of the report are shown in Table 15 and 16 below.
Table 15: Thunderbird Blvd & Wesbrook Mall Intersection Analysis

<table>
<thead>
<tr>
<th></th>
<th>ICU %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU Level of Service</td>
<td>C</td>
</tr>
<tr>
<td>Intersection Delay</td>
<td>9.9 seconds</td>
</tr>
<tr>
<td>Intersection LOS</td>
<td>A</td>
</tr>
</tbody>
</table>

Table 16: W 16th Ave & Wesbrook Mall Roundabout Analysis

<table>
<thead>
<tr>
<th></th>
<th>ICU %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU Level of Service</td>
<td>F</td>
</tr>
</tbody>
</table>

From the results above, it can be seen that the current Thunderbird Blvd intersection is performing well. South of Thunderbird Blvd, the synchro simulation demonstrated good traffic flowing in both directions until it reaches W 16th Ave. The current roundabout at W 16th Ave (Figure 14 below) is performing at a nearly 100% capacity, with an ICU LOS rating of F.

Figure 12: Wesbrook Mall & W 16th Ave Roundabout Synchro Simulation
To improve the roundabout flow, an analysis was conducted to explore the feasibility of adding a bus lane going northbound from the roundabout on W 16th Ave to 2900 Block bus top. The peak hour flow (per Phase 4 data) of busses travelling onto Wesbrook Mall from the roundabout is 62. This is an extremely high bus volume, and this study is to determine if adding a bus lane will help improve the vehicle flow and public transit experience.

The following benefits were found:

- Dedicated lane for public transit results in less conflicts with passenger cars
- Seamless transition into the 2900 Block bus stop results in less lane change
- Creates two travel lanes until 2900 Block which reduces congestion after the roundabout

The following drawbacks were found:

- Synchro analysis reported an increased ICU value for the roundabout from 96% to 103%, meaning the roundabout will perform more poorly with the extra lane. Due to limitations with Synchro6, adding dedicated bus lanes is not an option, therefore a regular vehicle lane was added instead. The results from this Synchro6 measurement are not fully conclusive.
- 150 sq m of green space would have to be removed
- 10 sq m of pedestrian space at the roundabout would have removed

In conclusion, the dedicated bus lane will not be implemented into the design. The major reason is because it will cause pedestrian and green space to be removed from the design. Also, Synchro6 traffic modelling is unable to display that it improves traffic flow through the roundabout.
8.0 Service Life Maintenance Plan

8.1 Roadway

Upon completion, the roadwork will require maintenance in order to ensure the safety of users. The roadwork maintenance will follow BC MOTI guidelines on frequency and best practices. It outlines how each road is assessed based on the risk of undesired consequences due to surrounding hazards. These hazards include landslides, flooding, soil erosion, poor drainage, etc. From the risk assessment tool provided, Wesbrook Mall is classified as a low-risk road. Therefore, Wesbrook Mall should be subject to at least one road maintenance inspection every two years. These road maintenance inspections are aimed to reveal any deficiencies in the road that need repairing. Once the inspections are done, a report will be generated which will be used to obtain contractors to fix the deficiencies found.

Special considerations will be made during the winter season as snow build up pose more serious risk of injury and collision. With heavy snow and ice buildup, snowplows will be deployed to clear up the snow in addition to spraying salt on the road to remove the ice.

8.2 Green Infrastructure

The green infrastructure designed as part of this project will all require varying levels of maintenance to keep them functioning as intended. The water flowing into the rain gardens will carry debris and pollutants. The voids within the permeable cyclists' lanes will be gradually filled with debris as they are used. The raised planters on the overpass should not experience any debris as it is not absorbing any runoff and therefore should just require regular garden maintenance.

To maintain the raingardens and planters on the overpass several things must be done. During the first few years they may need to be watered and weeded to help encourage plant growth. The raingardens will need to be mulched annually in the spring to maintain a three-inch mulch layer. Plants will need to be pruned annually and replaced/removed if they have died. In the rain garden, layers of sediment that have
accumulated over time will also need to be removed annually. Every 2-3 years the pH of the soil in the gardens should be checked and normalized if needed.

To maintain the permeable asphalt cyclist lanes the debris will need to be removed. In order to do this a special type of equipment will be required. A Regenerative Air Sweeper or a Pure Vacuum Sweeper will be required to remove debris from the asphalt, the latter being recommended. This cleaning should be performed annually or semi-annually.

8.3 Pedestrian Overpass

The concrete elements of the overpass will need to be monitored to ensure its structural integrity. An annual check will be carried out on the structure in the spring each year to check for cracking or fractures due to freeze-thaw cycles or stress due to excess loading.

The art panels along the walkway are accessible via the openings between the planters at the timber supports. Should the University desire to commission new works, or perform maintenance on existing panels, they can be removed and replaced with a temporary panel for a period.

The drainage culverts along the overpass will pick up small amounts of debris, and will require bi-annual checks to remove any blockage.

9.0 Construction Work and Schedule

9.1 Construction Sequence

The breakdown of the schedule, assumed to be implemented in May of 2022, can be found in Appendix C as a Gantt Chart. The scheduling was designed and organized to minimize the project duration and traffic disruptions. The months of May, June, and July have been strategically chosen given the campus roadways experience less traffic and pedestrian activity during this period compared to other times of the year. All statutory holidays were taken into consideration for the construction schedule and excluded from the days
of work under consideration. The construction work was divided into three distinct phases to minimize the amount of the roadway that would be unavailable for public use, starting with the northbound lane. During the second portion, this will encompass the pedestrian side of the southbound lane. The third phase involves completed the median side of the southbound lane. For the overpass, the major components will be cast and created off-site, before being brought on-site for final assembly. Additionally, reasonably conservative estimates of the activity durations have been provided to ensure sufficient float for the timely completion of the construction process with good quality of output work. The chart below provides a broad overview of the construction phases.

![Construction Schedule](image)

Figure 13: Construction Schedule

The schedule above reflects 70 working days (excludes weekends and holidays) required for completion. If crews fall behind on the schedule, working on weekends may be considered.
Table 17: Phase 1: Construction of northbound phase

<table>
<thead>
<tr>
<th>Type</th>
<th>Task</th>
<th>Estimated Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Site Preparation for NB region. (Fencing, signage, roundabout prep)</td>
<td>2 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Removal of Top Pavement and Excavation of roadway</td>
<td>21 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Relocating storm water infrastructure</td>
<td>7 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Paving new Asphalt Roads</td>
<td>21 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Paving new raised permeable bike lane</td>
<td>14 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Misc. (Road painting, landscaping, Curbs)</td>
<td>5 days</td>
</tr>
<tr>
<td>Rain Gardens</td>
<td>Excavation</td>
<td>5 Days</td>
</tr>
<tr>
<td>Rain Gardens</td>
<td>Installation of drainage infrastructure</td>
<td>5 Days</td>
</tr>
<tr>
<td>Rain Gardens</td>
<td>Backfill and relaying of organic mulch</td>
<td>5 Days</td>
</tr>
</tbody>
</table>

Many of the tasks above will be happening at the same time and will all be completed in 32 working days.
Table 18: Phase 2: Construction of southbound phase (pedestrian side)

<table>
<thead>
<tr>
<th>Type</th>
<th>Task</th>
<th>Estimated Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Site Preparation for SB region. (Fencing, signage, roundabout prep)</td>
<td>1 day</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Removal of Top Pavement and Excavation of roadway</td>
<td>14 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Relocating storm water infrastructure</td>
<td>7 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Paving new Asphalt Roads</td>
<td>14 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Paving new raised permeable bike lane</td>
<td>14 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Misc. (Road painting, landscaping, Curbs)</td>
<td>5 days</td>
</tr>
<tr>
<td>Rain Gardens</td>
<td>Excavation</td>
<td>5 Days</td>
</tr>
<tr>
<td>Rain Gardens</td>
<td>Installation of drainage infrastructure</td>
<td>5 Days</td>
</tr>
<tr>
<td>Rain Gardens</td>
<td>Backfill and relaying of organic mulch</td>
<td>5 Days</td>
</tr>
</tbody>
</table>

Many of the tasks above will be happening at the same time and will be completed in 23 working days.

Table 19: Phase 3: Construction of southbound phase (median side)

<table>
<thead>
<tr>
<th>Type</th>
<th>Task</th>
<th>Estimated Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Site Preparation for SB region. (Fencing, signage, roundabout prep)</td>
<td>1 day</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Removal of Top Pavement and Excavation of roadway</td>
<td>10 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Paving new Asphalt Roads</td>
<td>10 days</td>
</tr>
<tr>
<td>Roadwork</td>
<td>Misc. (Road painting, landscaping, Curbs)</td>
<td>3 days</td>
</tr>
</tbody>
</table>
Rain Gardens | Excavation | 5 Days
---|---|---
Rain Gardens | Installation of drainage infrastructure | 5 Days
Rain Gardens | Backfill and relaying of organic mulch | 5 Days

Many of the tasks above will be happening at the same time and will be completed in 15 working days.

Table 20: All Phases: Pedestrian Overpass

<table>
<thead>
<tr>
<th>Type</th>
<th>Task</th>
<th>Estimated Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overpass</td>
<td>Ordering Pre-cast structures</td>
<td>30 days</td>
</tr>
<tr>
<td></td>
<td>Excavation</td>
<td>15 days</td>
</tr>
<tr>
<td></td>
<td>Footings and Platform placement</td>
<td>10 days</td>
</tr>
<tr>
<td></td>
<td>Slab Placement</td>
<td>8 days</td>
</tr>
<tr>
<td></td>
<td>Staircase and column installation</td>
<td>10 Days</td>
</tr>
<tr>
<td></td>
<td>Superstructure deck installation</td>
<td>10 Days</td>
</tr>
<tr>
<td></td>
<td>Garden and Finishing</td>
<td>7 Days</td>
</tr>
</tbody>
</table>

These tasks will happen in order with some overlap and will be completed for the overall project time of 70 working days.
9.2 Traffic Management Plan

Summertime traffic flows were not available for use; however, it can be assumed that the flows will be significantly lower than the school year. This significant reduction in volume allows for a reduction in roadway capacity that will make construction much simpler. The following traffic flow plan is proposed:

During all phases:

To reduce volume on Wesbrook Mall, Figure 16 above displays the proposed re-routing of the R4 Bus. For incoming busses, this includes travelling along East Mall, turning onto Thunderbird Blvd, and connecting back onto Wesbrook Mall to complete its route. For outgoing busses, this includes turning right onto Thunderbird Blvd from Wesbrook Mall, then turning left onto East Mall to connect back to W 16th Ave.
Phase 1:

Figure 15: Phase 1 Traffic Management

This first phase of traffic management, this includes construction of the NB direction. The entire NB lane will be cut off, and all the northbound flow will be diverted into the SB lane. This will have one lane traffic going in both directions. The thinnest section of the SB direction is just over 6m, which is sufficient to support this plan. Adjustments need to be sidewalk near the roundabout on W 16th Ave to allow for a smooth turning onto this lane.

Phase 2:

Figure 16: Phase 2 Traffic Management
The second phase consists of the construction of the SB direction. Due to the sufficient lane width provided in this direction, construction will first occur on the pedestrian side, and traffic will flow on the median side. Traffic delineators will need to be set up to divide the two sections.

Phase 3:

![Figure 17: Phase 3 Traffic Management](image)

The third phase consists of construction of the median side of the SB direction. Traffic will flow on the newly constructed pedestrian side of the road. Traffic delineators will need to be set up to divide the two sections.

9.3 Construction Requirements

Table 21: List of Construction Requirements

<table>
<thead>
<tr>
<th>General</th>
<th>Roadwork</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Permitting and Compliance with Regulation</td>
<td></td>
</tr>
<tr>
<td>2. Procurement of Materials and Equipment</td>
<td></td>
</tr>
<tr>
<td>3. Site Preparation</td>
<td></td>
</tr>
<tr>
<td>a. Fencing</td>
<td></td>
</tr>
<tr>
<td>b. Signage</td>
<td></td>
</tr>
<tr>
<td>c. Traffic Management</td>
<td></td>
</tr>
<tr>
<td>d. Clearance</td>
<td></td>
</tr>
<tr>
<td>4. Checks and Inspection</td>
<td></td>
</tr>
<tr>
<td>1. Removal of Top Pavement</td>
<td></td>
</tr>
<tr>
<td>2. Sidewalk and Road Excavation</td>
<td></td>
</tr>
<tr>
<td>3. Relocation/Installation of Storm Water Infrastructure</td>
<td></td>
</tr>
<tr>
<td>4. Installation of Curb</td>
<td></td>
</tr>
<tr>
<td>5. Installation of Green Infrastructure (Rain Gardens)</td>
<td></td>
</tr>
</tbody>
</table>
6. Paving of new asphalt road
7. Paving of new raised permeable bike lane
8. Painting of roadway and installation of signage
9. Landscaping

<table>
<thead>
<tr>
<th>Overpass</th>
</tr>
</thead>
</table>
| 1. Preparation for arrival of Pre-cast Concrete components
2. Excavation
3. Footing and Platform placement
4. Slab laying
5. Overpass Slab Glass Wall
6. Installation of Stairs
7. Elevated Garden
8. Finishing |

<table>
<thead>
<tr>
<th>Rain Gardens</th>
</tr>
</thead>
</table>
| 1. Excavation of Topsoil
2. Excavation to desired depth of rain garden
3. Installation of overflow inlet
4. Installation of drain rock reservoir
5. Installation of drainpipe
6. Backfill of growing medium
7. Relaying of organic mulch |

9.4 Anticipated Issues

The team has identified three issues that may arise during construction of the project. First, general community complaints and concerns arise from the noise, congestion, and overall inconvenience of construction. In relation to this, transit users should expect delays and increase in travel time due to the necessary road closures and increased walking distance from bus stations. The construction traffic management plan is designed to reduce the disruption of construction as much as possible. However, additional measures can be implemented such as adding workers to speed up construction and installing noise screening fences along sections next to residential buildings to reduce the noise. While these measures would lessen the impact of construction on the community, it would increase the cost of construction and possibly delay the completion of the project.
Lastly, given the lack of information on UBC’s underground infrastructure, the construction team may encounter unexpected underground infrastructure during construction. Additional work must be done to relocate such infrastructure which will result in delays to the schedule and increase in costs. While informing all construction workers about this potential issue is beneficial, it is understood that this issue is difficult to predict and account for in the construction planning.

10.0 Standards, Codes, Guidelines, and Software Utilized

Table 22: Standards, Codes, Guidelines, Software Utilized

<table>
<thead>
<tr>
<th>Element</th>
<th>Standards, Codes, and Guidelines</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway and Bike Lanes</td>
<td>• Canadian Highway Bridge Design Code (CHBDC)</td>
<td>• AutoCAD</td>
</tr>
<tr>
<td></td>
<td>• City of Vancouver Engineering Design Manual</td>
<td>• Synchro</td>
</tr>
<tr>
<td></td>
<td>• British Columbia Active Transportation Guide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Geometric Design Guides for Canadian Roads</td>
<td></td>
</tr>
<tr>
<td>Green Infrastructure</td>
<td>• Metro Vancouver Stormwater Source Control Design Guidelines</td>
<td>• AutoCAD</td>
</tr>
<tr>
<td></td>
<td>• NACTO Urban Street Stormwater Guide</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Overpass</td>
<td>• CSA O86:19 (Timber Design)</td>
<td>• AutoCAD</td>
</tr>
<tr>
<td></td>
<td>• CSA S16:19 (Steel Design)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CSA A23.3 (Concrete Design)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BCBC 2018</td>
<td></td>
</tr>
</tbody>
</table>
11.0 Detailed Cost Estimate (Class A*)

BOJNOJ Consultants has completed a Class A cost estimate of the detailed design discussed in this report. This cost estimate was completed with the intention of verifying the economic practicability of the proposed design and minimizing expenses by utilizing cost effective solutions. This analysis was developed based on two main components: construction and consulting costs. The construction cost was calculated through quantifying the services necessary during the proposed construction of the design and the values of materials needed. The overhead cost of the contractor, contingencies and maintenance were also considered. The consulting fees were based upon standard fees charged by BOJNOJ Consultants.

BOJNOJ Consultants estimates a total cost of approximately $6,047,901.61 for the phase 4 redesign of Wesbrook Mall from W 16th Avenue to Thunderbird Avenue. This includes construction, consulting, contingency and contractor overhead and fee costs. The annual operations and maintenance cost is $45,000.00. The following tables below summarize the values for each component:

Table 23: Total Cost Summary

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Activities Cost</td>
<td>$4,740,135.40</td>
</tr>
<tr>
<td>Contractor Fee (7%)</td>
<td>$331,809.48</td>
</tr>
<tr>
<td>Contractor Overhead</td>
<td>$125,600.00</td>
</tr>
<tr>
<td>Consulting Services</td>
<td>$61,500.00</td>
</tr>
<tr>
<td>Contingency (15%)</td>
<td>$788,856.73</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$6,047,901.61</td>
</tr>
</tbody>
</table>
Table 24: Annual Operations and Maintenance Cost

<table>
<thead>
<tr>
<th>Operations & Maintenance</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscaping</td>
<td>$30,000.00</td>
</tr>
<tr>
<td>Painting</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>Cleaning</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>Total Operations and Maintenance Cost</td>
<td>$60,000.00</td>
</tr>
</tbody>
</table>

The corresponding proposed project schedule and the comprehensive breakdown for each of these expenses can be found in Appendix D and Appendix E respectfully. It is important to note that delays in the construction phase may result in differences of materials and/or service costs.

12.0 Conclusion

BOJNOJ Consultants’ detailed design successfully adheres to all project objectives and meet the needs of all stakeholders involved. Through the analysis outlined in the report, the raised and protected bike lane design for the Phase 4 Wesbrook Mall Redesign was described and shown through detailed drawings. As discussed, the cycling infrastructure is improved by implementing a raised and protected bike lane throughout the entire site area. Also, the minimal reductions in parking space and tree removals will ensure continued motor vehicle usage, an aesthetic appeal and a preservation of the environment. Finally, an overpass will be constructed south of Thunderbird Arena to assist in pedestrian traffic control.

Accounting for geometry rearrangements, infrastructure upgrades, and overpass construction, the overall projected is estimated to cost approximately $6,047,901.61. Construction is scheduled to begin early May 2022 and be completed over 12-week period.

BOJNOJ Consultants would like to thank UBC Seeds for the opportunity to conduct a detailed design.
13.0 Appendices

Appendix A: References

City of Vancouver, & Pate, M., Engineering Design Manual (2019). Vancouver, BC; City of Vancouver.

Appendix B: Sample Calculations

Green Infrastructure Calculations

Overpass Green Area

Sizing for % capture of Average Annual Rainfall.
Using a topsoil depth of 100mm and an Annual Rainfall of 1100mm we found a capture % of 38% consulting the chart in appendix H.

Pervious Paving

Sizing for % capture of Average Annual Rainfall.
Consult Paving Chart using 1100mm of rainfall as that is closest to area, use 2mm/hr (this value is assumed from the geological figure shown in Appendix H) assume 92% actual rainfall capture. I/P = 2. Because we are not considering the grass on one side and the side nearest to street use I/P = 1 instead for tributary Impervious Area Calculation.

\[
PerviousArea = \frac{\text{Tributary Impervious Area}}{I/P}
\]
Tributary Impervious Area = 2,260 * 1
Tributary Impervious Area = 2,260

Assume,
Approximate Rainfall Absorbed = Annual Rainfall * Tributary Impervious Area * Actual rainfall Capture
Approximate Rainfall Absorbed = 1.29m * 2,260 * 0.92
Approximate Rainfall Absorbed = 2,682m³

Rain Garden
Sizing for depth capture

Finding the depth of the rock reservoir. Assuming a Hydraulic Conductivity of 2mm/hr, an allowable drain time of 4 days, and porosity of rock in the reservoir of 0.35.

\[D_r = \frac{K_s \times T \times 24}{n} \]

\[D_r = (2 \text{mm/hr} \times 4 \text{days} \times 24)/0.35 \]

\[D_r = 549 \text{mm} \]

Finding the impervious to pervious ratio. Assuming standard depth of pooling of 200mm, soil layer depth of 450mm, and a rainfall capture depth of 41mm which is half of a 2-year storm as indicated in appendix H.

\[I/P = \frac{24 \times K_s + D_r + D_r \times n + 0.2 \times D_s}{R} - 1 \]

\[I/P = (24 \times 2 \text{mm/hr} + 200 \text{mm} + 550 \text{mm} \times 0.35 + 0.2 \times 450 \text{mm}) / 41 \text{mm} - 1 \]

\[I/P = 12 \]

12 < 20 (which is given for Major Roads or Collector Roads)

Tributary Impervious Area = Total Pervious Area * I/P

Tributary Impervious Area = 256m² * 12

Tributary Impervious Area = 3,072 m²

Because not all the tributary area is on impervious ground, we estimated graphically that the actual Tributary Impervious Area was 1,536 m².

Approximate rainfall absorbed = Impervious Area * Annual Rainfall

Approximate rainfall absorbed = 1,536 m² * 1.29m

Approximate rainfall absorbed = 1,981 m³
Previous Approximate Rainfall Absorbed = Green Space Being Removed * Annual Rainfall

Previous Approximate Rainfall Absorbed = 256 * 1.29
Previous Approximate Rainfall Absorbed = 330 m³

Total Gain in Absorbed Rainfall = Approximate rainfall absorbed - Previous Approximate Rainfall Absorbed

Total Gain in Absorbed Rainfall = 1,981 – 330
Total Gain in Absorbed Rainfall = 1651 m³

Overpass Preliminary Structural Analysis Calculations
Slab Calculations

Loading: Self-Weight = 4.7 kPa Clear Span: 4.5m
SDLR = 3.9 kPa \(f_a = 4.7 \, \text{m} \)
LL = 1.9 kPa
S = 1.9 kPa Slab Thickness = 200mm
\(f'_c = 30 \, \text{MPa} \)

\[
M_{\text{bottom}} = 12.4 \, \text{kNm/m}
\]
\[
M_{\text{top}} = 24.8 \, \text{kNm/m}
\]

Bottom Steel (BUL)

\[
M_{\text{fl}} = 0.85 \cdot 400 \cdot 400 \cdot (155 - \frac{0.15 \cdot 400 \cdot 400}{2 \cdot 0.85 \cdot 0.85 \cdot 200})
= 21.1 \, \text{kNm/m} \geq 12.4 \, \text{kNm/m} \leftarrow \text{OK}
\]
4 10M @ 250mm

Top Steel (TUL)

\[
A_g = \frac{\frac{200}{200 \cdot 1000}}{400 \cdot 600} = 0.002 \geq 0.002 \leftarrow \text{OK}
\]

\[
M_{\text{top}} = 0.85 \cdot 400 \cdot 600 \cdot (152.5 - \frac{0.15 \cdot 400 \cdot 600}{2 \cdot 0.85 \cdot 0.85 \cdot 200})
= 34.6 \, \text{kNm/m} \geq 24.8 \, \text{kNm/m} \leftarrow \text{OK}, \text{ extends}
\]

\[
A_g = \frac{600}{200 \cdot 1000} = 0.003 \geq 0.003 \leftarrow \text{OK}
\]

BUL will take same dimensions as BUL

TLL

\[
\frac{\lambda}{20} = 235 \, \text{mm}
\]

\[
A_{\text{TLL}} \geq 0.04 \cdot 200 \cdot 1000 \quad \text{within 235mm of beams}
\]

\[
A_{\text{TLL}} \geq 188 \, \text{mm}
\]

TLL → 2 - 10M Bars @ 100mm
Beam Calculations

Loading: Same as Slab
+ Beam Self-Weight = 6.5 kN/m
\(l_o : 20.2 \text{ m} \)

\(M_{FLat} = 724 \text{ kNm} \)
\(M_{Ftop} = 1450 \text{ kNm} \)
\(V_{max} = 845 \text{ kN} \)

Beam Depth = 750 mm
Beam Thickness = 500 mm
\(f_c' = 30 \text{ MPa} \)

Bottom Steel
\(M_{FLat} = 0.85 \cdot 400 \cdot (6 \cdot 700) \cdot (685 - \frac{0.85 \cdot 400 \cdot 12600}{2 \cdot 0.65 \cdot 0.05 \cdot 500}) \)
\[= 905 \text{ kNm} \geq 724 \text{ kNm} \quad \text{OK} \]
\(\rightarrow 1 \text{ row of 6-30M bars} \)

Top Steel
\(M_{Ftop} = 0.85 \cdot 400 \cdot (3 \cdot 6 \cdot 700) \cdot (685 - \frac{0.85 \cdot 400 \cdot 12600}{2 \cdot 0.65 \cdot 0.05 \cdot 500}) \)
\[= 1465 \text{ kNm} \geq 1450 \text{ kNm} \]
\(\rightarrow 3 \text{ rows of 6-30M bars} \)

Stirrups (Simplified Method)
\(V_e = 0.65 \cdot 0.18 \cdot 330 \cdot 500 \cdot 585 \)
\[= 187 \text{ kN} \ll 845 \text{ kN} \]

\(V_s = 0.85 \cdot \frac{300 \cdot 500 \cdot 585}{175} \cdot \cot 35 \)
\[= 960 \text{ kN} \]

\(V_e = 1147 \text{ kN} \geq 845 \text{ kN} \rightarrow 2 \cdot 10 \text{ M stirrups} \quad \text{Ø 17.5 mm} \)
Column Calculations

Design for Columns at medium (maximum loading)

Loading:
- Slab = 4.7 kPa
- SDL = 3.9 kPa
- LL = 1.9 kPa
- S = 1.5 kPa

Span 1 = 20 m
Span 2 = 13 m
Tributary Length = 16.5 m
Column Height = 6.4 m

f'c = 30 MPa

w_p = 43.5 kN/m

Column Self-Weight = 0.5 \cdot 0.5 \cdot 6.4 \cdot 23.5 kN/m^3 = 38 kN

P_s = 43.5 kN/m \cdot 16.5m + 1.25 \cdot 38 kN = 765 kN

Column Cross-Section: 500 mm x 500 mm
A_c = 8 - 25M = 4000 mm^2 \geq 0.01 \cdot 25000 \rightarrow OK

P_{r,i} = \phi_{f,c} (6 \cdot w - A_s) + \phi_{f,c} A_s
= 0.65 \cdot 30 \cdot (500 \cdot 500 - 4000) + 0.85 \cdot 400 \cdot 4000
= 5220 kN

P_{r, max} = 0.8 \cdot 5220 = 4180 kN \gg 765 kN

16d = 16 \cdot 30 = 480 mm, least dimension = 500 mm
\rightarrow For tie columns, d \leq 300 mm

\therefore Ties @ 300 mm
Footing Calculations

Column Loading: 765 kN
+ Self-Weight = 2.5 \cdot 0.75 \cdot 23.5 = 110 \text{ kN}
\Rightarrow \text{Total} = 875 \text{ kN}

f_c = 20 \text{ MPa}
Assuming poor soil, max bearing = 200 kPa

Bearing = \frac{875}{2.5 \cdot 2.5} = 140 \text{ kPa} < 200 \text{ kPa} \rightarrow \text{OK}

One Way Shear

V_f = p_c \cdot (e - d_v) / b = 144 \text{ kN}
= 875 \cdot (1 - 0.59) / 2.5 = 144 \text{ kN}

V_r = \phi_c \cdot \beta \cdot \sqrt{f_c} \cdot b \cdot d_v
= 0.65 \cdot 0.21 \cdot \sqrt{2500} \cdot 590
= 900 \text{ kN} > 144 \text{ kN} \rightarrow \text{OK}

Two Way Shear

V_f = p \cdot (b \cdot w) \cdot (b \cdot w - (b_c + d_v) \cdot (w_c + d_v)) / b_c \cdot w_c
= 140 \cdot (0.5^2) \cdot (0.5^2 - (0.5 + 0.59)^2) / 0.5^2
= 688 \text{ kN}
\frac{a}{\alpha = 1}

V_r = (1 - \frac{d}{b_c}) \cdot 0.19 \cdot \phi_c \cdot \sqrt{f_c} = 1657 \text{ kN}
V_{r1} = \frac{w_c \cdot d_v}{b_c} + 0.19 \cdot \phi_c \sqrt{f_c} = 2200 \text{ kN}
V_{r2} = 0.38 \phi_c \sqrt{f_c} = 1105 \text{ kN} > 688 \text{ kN} \rightarrow \text{OK}
Timber Connections

Weight / Column
\[\Rightarrow 7.8 \text{ KN/m}^3 \times 5200 \times 1900 \times 75 \times 1.4 = 5.0 \text{ KN} \]

\[P_{ij} = 1.2 f_v \left(K_F K_{sc} K_D K_{ls} \right) \cdot n_c \cdot t \cdot S_r \]

- \(f_v \) = Douglas Fir = 1.2 MPa
- \(K_F = 1.2 \)
- \(K_{sc} = 0.91 \) → Wet service, member > 1.4 mm
- \(K_D = 0.65 \) → Long-term loading
- \(K_{ls} = 0.65 \)
- \(n_c = 1 \) → 1 column of connectors
- \(t = 75 \text{ mm}, \) bolt length
- \(S_r = \) spacing b/w rows

\[= 1.2 \times 1.2 \times (1.2 \times 0.91 \times 0.65^2) \times 1.75 \times 100 \]
\[= 4.2 \text{ KN} \]

\[P_R = 0.7 \cdot P_{ij} \cdot n_R \]
\[= 0.7 \times 4.2 \times 2 \]
\[= 5.8 \text{ KN} > 5.0 \text{ KN} \]

→ Net section failure not checked as member is not in tension

→ Group tear-out not checked as member is not in tension.
Appendix C: Construction Schedule
<table>
<thead>
<tr>
<th>Task Number</th>
<th>TASK</th>
<th>START (day)</th>
<th>END (day)</th>
<th>DURATION (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase 1: Northbound Construction</td>
<td>2023-04-01</td>
<td>2023-06-30</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>General Task - Site Preparation for Northbound Repair (Paving, Signage, Roadway Preparation)</td>
<td>2023-04-02</td>
<td>2023-05-31</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Paving Task - Removal of Top Pavement and Excavation of</td>
<td>2023-04-04</td>
<td>2023-06-28</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Roadway Task, Rebuilding Stormwater Infrastructure</td>
<td>2023-04-30</td>
<td>2023-06-26</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Paving Task - Placement of New Asphalt</td>
<td>2023-05-09</td>
<td>2023-05-29</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Paving Task - Placing New Poured Permanent Slab</td>
<td>2023-05-15</td>
<td>2023-05-31</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Paving Task - Paving with Asphalt, Milling</td>
<td>2023-05-19</td>
<td>2023-06-02</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Paving Task - Excavation Work</td>
<td>2023-05-30</td>
<td>2023-06-14</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Site Garden Task - Installation of Drainage Structures</td>
<td>2023-04-15</td>
<td>2023-05-19</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Site Garden Task - Rockfill and Embankment of Organic Mix</td>
<td>2023-04-00</td>
<td>2023-05-24</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Phase 2: Southbound Construction (Pedestrian Side)</td>
<td>2023-04-03</td>
<td>2023-06-35</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>General Task - Site Preparation for Southbound Repair (Paving, Signage, Roadway Preparation)</td>
<td>2023-04-05</td>
<td>2023-06-03</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Paving Task - Removal of Top Pavement and Excavation of</td>
<td>2023-04-06</td>
<td>2023-06-17</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Roadway Task, Rebuilding Stormwater Infrastructure</td>
<td>2023-04-08</td>
<td>2023-06-09</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Roadway Task - Paving of New Asphalt</td>
<td>2023-04-30</td>
<td>2023-06-01</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Roadway Task - Paving of New Poured Permanent Slab</td>
<td>2023-05-01</td>
<td>2023-05-28</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Paving Task - Compressing Work (Road Paving, Landscaping, Curb)</td>
<td>2023-05-23</td>
<td>2022-06-25</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Site Garden Task - Excavation Work</td>
<td>2023-04-39</td>
<td>2023-06-13</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Site Garden Task - Installation of Drainage Structures</td>
<td>2023-04-15</td>
<td>2022-06-16</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Site Garden Task - Rockfill and Embankment of Organic Mix</td>
<td>2023-04-10</td>
<td>2023-06-25</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Phase 3: Southbound Construction (Median Side)</td>
<td>2023-04-28</td>
<td>2023-07-10</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>General Task - Site Preparation for Southbound Repair (Paving, Signage, Roadway Preparation)</td>
<td>2023-04-26</td>
<td>2022-07-26</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Paving Task - Removal of Top Pavement and Excavation of</td>
<td>2023-04-27</td>
<td>2022-07-26</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Roadway Task, Rebuilding Stormwater Infrastructure</td>
<td>2023-02-25</td>
<td>2022-07-27</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Paving Task - Paving of New Asphalt</td>
<td>2023-04-01</td>
<td>2022-07-14</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Paving Task - Paving with Asphalt, Milling</td>
<td>2023-04-03</td>
<td>2022-07-05</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Site Garden Task - Installation of Drainage Structures</td>
<td>2023-04-15</td>
<td>2022-07-25</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Site Garden Task - Rockfill and Embankment of Organic Mix</td>
<td>2023-04-10</td>
<td>2022-07-26</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Pedestrian Overpass Bridge Construction</td>
<td>2023-05-02</td>
<td>2023-07-19</td>
<td>79</td>
</tr>
<tr>
<td>1</td>
<td>Bridge Task - Cutting and Removal of Finished Concrete Members</td>
<td>2023-04-12</td>
<td>2022-06-31</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bridge Task - Excavation Work</td>
<td>2023-04-27</td>
<td>2022-06-30</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Bridge Task - Paving and Pavementプレハブプレハブ</td>
<td>2023-04-28</td>
<td>2022-07-17</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Bridge Task - Slab Placement</td>
<td>2023-04-30</td>
<td>2022-07-25</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Bridge Task - Rebar and Column Installation</td>
<td>2023-04-28</td>
<td>2022-07-27</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Bridge Task - Deck Superstructure Installation</td>
<td>2023-04-27</td>
<td>2022-07-25</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Bridge Task - Steel Garden Installation and Bridge Painting</td>
<td>2023-04-30</td>
<td>2022-07-30</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix D: Cost Estimate Breakdown

The tables found below provide further details for the proposed cost estimate. The items monetized were separated into consulting services and construction activities. The construction activities’ items were then subdivided into categories of roadway, overpass, materials, and general contractor overhead.

Table 25: Consulting Services Costs

<table>
<thead>
<tr>
<th>Consulting Services</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td>$40,000.00</td>
<td></td>
</tr>
<tr>
<td>Site Inspection</td>
<td>$2,000.00</td>
<td></td>
</tr>
<tr>
<td>Geotechnical Analysis</td>
<td>$6,000.00</td>
<td></td>
</tr>
<tr>
<td>Environmental Overview</td>
<td>$3,500.00</td>
<td></td>
</tr>
<tr>
<td>Construction Engineering</td>
<td>$10,000.00</td>
<td></td>
</tr>
<tr>
<td>Total Consulting Services Cost</td>
<td>$61,500.00</td>
<td></td>
</tr>
</tbody>
</table>

Table 26: Construction Activities Cost

<table>
<thead>
<tr>
<th>Construction Activities</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Unit</td>
<td>Rate ($/unit)</td>
<td>Cost</td>
</tr>
<tr>
<td>Roadway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Clearance and Mobilization</td>
<td>1</td>
<td>Lump Sum</td>
<td>$50,000.00</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>Replace Roadway Pavement</td>
<td>12400</td>
<td>Squared Meters</td>
<td>$125.00</td>
<td>$1,550,000.00</td>
</tr>
</tbody>
</table>
New Permeable Bike Lane
- 2258 Squared Meters
- $250.00
- $564,500.00

Curbs
- 1746 Meters
- $200.00
- $349,200.00

New Green Space
- 250 Squared Meters
- $200.00
- $50,000.00

Painting of Roadway and Bike Lanes
- 1 Lump Sum
- $40,000.00
- $40,000.00

Underground Utilities
- 1 Lump Sum
- $400,000.00
- $400,000.00

Rain Gardens
- 290 Squared Meters
- $750.00
- $217,500.00

Landscaping and Cleanup
- 1 Lump Sum
- $10,000.00
- $10,000.00

Total Construction Cost
- $3,231,200.00

Overpass

Excavation and Backfill
- 1 Lump Sum
- $90,000.00
- $90,000.00

Foundation
- 1 Lump Sum
- $200,000.00
- $200,000.00

Concrete Assembly
- 1 Lump Sum
- $300,000.00
- $300,000.00

Deck
- 1 Lump Sum
- $150,000.00
- $150,000.00

Finishes
- 1 Lump Sum
- $100,000.00
- $100,000.00

Electrical & Drainage
- 1 Lump Sum
- $75,000.00
- $75,000.00

Mobile Crane
- 1 Each
- $40,000.00
- $40,000.00

Glazing
- 1 Lump Sum
- $55,000.00
- $55,000.00

Green Infrastructure Installation and Materials
- 1 Lump Sum
- $70,000.00
- $70,000.00

Total Overpass Cost
- $1,080,000.00

Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Type</th>
<th>Unit Price</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MPa Concrete</td>
<td>75</td>
<td>Cubed Meters</td>
<td>$215.00</td>
<td>$16,125.00</td>
</tr>
<tr>
<td>20 MPa Concrete</td>
<td>30</td>
<td>Cubed Meters</td>
<td>$200.00</td>
<td>$6,000.00</td>
</tr>
<tr>
<td>30M Rebar</td>
<td>1800</td>
<td>Linear Meters</td>
<td>$138.33</td>
<td>$248,994.00</td>
</tr>
<tr>
<td>25M Rebar</td>
<td>340</td>
<td>Linear Meters</td>
<td>$49.32</td>
<td>$16,768.80</td>
</tr>
<tr>
<td>15M Rebar</td>
<td>440</td>
<td>Linear Meters</td>
<td>$30.00</td>
<td>$13,200.00</td>
</tr>
<tr>
<td>10M Rebar</td>
<td>2600</td>
<td>Linear Meters</td>
<td>$12.30</td>
<td>$31,980.00</td>
</tr>
</tbody>
</table>
Materials Costs

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Units</th>
<th>Measurement</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir Posts (0.114m x 0.114m)</td>
<td>52</td>
<td>Linear Meters</td>
<td>$17.30</td>
<td>$899.60</td>
</tr>
<tr>
<td>3/4" Bolts</td>
<td>325</td>
<td>Each</td>
<td>$0.08</td>
<td>$26.00</td>
</tr>
<tr>
<td>Wood Art Panels (3.2m x 1.9m)</td>
<td>22</td>
<td>Each</td>
<td>$200.00</td>
<td>$4,400.00</td>
</tr>
<tr>
<td>Bolt Plates</td>
<td>26</td>
<td>Each</td>
<td>$2.00</td>
<td>$52.00</td>
</tr>
<tr>
<td>Planters + Soil</td>
<td>18</td>
<td>Each</td>
<td>$5.00</td>
<td>$90.00</td>
</tr>
<tr>
<td>Veneer</td>
<td>200</td>
<td>Squared Meters</td>
<td>$452.00</td>
<td>$90,400.00</td>
</tr>
<tr>
<td>Total Materials Cost</td>
<td></td>
<td></td>
<td></td>
<td>$428,935.40</td>
</tr>
</tbody>
</table>

General Contractor Overhead

<table>
<thead>
<tr>
<th>Position</th>
<th>Workers Needed</th>
<th>Rate (hr)</th>
<th>Labor Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superintendent</td>
<td>1</td>
<td>$60/hr</td>
<td>$28,800.00</td>
</tr>
<tr>
<td>Project Director</td>
<td>1</td>
<td>$55 * (0.05)/hr</td>
<td>$1,320.00</td>
</tr>
<tr>
<td>Project Manager</td>
<td>1</td>
<td>$45 * (0.25)/hr</td>
<td>$5,400.00</td>
</tr>
<tr>
<td>Project Coordinator</td>
<td>1</td>
<td>$30 * (0.5)/hr</td>
<td>$7,200.00</td>
</tr>
<tr>
<td>Safety Officer</td>
<td>1</td>
<td>$30/hr</td>
<td>$14,400.00</td>
</tr>
<tr>
<td>Foreman</td>
<td>1</td>
<td>$35/hr</td>
<td>$16,800.00</td>
</tr>
<tr>
<td>Traffic Controller</td>
<td>3</td>
<td>$22/hr</td>
<td>$31,680.00</td>
</tr>
<tr>
<td>Additional Overhead</td>
<td>1</td>
<td>$20,000</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>Total General Contractor Labor Cost</td>
<td></td>
<td></td>
<td>$125,600.00</td>
</tr>
</tbody>
</table>

Overall Construction Activities Cost

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL CONSTRUCTION ACTIVITIES COST</td>
<td>$4,740,135.40</td>
</tr>
</tbody>
</table>

A contractor fee of 7% was then calculated from the overall construction activities cost and a contractor overhead cost was taken from the general contractor labor cost. Labor factors were taken into consideration when estimating wages. Finally, a 15% contingency was applied to the cost analysis to...
account for the unpredictability of the project’s financial requirements. This method of explaining our cost estimate was used with the intention of clearly explaining which aspects of the project are the most expensive. This cost estimate also is based on accurately estimated quantities of all items of work. The total cost can be found once again below for comparison:

Table 27: Total Cost Summary

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Activities Cost</td>
<td>$4,740,135.40</td>
</tr>
<tr>
<td>Contractor Fee (7%)</td>
<td>$331,809.48</td>
</tr>
<tr>
<td>Contractor Overhead</td>
<td>$125,600.00</td>
</tr>
<tr>
<td>Consulting Services</td>
<td>$61,500.00</td>
</tr>
<tr>
<td>Contingency (15%)</td>
<td>$788,856.73</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$6,047,901.61</td>
</tr>
</tbody>
</table>

Appendix E: Project Management Documentation

Project Charter

Project Name:

Wesbrook Mall Roadway – Phase 4 Redesign

Project Type:

Public Infrastructure Design / Pedestrian Overpass Bridge Design

Problem / Opportunity:

Scope:

Constraints:
- Public Infrastructure Redesign - Location - Traffic Activity
- Overpass Bridge Design - Project Type - Finances
- Project Type - Geography

<table>
<thead>
<tr>
<th>Assumptions:</th>
<th>Goals:</th>
<th>Metrics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Similar Future Traffic Activity</td>
<td>- Greater Efficiency</td>
<td>- Cost</td>
</tr>
<tr>
<td>- Infrastructure Continuity</td>
<td>- Safety</td>
<td>- Material</td>
</tr>
<tr>
<td></td>
<td>- Economical Solution</td>
<td>- Traffic Modeling Outcomes</td>
</tr>
</tbody>
</table>

Detailed Design Project Key Tasks:

1. Technical Considerations of Design
2. Detail Drawing Issued “For Construction”
3. Draft Plan of Construction Work
4. Class A Cost Estimate
5. Finalized Schedule
6. Project Maintenance Specifications

Prepared By: BOJNOJ Consultants **Approved By:** CIVL 445 Teaching Staff
Appendix F: Environmental Aspects

Source: Stormwater Source Control Design Guidelines 2012

Source: Stormwater Source Control Design Guidelines 2012
Appendix G: Detailed Design Drawings
NOTES: ROAD AND SIDEWALK WIDTHS VARY THROUGHOUT Corridor.
SECTION AT PEDESTRIAN CURB RAMP CROSSING AND DRIVEWAY (RESIDENTIAL & COMMERCIAL) CROSSING

INCREASE THICKNESS BY 50mm FOR ARTERIAL ROUTES AND AREAS WITH BUS STOPS

NOTE "A"

TYPE F (FORMED)

NOTE "B"

NOTE "C"

NOTE "D"

SECTION AT PEDESTRIAN CURB RAMP CROSSING AND DRIVEWAY (RESIDENTIAL & COMMERCIAL) CROSSING

INCREASE THICKNESS BY 50mm FOR ARTERIAL ROUTES AND AREAS WITH BUS STOPS

NOTE "A"

TYPE F (EXTRUDED)

NOTE "B"

NOTE "C"

NOTE "D"

NOTE "A" FOR DETAILS, SEE DWG C6.1.

NOTE "B" WHERE P.C. CONCRETE PAVEMENT BASE IS USED, CURB CONSTRUCTION SHALL BE AS SHOWN ON DWG C6.2.

NOTE "C" CONTROL JOINTS CUT AT 4.5m INTERVALS (MIN. 50mm DEPTH).

NOTE "D" PLACE A MINIMUM OF 150mm APPROVED GRANULAR BASE AT 95% MPD (19mm MINUS CRUSHED GRANULAR). EXCAVATE 1.2m WIDE FOR CURB & GUTTER.

USE ONLY CITY APPROVED MIN. 32 MPa CONCRETE MIX.

NOTE:
1. ALL DIMENSIONS IN MILLIMETERS UNLESS STATED OTHERWISE.
MMCD UPPER COURSE 50MM
GRANULAR BASE 150MM
NOTES:
1. FOOTING CONCRETE STRENGTH $F'_C = 30$ MPa, ALL OTHER CONCRETE STRENGTH $F'_C = 30$ MPa,
 STEEL STRENGTH $F_Y = 400$ MPa
2. DETAILING FOR SPECIFIC ELEMENTS CAN BE FOUND IN DETAILING DRAWINGS
NOTES:
1. 10MM WATERPROOF VENEER LAYER APPLIED TO SLAB
2. CULVERTS UNDER EACH PLANTER, DIRECT RUNOFF TO DRAINAGE OUTLETS AT LANDINGS. SEE DRAINAGE DETAIL DRAWINGS FOR FURTHER DETAILS
3. PLANTERS SPACED @ POSTS TO ALLOW FOR MAINTENANCE
4. SEE TIMBER POSTS DRAWING FOR BOLTING CONNECTION DETAILS
NOTES:
1. GREEN ARROWS INDICATE DIRECTION OF FLOW
2. CULVERTS ALLOW FLOW UNDER THE PLANTERS
3. IDENTICAL PATHWAYS EXIST AT EASTERN LANDING
4. SEE EXIT DRAINAGE IN STAIRS DRAWING
NOTES:
1. INNER DRAINAGE PIPE DIAMETER: 100MM
2. OUTER DRAINAGE PIPE DIAMETER: 100MM
3. STAIR DESIGN IS UNIFORM FOR ALL 4 APPROACHES
NOTES:
1. CONCRETE STRENGTH F’C = 30MPA, STEEL STRENGTH FY = 400MPA
2. TUL: 15M @ 300MM, EXTENDS 1450MM PAST COLUMN FACE, 300MM HOOK AT COLUMN EDGE
3. TLL: 2 ROWS OF 10M @ 100MM, EXTENDS 6000MM PAST COLUMN FACES ALONG INNER SPAN
4. BUL, BLL: 10M @ 250MM, FIRST BAR 125MM FROM COLUMN FACE, BLL EXTENDS 350MM INTO
 BEAM FACE
5. 40MM COVER ON ALL FACES
6. DETAILING IS UNIFORM THROUGHOUT SLAB. NOTE THAT TOP DRAWING ONLY DETAILS TUL
 AND TLL.
NOTES:
1. CONCRETE STRENGTH FC = 30MPA, STEEL STRENGTH FY = 400MPA
2. TOP STEEL: 3 ROWS OF 6-30M @ 70MM
3. BOTTOM STEEL: 1 ROWS OF 6-30M
4. STIRRUPS: 2-10M (4 LEGS) @ 175MM
5. 40MM COVER ON ALL FACES
6. DETAILING IS UNIFORM THROUGHOUT BEAMS. SEE SLAB AND COLUMN DETAILING
 DRAWINGS FOR CONNECTION AND STEEL EXTENSION DETAILS
NOTES:
1. CONCRETE STRENGTH FC = 30MPA, STEEL STRENGTH FY = 400MPA
2. VERTICAL BARS: 9-25M SPACED @177.5MM
3. COLUMN TIES: 10M @300MM
4. 50MM COVER ON ALL FACES
5. DETAILING IS UNIFORM FOR ALL COLUMNS. SEE BEAM COLUMN CONNECTIONS DRAWING FOR CONNECTION DETAILING
NOTES:
1. FOOTING CONCRETE STRENGTH $F_c = 20$MPA COLUMN CONCRETE STRENGTH $F_c = 30$MPA,
 STEEL STRENGTH $F_y = 400$MPA
2. 2 LAYERS OF 15-30M @ 160MM
3. 4-30M DOWELS @ COLUMN CORNERS, 75MM COVER
4. 75MM COVER FOR BOTTOM, SIDE FACES
5. FOOTING IS 1000MM SUBGRADE
6. DETAILING IS UNIFORM IN ALL SLABS.
NOTES:
1. CONCRETE STRENGTH FC = 30MPA, STEEL STRENGTH FY = 400MPA
2. BEAM FLEXURAL STEEL EXTENDS 400MM INTO COLUMNS
3. COLUMN VERTICAL REINFORCING STEEL EXTENDS 400MM INTO BEAMS
4. FIRST BEAM STIRRUPS @ 82.5MM FROM COLUMN FACE
5. FIRST COLUMN TIE @ 150MM FROM BEAM FACE
6. SEE BEAM AND COLUMN DETAILING DRAWINGS FOR FULL DETAILING OF ELEMENTS
NOTES:
1. TIMBER: NO.2 DOUGLAS-FIR, 200MM X 200MM X 2000MM
2. ALL BOLTS ARE 3/4", 75MM PENETRATION DEPTH
3. STEEL PLATE IS 10MM THICK, 100MM WIDE ALONG POST, 90MM WIDE AT PANEL
4. DETAILING IS UNIFORM THROUGHOUT OVERPASS. SEE LAYOUT DRAWINGS FOR POST LOCATIONS