UBC Social Ecological Economic Development Studies (SEEDS) Sustainability Program

Student Research Report

Stadium Neighborhood Underground Parkade and Water Storage

Sunny Bapla, Yiwei Chen, Sergey Makhov, Ziad Merdas, Prudence Nakawooya, Tabata Vieira Ribas

University of British Columbia

CIVL 446

Themes: Water, Climate, Land

April 8, 2019

Disclaimer: "UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project/report and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a project/report".

Executive Summary

The proposed design includes the construction of a stormwater detention facility under the field along with a two storey underground parkade under the stadium building. Collected stormwater is stored under the field and diverted to a water treatment system. The treated water will be distributed to the stadium and the botanical garden and reused for irrigation and flushing toilets. The stored water can also infiltrate into the native soils and act as a groundwater recharge source. In case of an extreme event corresponding to a 10-year and a 100-year return period, water can be diverted to the lower level of the parkade which serves as a secondary water tank and discharged through the UBC's current pipe network. This design is effective and efficient to properly deal with the UBC's current concern related to stormwater management and prevention of floods and potential slope stability around Point Grey.

The demands and capacities of the parkade were analyzed using software such as S-Frame[™], S-Steel[™] and S-Concrete[™]. The loads on the structure are composed of the dead load, vehicles load, exit load, soil pressure and snow load. The steel sections and rebar of this structure were chosen based on the CSA S16-14 and determined to be 350W and 400W respectively.

The preliminary schedule for the project indicates a start on May 1st, 2019 and completion in October 2019; a total of 6 months. Additionally, the report reviews a detailed cost estimate including first costs, annual operating cost, and maintenance costs. The total expected cost is estimated at CAD \$15.7 million for the parkade, detention tank and accompanying facilities construction. The parkade and water storage facility is mindful of the local environment and stakeholder interests.

Ι

Table of Contents

1.0 Introduction	1
2.0 Design Criteria and Constraints	2
3.0 Proposed Design	4
3.1 The Primary System - Brentwood StormTank Module and Shield	5
3.1.1 Objective	5
3.1.2 System Description	5
3.1.3 Construction Layout	6
3.2.2 System Description	8
3.2.3 Construction Layout	8
3.2.4 Main features and Characteristics:	8
4.0 Piping System	9
4.1 Demands	9
4.2 Treatment Facility	10
4.3 Pumps	11
4.4 The Piping System	12
5.0 Infiltration Analysis	13
5.1 Groundwater Recharge	13
5.2 Quadra Sand Contamination	14
6.0 Structural Analysis of Parkade	15
6.1 Loadings	15
6.2 Structural Demands	16
6.3 Structural Capacities of Steel Frame Members Based on S16-14	16
6.4 Foundation Design	17
6.5 Concrete Wall design	17
6.6 Two Way Slab and Slab on Grade Design	17
7.0 Construction Management	18
7.1 Site Plan and Constraints	18
7.2 Construction Schedule	19
8.0 Cost Analysis	20
8.1 Construction Costs	20
8.2 Underground parkade	21
8.3 Field detention system	21
8.4 Rainwater treatment facility	22
8.5 Operation and maintenance	22
9.0 Conclusion	23
10.0 References	24
11.0 Appendices	25
Appendix A - Expected Volume Calculation	25
Appendix B - Drawings	26
Appendix C - Pumps	44
Appendix D - Piping System Sample Calculations	50
Appendix E - Detailed Construction Schedule	51
Appendix F - Cost Excel Calculations	53
Appendix G - Structural Analysis Calculations	54

List of Figures

Figure 1: Site Overview	1
Figure 2: Side View of Brentwood Modules System	5
Figure 3: StormTank Shield (Brentwood Industries, Inc.)	6
Figure 4: Side View of Brentwood Modules System with Construction Layers	7
Figure 5: The Cistern	10
Figure 6: The Separator	10
Figure 7: The Stormfilter	10
Figure 8: Pump Locations	11
Figure 9: UBC geological profile (UBC Properties Trust, 2002).	13
Figure 10: Scenarios 1, 2 & 3 respectively	14
Figure 11: Site plan	18
Figure 12: Summary of the Construction schedule	19

List of Tables

Table 1: Volume of water for 10 -year and 100-year Storm Event	2
Table 2: Stakeholder Summary.	3
Table 3: Dimensions and Properties of module units	4
Table 4: Normal Conditions Flow Rates	9
Table 5: Extreme Storm Event Flow Rates	9
Table 6: Piping System Summary	12
Table 7: Table 6: Scenarios Characteristics	14

1.0 Introduction

Studies developed in the Point Grey area raised concerns about erosions on the surrounding cliffs, potential flooding, and quality of storm-water on campus. The current storm-water system in place is traditional consisting of massive concrete and plastic pipes, but there is a need for a more natural approach to handle stormwater at UBC. The current system is insufficient in preventing floods during extreme storm events. Hence, a mix design of a parkade and a water storage system is proposed.

The objective of the proposed system is to utilize stormwater captured from Thunderbird stadium and the neighbouring streets located in the southwest catchment of UBC campus. These facilities will be built around the intersection of 16th Avenue and East Mall, to serve the upcoming Stadium Road neighbourhood. The purpose is to minimize the risks associated with increased volume and rate of surface runoff of a 10 year and a 100 year storm event. This is expected to reduce erosion of adjacent cliffs, reduce pressure on current water pipes and improve slope stability. The proposed design solution includes primary water detention tanks and a 2-level underground parkade underneath the stadium field.

Figure 1: Site Overview

2.0 Design Criteria and Constraints

The underground parkade and water detention facility takes into consideration the technical, economic, regulatory, environmental and societal aspects. First of all, the main objective of this design is to manage a 10 year and a 100 year storm events. Hence, the main goal is to prevent flooding on waterways, overland flow paths and constructed drainage network for the designed volume. It is also important that the parkade structure can withstand all lateral loading, surface loading and seismic loading. The design will follow the UBC Integrated Stormwater Management Plan which includes the preferred design life, priority locations, land zoning requirements and discharge water quality. In addition, it will meet the standards imposed by local governmental bodies such as City of Vancouver and Metro Vancouver.

The major roads will be designed to withstand a 100-year storm event and minor roads a 10-year storm event. The calculations are shown in Appendix A, and summarized below:

10-year Storm-event	Time = 1 hr	Q _{10yr} = 4,335 m ³ /hr	$V_{10yr} = 4,335 \text{ m}^3$
10-year Storm Event	Time = 24 hr	Q _{10yr} = 4,335 m ³ /hr	V _{10yr} = 104,040 m ³
100-year Storm Event	Time = 1 hr	Q _{100yr} = 5,260 m ³ /hr	V_{100yr} = 5,260 m ³
100-year Storm Event	Time = 24 hr	Q _{100yr} = 5,260 m ³ /hr	V _{100yr} = 126,240 m ³

Table 1: Volume of water for 10 -year and 100-year Storm Event

Secondly, the parkade should enhance the overall experience of the place, while ultimately determining the success and profitability of the structure. Parking is often the first thing people experience when arriving at a destination, and the last thing they experience when leaving. If the parking experience is unpleasant, it will have an impact on their decision to return. Some of the technical aspects of parkade design are the entrance/exit locations, turning radii, floor slopes and parking efficiency. Sustainability is a key component of the design. It offers an opportunity to create environmentally sound and resource-efficient buildings by using the sustainable design practices. There are several common strategies to incorporate sustainable design into the mixed-use facility that includes using reusable construction materials, providing charging stations for electric vehicles, installing pervious paving and other landscape strategies to increase infiltration.

Stakeholder engagement is a continuous endeavour with this project to ensure that the needs and goals of the community and leaders are met.

Community	Government & Authorities	Influencers & Providers
First Nations	City of Vancouver	UBC Campus + Community Planning
UBC athletes	MetroVancouver	UBC Properties Trust
UBC residents and students		

3.0 Proposed Design

The design consists of a primary detention system and a two storey underground parkade underneath the relocated Thunderbird stadium. The primary detention system consists of a subsurface water storage unit underneath the field with dimensions of 35 m wide and 92 m long (current stadium's dimensions). The storage units used for the field are StormTank supplied by Brentwood. The lower level of the underground parkade will act as a secondary water detention tank, being filled in case of an extreme storm. Water from the primary storage tank will be treated and thereafter used for irrigation of the field and the Botanical garden, as well as for use in the stadium and proposed Stadium neighbourhood residences. Water form the secondary detention system will be discharged into the existing storm water drainage system. The floors of the parkade are split by an automated mechanical system during a rain event. Detailed drawings of the design are shown in Appendix B.

3.1 The Primary System - Brentwood StormTank Module and Shield

3.1.1 Objective

The main objectives of this system is to store and utilize stormwater captured in the neighbouring streets via the local pipe network, and reduce water pollution in the effluent. The primary system is located underneath the stadium field with flexibility in volume design to meet site requirements and runoff regulations.

3.1.2 System Description

The system consists of two basic components; a StormTank Module and a StormTank Shield. Firstly, the StormTank Module consists of two subsurface units of different dimensions, an ST-36 at the bottom and an ST-18 at the top. The units are made of high-strength Polypropylene panels and PVC (Polyvinyl Chloride) columns with reinforcing structural ribs. The panels are engineered to provide stability and distribute loads onto the columns uniformly. The dimensions and properties of the module units chosen are given in table 3 below. A side view of the modules system is shown in figure 2;

Code	Dimensions	Storage	Storage Volume	Weight
	L: 914 mm			
ST-36	W: 457 mm	0.37 m ³	97 %	15 kg
	H: 914 mm			
	L: 914 mm			
ST-18	W: 457 mm	0.18 m ³	95.5 %	10 kg
	H: 457 mm			

Table 3: Dimensions and Properties of module units

Where: L, Length - W, Width - H, Height

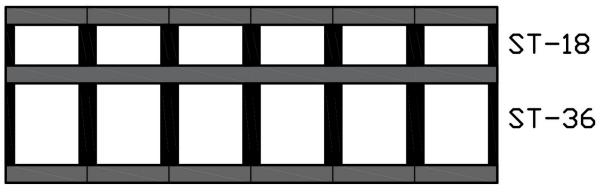
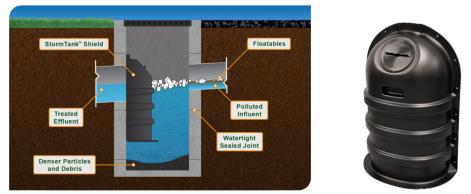
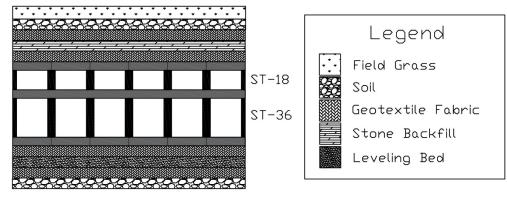


Figure 2: Side View of Brentwood Modules System

Secondly, a 24 inch StormTank Shield is to be installed at the entrance of the tank to decrease pollution and ensure high water quality in the effluent by removing debris and separating oil. In addition, excluding extreme events, the shield will help in maintaining a constant water level in the system due to the shape of the shield opening. Figure 3 below shows the shield and a cross section of the shield installation.




Figure 3: StormTank Shield (Brentwood Industries, Inc.)

3.1.3 Construction Layout

The primary system underneath the field will need to detain water with minimum (2500 m³ - 3000 m³) based on the UBC stormwater management plan. Therefore, the required system with 96.6% storage, would need to occupy a minimum volume of (2600 - 3100 m³). In addition, the area for the primary system needed to meet the minimum flow rate shown in Appendix A is roughly 4000 m², which is 60 m by 60 m, with an excavation depth of 2m, and expected storage capacity of 5300 m³. The excavation depth accounts for the height of the modules as well as the depth of the accompanying construction layers. These layers include:

- 4 Geotextile Fabric Layers: These are permeable fabrics that are used in construction to separate layers, serve as effective filters, protect and guard against erosion, prevent the movement of soil and add structural integrity (Leach, 1984). For our design we choose nonwoven geotextiles to increase the permeability of the layer, allowing excess stored water to infiltrate into the native soils.
- 1 Level Bed Layer: The purpose of this layer is to provide stability prior to the module placement. The layer is constructed from coarse aggregates.
- Stone Backfill Layer: This layer adds reinforcement and supports the structure while promoting water drainage.

The cross section of the construction layout is shown in figure 4 below.

Figure 4: Side View of Brentwood Modules System with Construction Layers

The water stored in the primary system can be utilized as follows:

- The water can be slowly discharged into a stream at rate of 1.2 m³/s based on the UBC integrated water management plan.
- The water can slowly infiltrate into the native soil, thus, acting a groundwater recharge source.
- The water can be treated for irrigation purposes and household usage.

3.2 Secondary System - Stormwater Storage Tank

3.2.1 Objective

The main objective of the secondary system is to act as a parkade, however, during extreme storm events, the lower story of the parkade would store excess water that is diverted from the primary system to prevent flooding and equalize runoff flow rate.

3.2.2 System Description

The system is to be constructed as a two story underground parkade with the lower level to be used as a detention tank in extreme storm events. The process of water diversion is initiated by gravity and head difference between the primary and secondary systems. The connection between the systems would be via pipes and automated weirs that maintain a 1.2 m³/s flow as per regulations stated in the UBC stormwater integrated plan.

3.2.3 Construction Layout

The depth of each story is designed to be 12ft with an area of 40,000 m² per level. According to the CSA A23.1, the slabs and columns for the parkade would fall under the F-1, F-2, S-1, S-2 and C-XL classes. The slabs and columns of the upper storry parkade will be constructed from regular concrete and steel rebars. However, due to possible contact with water, the slabs and columns of the lower story are to be constructed from impermeable high density concrete to prevent corrosion of steel, chloride attack, sulfate attack, alkali aggregate reaction (AAR) and freeze and thaw cycles. Admixtures such as silica fume and supplementary cementitious materials can be added to achieve that. Also, control fibers such as fiberglass and polypropylene are to be added to mitigate the development of cracks. The Plan views of each floor of the parkade can be seen in Appendix B. They were drawn in AutoCad 2019, with a scale of 1:250.

3.2.4 Main features and Characteristics:

The secondary system is characterized by movable weirs that control the opening of the connection pipe between the primary and secondary systems. The weirs will gather information from water level sensors placed on specific locations, that are known for flooding under extreme storm events based on long term data. In addition, the sensors would notify systems similar to the USGS ShakeAlert, an earthquake early warning system used by the US geological survey, to alert lower parkade users via a text message to clear the premises. Advisory and parking time limit signs will be used for visual interpretation.

In case of flooding, a small scale pump house will help in draining the water out which could be used for irrigation purposes. On the other hand, the water will be discharged over time into a stream via the installed drainage system. Additional features in the system include an airtight and watertight enclosure that helps in the drainage of water.

8

4.0 Piping System

The proposed project has a piping system that diverts water from the UBC drainage system to the primary tank, water is then treated and distributed to the botanical garden and the stadium for irrigation and flushing toilets. The piping system is designed to also accommodate a 100-year storm event for a 24 hours duration.

4.1 Demands

Three main demands were considered: the botanical garden, the stadium building and a future residential building in the new stadium neighbourhood. The two scenarios are shown below, during a game and normal conditions, and during an extreme storm event. The demand for the stadium building is based on the Gillette Stadium in Foxborough, Massassuettes. The demand for the botanical garden is based on the Australian Botanical Garden in Mount Annan, Australia. Sample calculations can be found in Appendix C. Tables 4 and 5 show the flow rate going through each major pipe for scenario 1 - Normal Conditions During a Game, and scenario 2 - Extreme Storm Event (100-Year 24 hours)

From	То	Rate (m ³ /hr)
Stormwater Sewer	Primary Tank	58.07
Primary Tank	Treatment	181.44
Treatment	Cistern	2,548.80
Cistern	Botanical Garden	34.25
Cistern	Stadium	135.94
Cistern	Potential Res	11.25
Stadium Collection		3.88

From	То	Rate (m³/hr)
Stormwater Sewer	Primary Tank	4,930
Primary Tank	Treatment	35.17
Treatment	Cistern	2,548.80
Cistern	Botanical Garden	17.12
Cistern	Stadium	6.80
Cistern	Potential Res	11.25
Primary Tank	Secondary Tank	5110.0
Secondary Tank	Stormwater Sewer	4320.0
Stadium Collection		329.60

Table 5: Extreme Storm Event Flow Rates

4.2 Treatment Facility

The treatment facility used is a rainwater harvesting solution from Contech Engineered Solutions. The system can treat stormwater at a rate up to 708 L/s. The system has a 120 inches diameter DuroMaxx cistern (figure 5), that can hold up to 20,000 US gallons of clean water. The Rainwater Harvesting Cisterns is made of DuroMaxx Steel Reinforced Polyethylene (SRPE). The eighty (80) ksi steel reinforcing ribs provide strength and the pressure rated polyethylene (PE) resin provides durability. In addition the facility has two treatment devices, a hydrodynamic separator for the pretreatment and a stormfilter for the main treatment. The CDS® hydrodynamic separator (figure 6) is an underground stormwater pretreatment device that uses swirl concentration and continuous deflective separation to screen, separate and trap trash, debris, sediment, and hydrocarbons from runoff. The Stormwater Management StormFilter® (figure 7), uses rechargeable and media-filled cartridges that absorb and retain the most challenging target pollutants including dissolved metals, hydrocarbons, nutrients, metals and other common pollutants found in the pretreaded stormwater runoff.

Figure 5: The Cistern

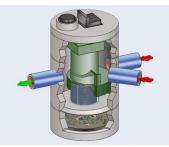


Figure 6: The Separator

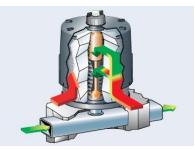


Figure 7: The Stormfilter

4.3 Pumps

The usage of three pumps to convey water is suggested. The pumps will convey water from the existing UBC drainage system to the primary tank (1st pump), from the secondary tank to the UBC drainage system (2nd pump), and from the cistern to the stadium building (3rd pump). The pumps used in all three locations are supplied by Grundfus Sp 35S (35 gpm 0.75 hp), the pump curves, friction losses and system curves can be found in Appendix D. A disadvantage is that there is a speed reduction by up to 42% for 1st pump, and up to 55% for the 2nd pump. Figure 8 shows the location of each pump.

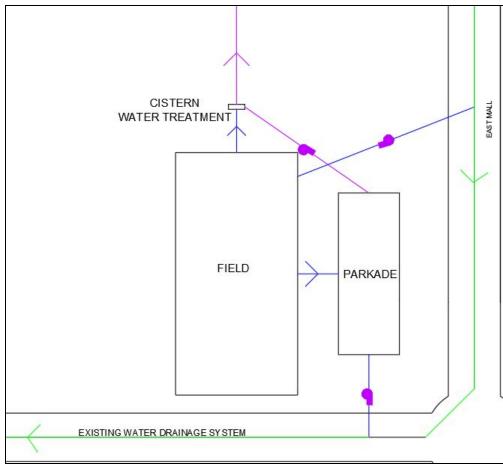


Figure 8: Pump Locations

4.4 The Piping System

The table below summarizes the main characteristics and flows for each pipe within the system in scenario B. A negative slope indicates a presence of a pump. Given that the pipes going to the botanical garden must follow the road, there are four pipes of similar diameter that will convey the water. The flow capacity for each pipe is estimated using Manning's equation and the sample calculations are detailed in Appendix C.

	Pipe Slope	Pipe Dia.	Length	V Capacity	Q Capacity	Q Demand	Pump Speed Reduction
From-To	%	(mm)	(m)	(m/hr)	(m^3/hr)	(m^3/hr)	%
Storm Sewer-Primary	-2.14%	350	116.7	184484.2	4930.4	4930.4	42%
Primary-Cistern	0.87%	250	28.8	14627.7	199.5	181.4	
Cistern-Garden							
1	0.77%	200	172.1	11857.8	103.5	34.2	
2	2.23%	200	38.3	20218.8	176.4	34.2	
3	0.39%	200	238.7	8495.2	74.1	34.2	
4	2.02%	200	82.0	19238.7	167.9	34.2	
Cistern-Stadium	-1.65%	250	92.2	9969.9	135.9	135.9	100%
Primary-Secondary	6.24%	200	100.2	2872393.7	25066.4	5110.0	
Secondary-Storm Sewer	-10.7%	250	51.4	316822.7	4320.0	4320.0	55%

 Table 6: Piping System Summary

5.0 Infiltration Analysis

5.1 Groundwater Recharge

One option for the stored water is to recharge the existing aquifer underneath UBC. The water table is located approximately 55 m below the designed stormtank. According to the hydrogeological study conducted by UBC properties trust, much of the campus is underlain by a glacial till overlying a glaciofluvial sand unit known as the quadra sand. The soil beneath the site is composed of Quadra Sand, Capilano Sediments, and Glaciofluvial Till, they are located at 0-65m, 65-75 m and 75-80 m below ground respectively. A summary profile is shown in figure 9 below.

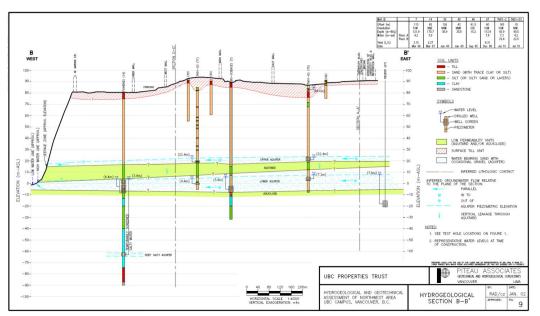


Figure 9: UBC geological profile (Piteau Associates, 2002).

The results of the UBC properties trust study does not give a full image of the complete geological profile underneath the proposed site. Thus, three scenarios were developed to fully understand the profile, these are shown in figure 10 below.

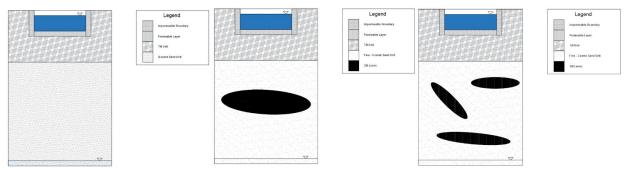


Figure 10: Scenarios 1, 2 & 3 respectively

Depending on the height of water in the tank, the average recharge rate for each

scenario was approximated and is summarized below:

Scenario	Soil	Recharge Rate
Scenario 1	Full quadra sand unit includes fine and coarse sand and silt	3.5 m³/day
Scenario 2	Full sand with a single slit lense	3.2 m³/day
Scenario 3	Full sand unit with several silt lenses	2.5 m³/day

Table 7: Scenarios C	characteristics
----------------------	-----------------

Based on the scenarios shown, it is recommended to conduct further hydrogeological studies with borehole tests on site as the UBC Properties Trust study focused mainly on the northwest area of UBC. Since we are considering the recharge option, it would be helpful to conduct laboratory analysis on the soils obtained from the borehole test to develop soil moisture characteristics curves, which will improve our estimation of the recharge rate through the vadose zone.

5.2 Quadra Sand Contamination

The proposed increase in infiltration rate has the potential to remobilize current contaminates, mainly Magnesium (Mg), found in the quadra sand layer. Effects of such metals can cause an increase of water hardness which appears to be negatively influencing the environment and human health. This impact is beyond the scope of this work but it is recommended to investigate the magnitude and mitigation of the hazard if required. This could be achieved by using modeling software such as MODFLOW[™].

6.0 Structural Analysis of Parkade

Hand calculations, S-Frame, S-Steel, and S-Concrete were used to analyze the demands, and capacities of the structure. The structure consists of composite steel W-section beams of various sizes with various concrete slab thicknesses , and W-section steel columns (Appendix B and G). All steel sections are 350W, the strength and density of all the concrete is fc' = 30 MPa and %=2400 kg/cm, and the MSA is 20mm. Furthermore, all steel rebar is 400W steel and various sizes of steel reinforcement are used. The walls are designed as basement walls 500mm thick sitting strip foundation that is 4.5m wide. Furthermore, the W-section columns sit on top of 4500x4500x1200mm square spread foundation with a 600x1200x25 mm steel bearing plate of 400W strength steel shown in (Appendix G.) Drawings of the parkade can be seen in Appendix B.

6.1 Loadings

The loadings consist of dead, live, snow, and soil loads. The live load consists the thunderbird stadium on top of the parkade (4.8kPa,) vehicles loads (2.4kPa,) and exit loads (4.8kPa.) The dead load consists of a the weight of the beams and columns, which S-Frame includes in the analysis, the weight of the reinforced concrete slabs, and the weight of the thunderbird stadium conservatively estimated to be 20 kPa applied to the "roof" of the structure. The soil pressure varied from with depth (H) based on the following equation that was obtained by a previous geotechnical report of the site:

$\sigma = 25H (psf)$ (minimum 400 psf for Safety)

Furthermore, the allowing soil bearing stress for foundation design was determined to be 12000 psf based on the same geotechnical report of the site.

Lastly, the snow load on top of the thunderbird stadium will be applied to the top of the structure, and has a value of 2.12kPa based on the following equation (NBCC 4.1.6.2:)

6.2 Structural Demands

S-Frame was used to calculate the demands of the steel frame structure. The structural demands of each member is shown in Appendix G graphically. Load combinations from NBCC were all used, and the graphical moments, shears and axial forces for each member and the governing load combination (1.25D + 1.5L + 1.5Soil + 1.0Snow companion load) are graphically shown with legends for max and min values in Appendix G.

6.3 Structural Capacities of Steel Frame Members Based on S16-14

S-Steel was used to code check each member of the steel frame structure for each load combination. Appendix G shows a graphical image of the structure and the values of the ratio of demand to capacity for each member. Ratios less than 1 have enough capacity to meet the demands. Furthermore, sample calculations generated in S-Steel for a column and beam member are shown for reference. The beams consisted of W-Steel composite concrete sections and are shown in Appendix G. There is no deck, and pins should be placed 200mm apart on center. The columns are all W1000x976 sections. 350W grade steel is used for all the steel.

6.4 Foundation Design

Foundation design calculations were done by hand and are shown in Appendix X. The walls are supported by 4500x1200mm strip foundations and each column is supported by 4500x4500x1200mm spread foundations. The drawings of the spread foundation and the strip foundation and basement wall can be seen in Appendix B. The analysis of the spread foundation was done by hand, and used the maximum axial load of all of the columns. For the

16

spread foundation the allowable soil bearing stress used was 12000psf from previous geotechnical studies. 30 MPa concrete was used with MSA of 20mm for both foundations. Reference calculations can be seen in Appendix G. The steel rebar used in the strip foundation consists of 400W 15M steel

6.5 Concrete Wall design

Hand calculations were done to analyze the Concrete basement walls, and are shown in appendix G as reference. The basement walls consisted of 500mm thick concrete of 30 MPa strength and a MSA of 20mm. We assumed that the steel frame and concrete slabs carried all the gravity load, and designed the outer concrete walls to carry the soil pressures only that varied with depth H ($\sigma = 25H$ (*psf*) (minimum 400 psf for Safety).) The concrete walls have 15M grade steel rebar that are spaced 200mm vertically and 260mm horizontally. A section of the walls can be seen in Appendix B. The inner walls should be designed the same since minimum steel reinforcement governed the design.

6.6 Two Way Slab and Slab on Grade Design

Hand calculations were done for the slab design. For simplicity in manufacturing and construction, only one slab thickness was used for all the slabs, 600mm. The slabs were designed to be made from 30 MPa concrete with a MSA of 20mm. The slabs consist of 45M rebar spaced 60mm apart for negative moments (tension on top), and 35M rebar spaced 55mm apart for positive moments (tension on bottom). The rebars are all 400W grade steel. Both rebars are spaced transversely and longitudinally in the slab (in both NS and EW directions). A typical slab section can be seen in Appendix B, and sample calculations for reference are in Appendix G.

7.0 Construction Management

7.1 Site Plan and Constraints

The construction site is located near East mall and West 16th Avenue as shown in figure 11 below. The arrows show vehicular access to the site during construction. Due to the low volume of traffic on stadium road, limited traffic disruption is expected. However, pipes are to be laid across SW Marine Drive to connect the storage facility to the UBC Botanical garden for irrigation purposes. This will necessitate closing of SW Marine Drive to allow construction work to proceed. This will be precisely scheduled to minimize interruption to traffic and at no point in time will the entire road be closed to traffic.

Figure 11: Site plan

The location of the construction site, keeping in mind UBC's plan for the Stadium neighbourhood, requires cutting down of several trees. Therefore, efforts will be made to conserve the trees to the South of the construction site. The site is also located near a

residential area and therefore the Noise Control Bylaws set by the University Neighbourhoods Association (University Neighbourhoods Association, 2012) must be followed. Work hours are to be between 7:30 am and 7:00 pm on weekdays and 9:00 am to 5:00 pm on weekends.

7.2 Construction Schedule

Construction is expected to start in May 2019 and last for six months. Construction will commence after project funding has been approved and the contracts have been drawn and signed. Construction documents should be reviewed and finalized and necessary permits, including building permit, excavation and grading permit, should be obtained. The area will be surveyed and the site mobilized in May. This will be followed by construction of the parkade. Installation of the primary detention tank will begin shortly after, and thereafter the drainage system and water treatment facility will be installed. Construction is expected to end in October 2019.

The gantt chart below shows a summary of the construction schedule. A detailed construction schedule, made using Project 2016, is shown in Appendix E.

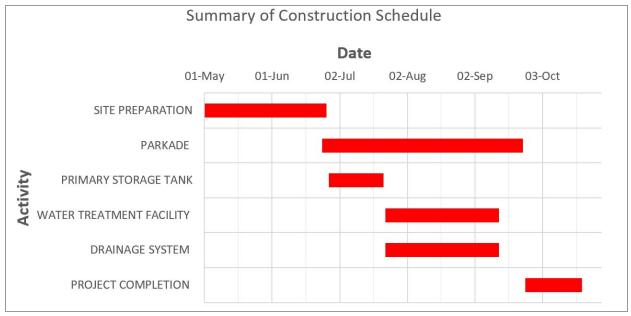


Figure 12: Summary of the Construction schedule

8.0 Cost Analysis

8.1 Construction Costs

The cost calculations were made using the data provided by RSMEANS Square Foot Costs, 2012 and Building Construction Cost Data, 2006 as well as online resources and requests to manufacturers for specific equipment or site work costs approximations. The cost model for a typical underground two-storey parkade was reworked and accompanied by external resources to suit the needs of the project. The table containing the breakdown of costs for construction of the parkade and field detention tank is attached with the Appendix. The cost of the parkade and parts of the detention system were calculated based on the adjusted model for a two-storey underground parkade for 2012 in US Dollars and then converted into Canadian Dollars for the first quarter of 2019 for Vancouver. Architectural fees (7%), contractor fees (25%) such as overhead and profit, insurance of the project (3%), testing (2%) and contingency (10%) were added to the total costs for both parts of the project. The sub-total for the project excluding the above mentioned fees is \$10,726,000. The total for the whole project has changed compared to the preliminary design from \$14,090,000 to \$15,713,000 due to the addition of a water treatment facility, pumps and a more accurate tank installment cost estimate received from the supplier.

8.2 Underground parkade

The parkade calculation includes all divisions of construction such as substructure (excavation and foundation), shell (floors and walls), interiors (partitions, stairs and finishes), services (elevators and plumbing), heat and ventilation (fire protection and electrical work), equipment (ticket dispensers and alarm system). The structure as a whole consists of a concrete foundation, walls and slabs, roof made as other floor slabs to accommodate for future

stadium construction and avoid rebuilding. The parkade has two staircases with two adjacent elevators at the opposite sides of its rectangular area. Each floor has water drainage that is connected with the main detention system and the public sewers. The cost of piping and pumps for all connections is contained within this cost estimate.

8.3 Field detention system

The field system requires a more careful approach due to its uniqueness and specialness. Its construction process includes excavation, leveling, stone backfill and installation of tanks covered with geotextile fabric. The cost for such a storage was requested from Layfield Group and is \$450 for 1 m³ of storage with its installation. The additional equipment the system will require consists of three pumps, one for each tank and treatment facility, water treatment system to be located above the ground by the field area as well as irrigation system across it. The pricing for these was determined based on Building Construction Cost Data, 2006 as well as online resources offered by individual manufacturers and compared to create a reasonable cost estimate for this project.

8.4 Rainwater treatment facility

According to the research on an average price of greywater reuse systems for commercial use, the cost varies between \$20,000 to \$500,000 including installation and \$40,000 to \$50,000 per year for its maintenance. Therefore, it is reasonable to allocate, according to one of the case studies on a governmental building (Administration Building in Belmont) construction of a similar size, \$150,000 for such a facility and \$40,000 per year for its maintenance. (EMRC, 2011)

8.5 Operation and maintenance

According to a parking consultant Gerard Giosa and an engineer, specializing in the rehabilitation of existing buildings, Michael Pond, an average maintenance of each parking space varies from \$100 to \$500 per year. (Pond, 2015 and Wenk) A conservative value that is chosen is therefore \$500/space/year that leads to \$125,000 per year for 250 parking spaces. The detention field system requires cleaning; pumps, pipes, water treatment and irrigation systems need regular check-ups and occasional hose and oil replacement. All these are usually combined into an initial cost percentage that varies between 1 to 13%. (USEPA, 1999) A value of 5% is chosen for this system's cost per year for the following 10 years and further maintenance of 7% for the rest of its life period that is chosen to be 100 years. The rainwater treatment facility has been recommended to allocate \$40,000 per year for its maintenance. The total for both facilities comes to \$354,300 a year.

9.0 Conclusion

A stormwater detention facility and underground parkade mix design was proposed to be constructed at the intersection of 16th Avenue and East Mall. The purpose is to reduce surface runoff resulting from a 10-year and 100-year storm events, that are expected to cause erosion of the adjacent cliffs and increase pressure on the current stormwater network. The design consists of a primary detention tank, secondary detention tank with a parkade, a water treatment facility along with additional features. The stored water is to be used for irrigation, household and recharge purposes. All design criteria were based on the UBC Stormwater Management Plan, City of Vancouver and Metro Vancouver bylaws. The construction period of the project is expected to run from May 2019 to October 2019, with an expected total cost of CAD\$ 15.7 M.

Software such as SketchUp[™] and AutoCAD[™] were used to develop the detailed design drawings, whereas, data analysis were conducted through S-Frame[™], S-Steel[™] and S-Concrete[™]. Tabulated calculations were performed on Microsoft Excel.

10.0 References

- Canadian Nursery Landscape Association. *Life Cycle Cost Analysis Of Natural On-site Stormwater Management Methods*.
- Contech Engineered Solutions. *DuroMaxx Stromwater Detention Detention and Infiltration.* https://www.conteches.com/stormwater-management/detention-and-infiltration/duromaxx -detention-systems
- Eastern Metropolitan Regional Council. *Reuse of Greywater for Local Governments in Western Australia.*July, 2011. Discussion Paper.
- Grundfos Data Booklet. *Submersible Pumps, Motors, and Accessories.* https://ca.grundfos.com/products/product-list/in-line-pump.html
- Piteau Associates, UBC Properties Trust: Hydrogeological and Geotechnical Assessment of Northwest Area UBC Campus, Vancouver. September 2002.
- Pond, Michael. A guide to condo parking garage maintenance. Corporations can maximize their return on investment by preserving waterproofing. March 3, 2015. Condo Business, REMI Network. Retrieved from https://www.reminetwork.com/ on February 3, 2019.
- RS Means Engineering. *Square Foot Costs.* (2012) Robert S Means Co. UBC Library resources.
- RS Means Engineering. *Building Construction Cost Data.* (2006) 64th edition. Robert S Means Co. UBC Library resources.
- United States Environmental Protection Agency. *Preliminary Data Summary of Urban Stormwater Best Management Practices* (August, 1999).
- University Neighbourhoods Association. (August 2012). *Noise Control Bylaw ("Bylaw").* http://www.myuna.ca/wp-content/uploads/2010/04/UNA-Noise-Bylaw_Approved_Aug-20 12.pdf
- Wenk, Jocelyn. *Financing Parking Garages:* Q&A with Parking Consultant Gerard Giosa. Build a better burb.

11.0 Appendices

Appendix A - Expected Volume Calculation

Q = I C A

Q = Flow

I = Average rainfall intensity (mm/hr)

A = Drainage Area (km²) – Catchment Area

C = Run off coefficient

Average Rainfall Intensity

UBC is within Zone 3 (Vancouver UBC) with annual precipitation 1277 mm Based on observations the time of concentration:

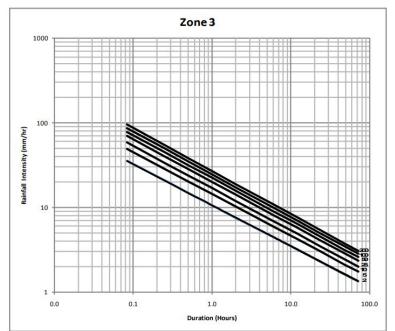
- $t_c = 6hr$ (For 100-year for major roads)

- $t_c = 2hr$ (For 10 -year for minor roads)

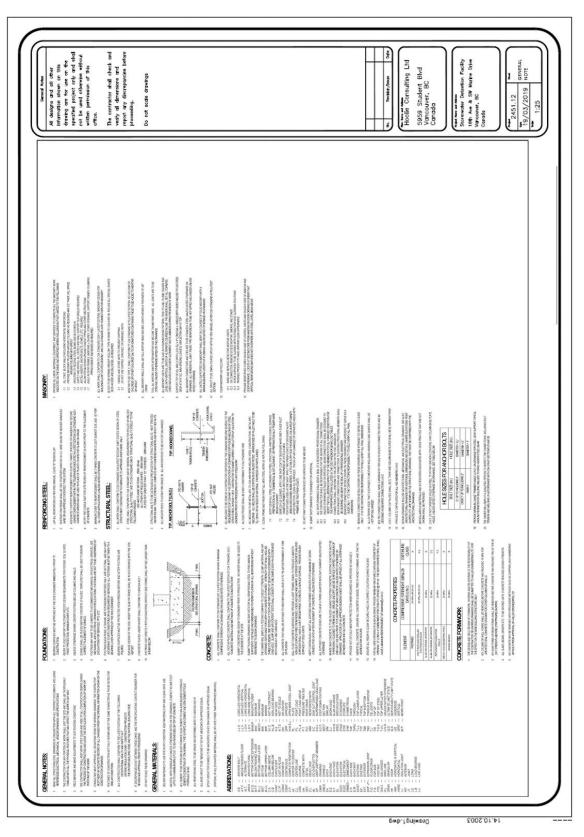
- 10 yr + 2 hr: i = 10.2 m/hr*

- 100 yr + 6 hr: i = 9.9 m/hr*

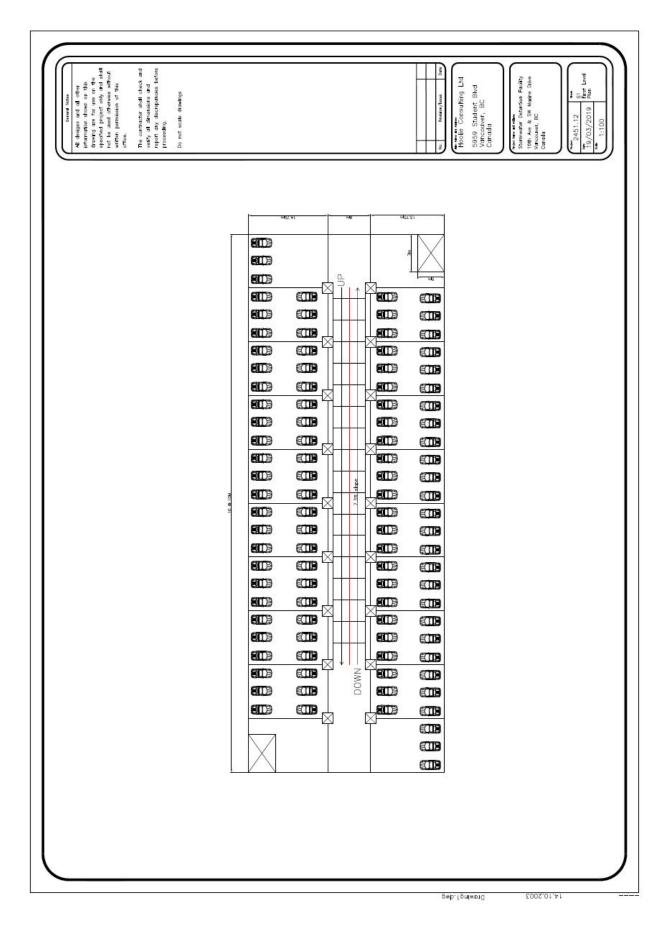
*Reference table on the following page

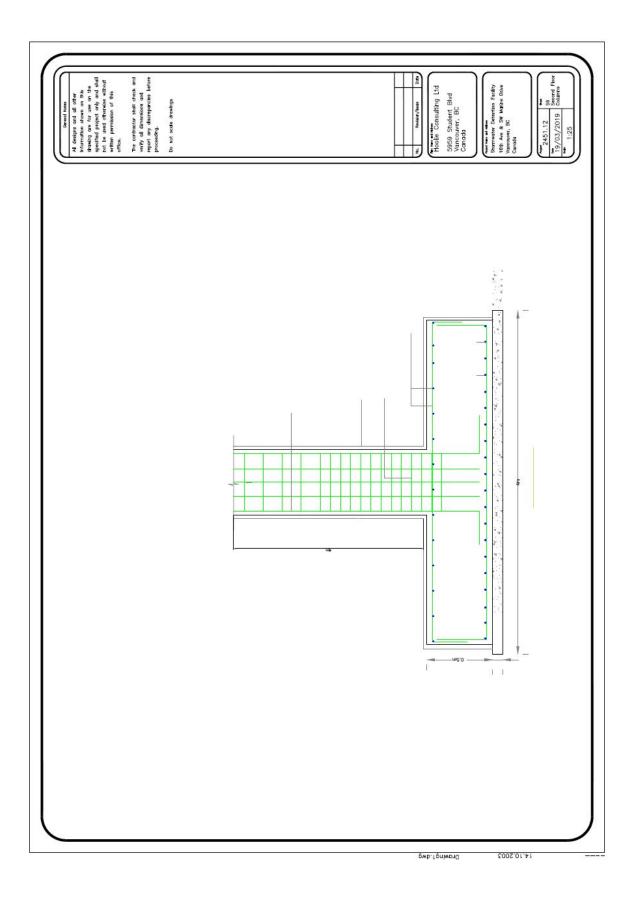

Runoff Coefficient

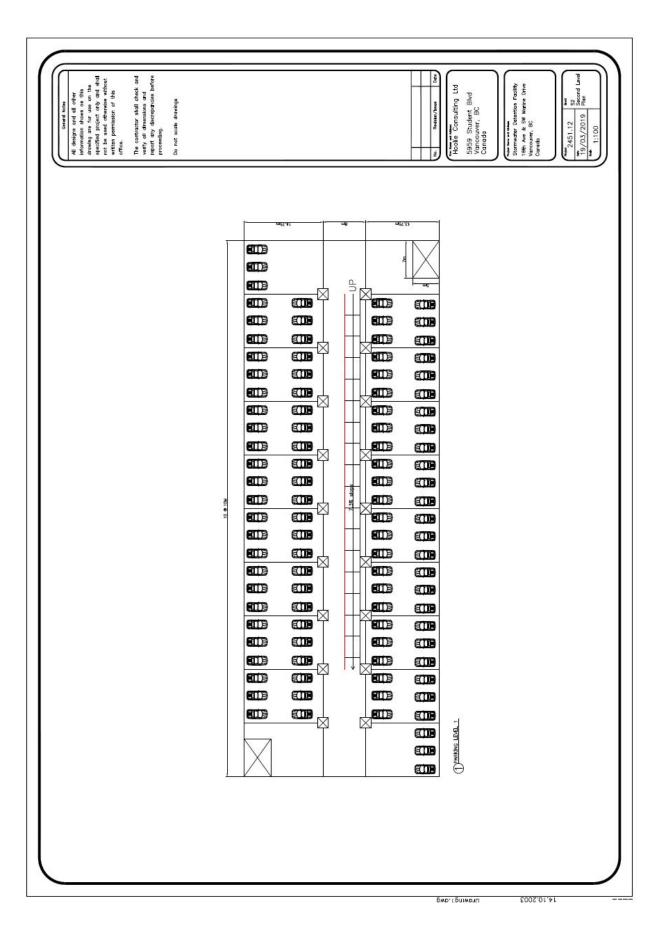
Asphalt/concrete C = 0.85

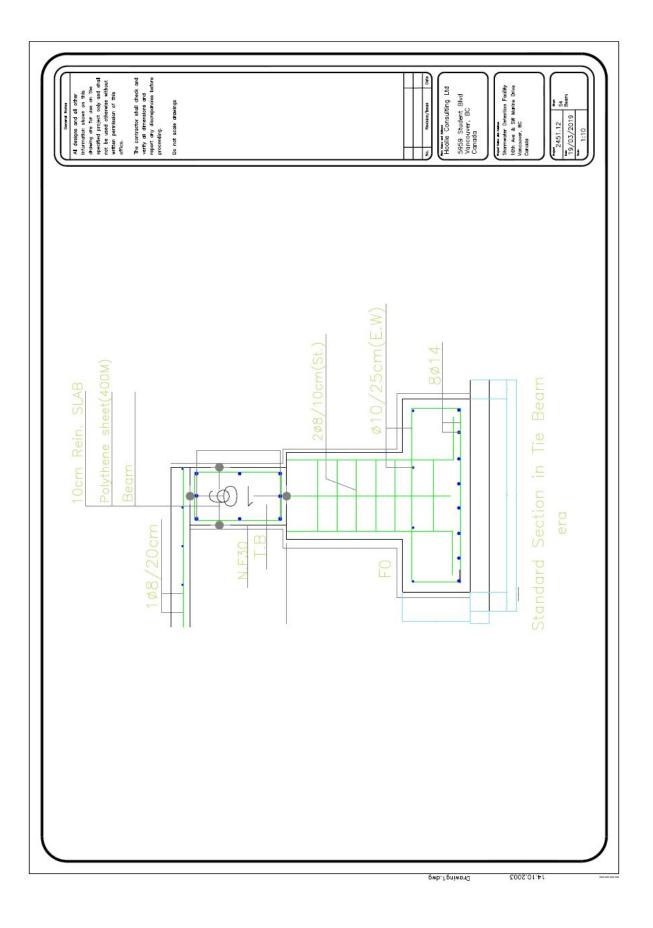

100 – year: C = 0.85 x C_f (Frequency Adjustment Factor) = 0.85 x 1.25 = 1.063

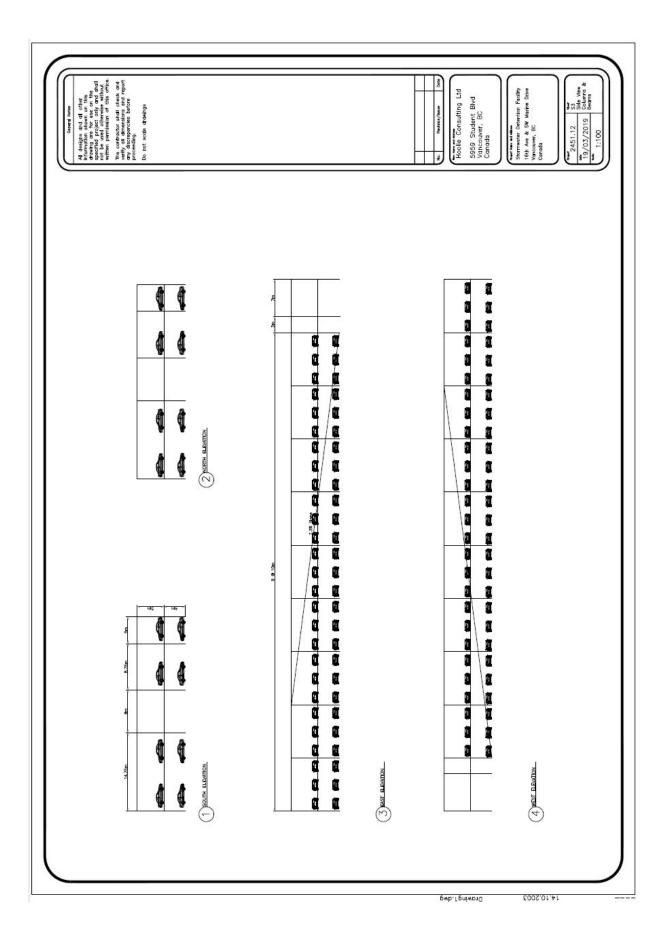
Drainage Area

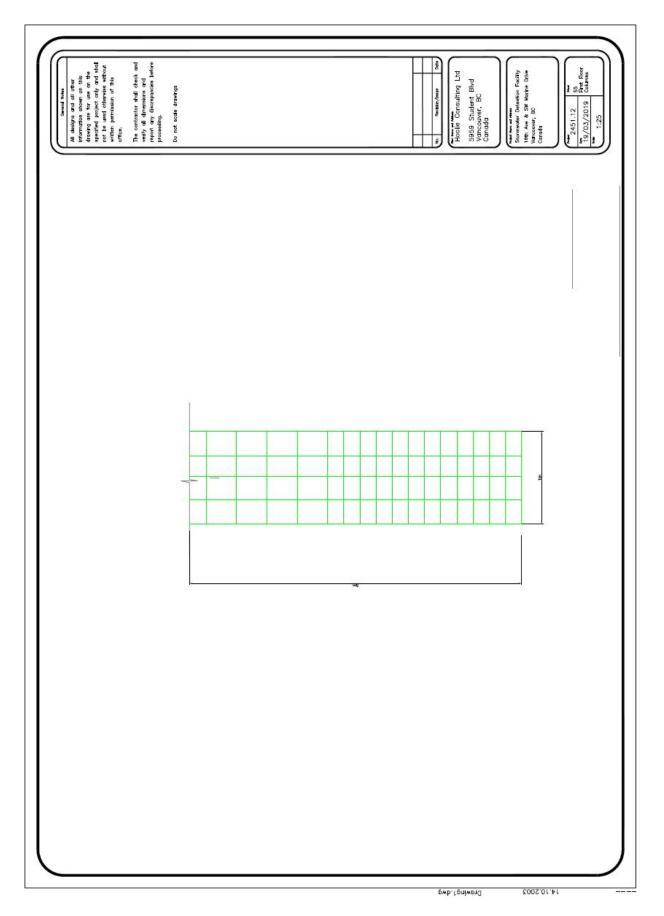

A = 0.5 km² (16th Ave Catchment) Q_{10yr} = (10.2 mm/hr) (10-3m/mm) (0.85) (0.5 km³) (10-6 m²/km²) = 4335 m³/hr Q_{100yr} = (9.9 mm/hr) (10-3m/mm) (1.063) (0.5 km²) (10-6 m²/km²) = 5260 m³/hr - For 1 hr storm events: $V_{10yr} = Q x t = (4335 m³/hr) x 1$ hr = 4335 m³ $V_{100yr} = Q x t = (5260 m³/hr) x$ 1hr = 5260 m³ - For 24 hr storm events: $V_{10yr} = Q x t = (4335 m³/hr) x$ 24hr = 104040 m³ $V_{100yr} = Q x t = (5260 m³/hr) x$ 24hr = 126240 m³

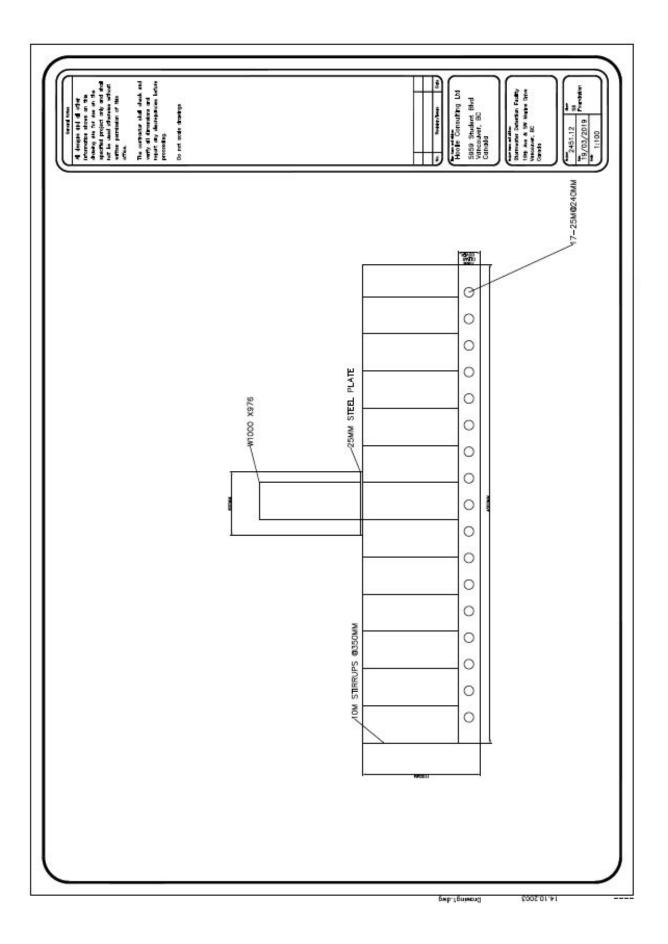


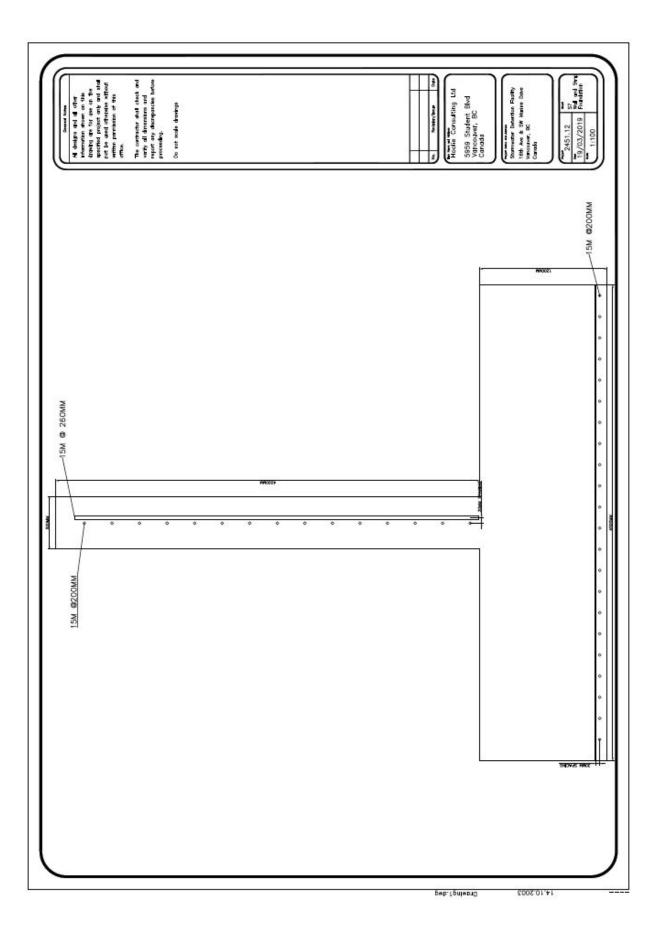

Appendix B - Drawings

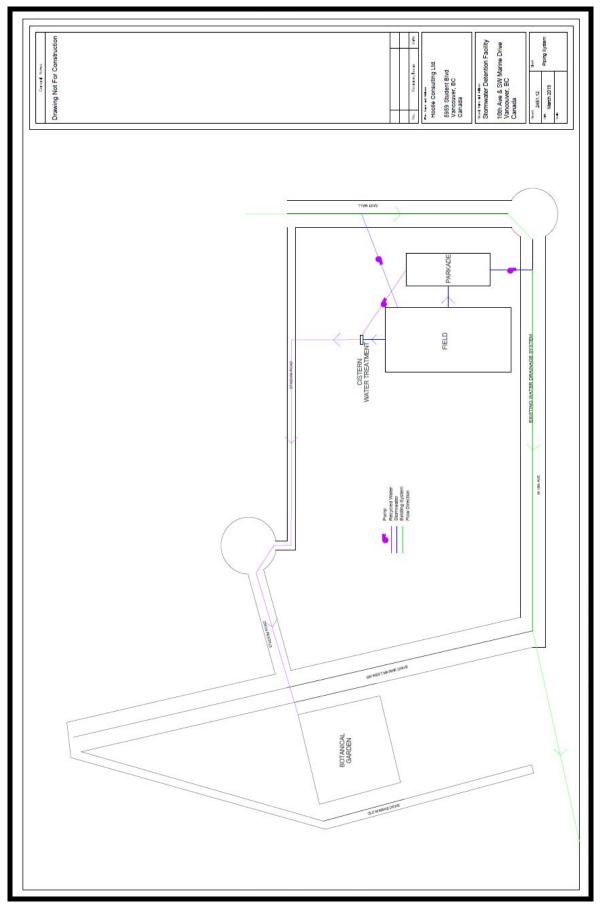


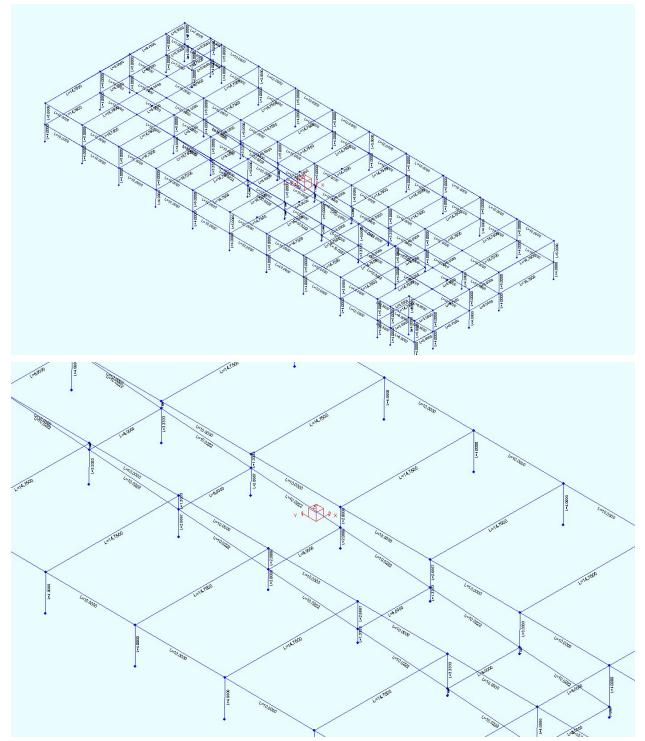

AutoCAD:

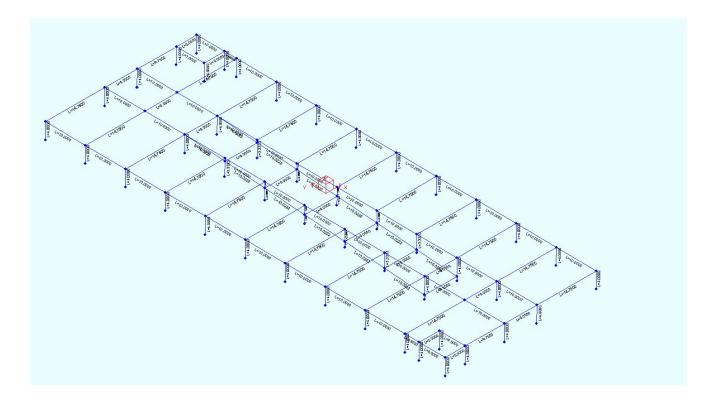


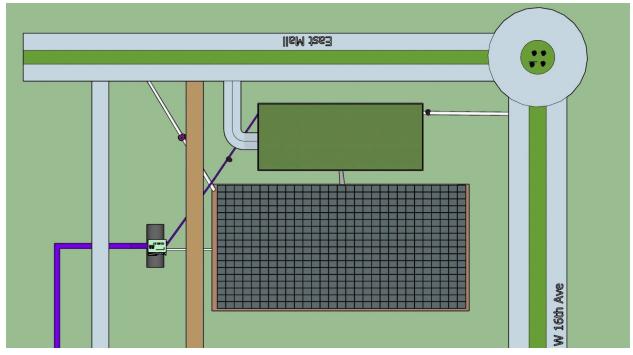


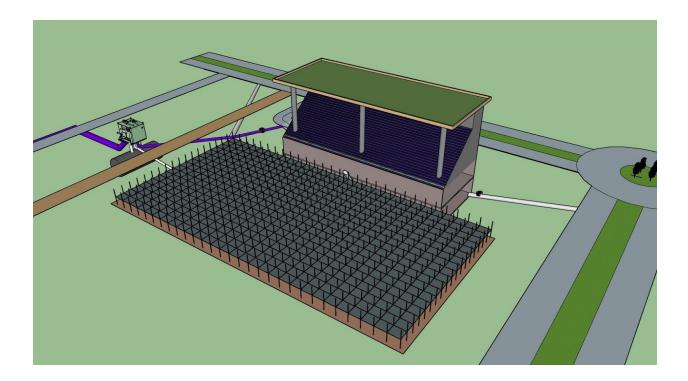


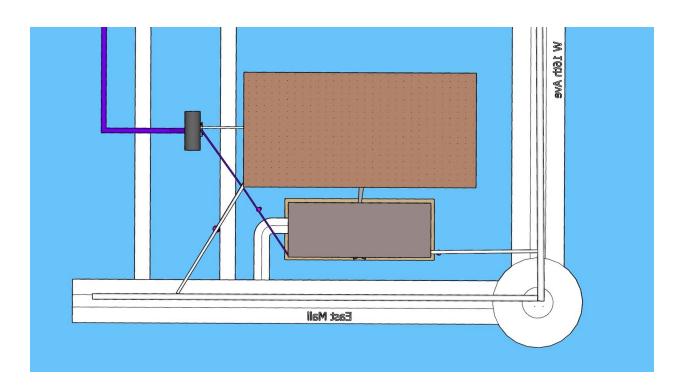


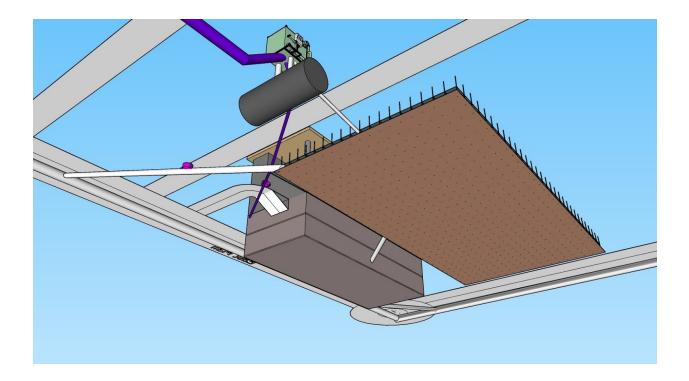




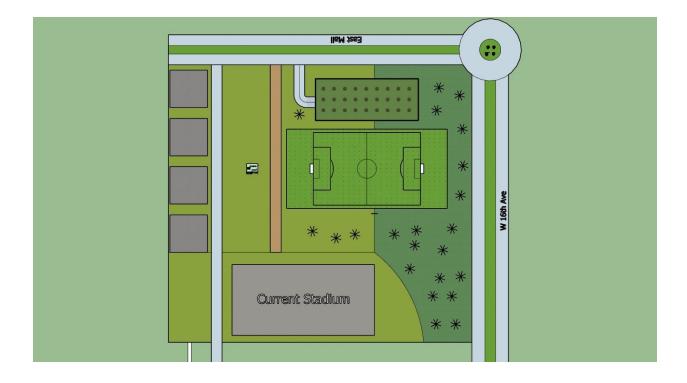


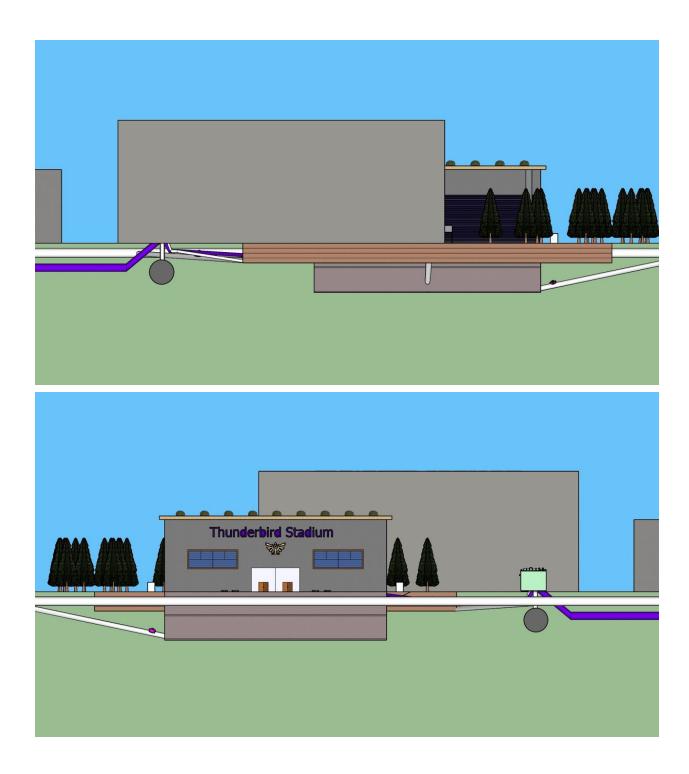

S-Frame:

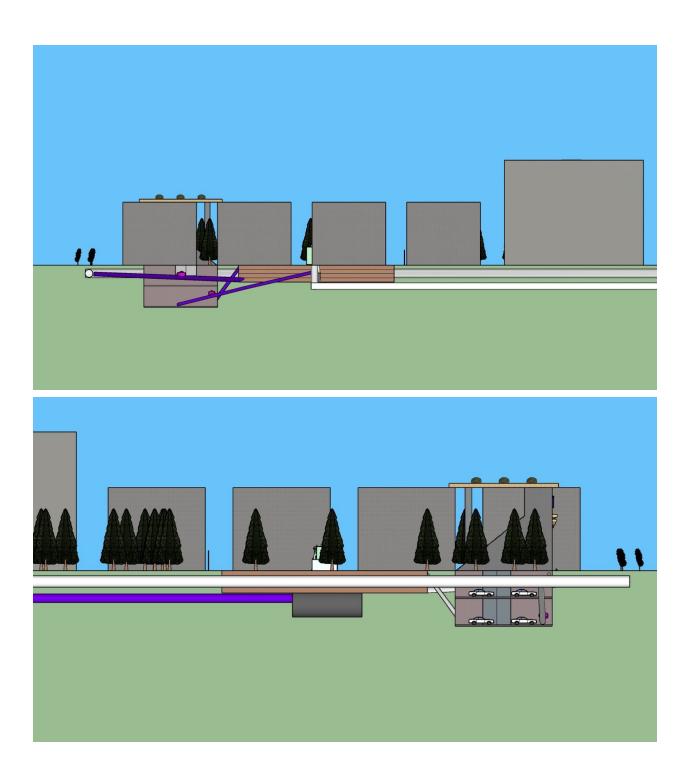


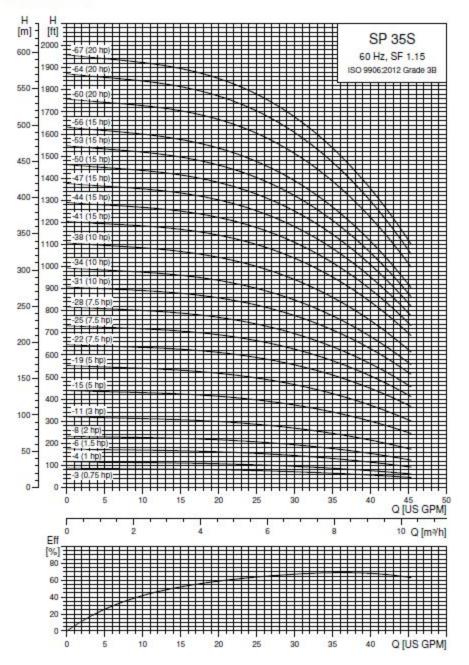


Sketchup:



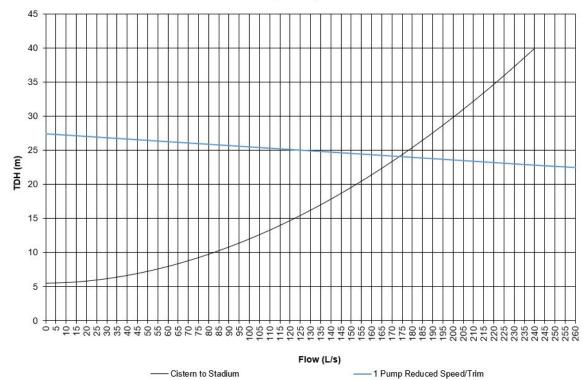






Appendix C - Pumps

SP 35S (35 gpm)

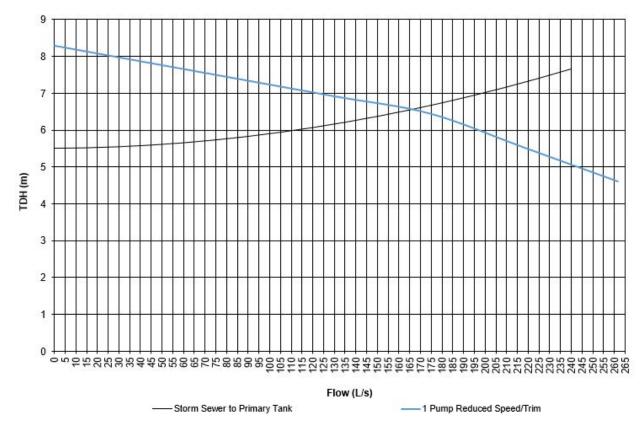


Pump 1 - Cistern to Stadium

Pump Se	lection	ion Facili					Flow in L/s		o. of Pum	ips	
						Γ	6.52	1	2	3	4
Cistern to	Stadium		E	Extreme Storr	n Event	Flow	0	5.500	5.500	5.500	5.500
	and the second second				4.44 A	(L/s)	15	5.677	5.583	5.563	5.556
							30	6.158	5.816	5.747	5.722
Pumps Ope	erating		1				45	6.921	6.195	6.049	5.995
Flow			37.8	L/s			60	7.955	6.716	6.466	6.374
							75	9.252	7.377	6.999	6.859
Discharge H	HGL=		77.39	m			90	10.806	8.176	7.646	7.450
Suction HG	L=		71.89 r	m			105	12.615	9.113	8.407	8.146
							120	14.673	10.186	9.281	8.947
						_	135	16.979	11.394	10.268	9.853
Hazen-Willia	ams C Value		130.00				150	19.530	12.737	11.368	10.863
						_	165	22.323	14.215	12.580	11.977
						-	180	25.356	15.826	13.904	13.196
						-	195	28.628	17.570	15.340	14.519
						-	210	32.137	19.447	16.888	15.945
						-	225	35.882	21.456	18.547	17.475
						L	240	39.860	23.597	20.318	19.110
		Dia			Flow in	r r		r		r	1
Eler	ment	(nom)	I.D.	Total Flow	Element	Length	"C"	"K"	"CV"	Velocity	Delta H
LIEI	nem	in	mm	L/s	L/s	m		I N		m/s	m
Discharge e	bow		200	38	37.76			0.05		11// 3	
Sch. 40 Ste			200	38	37.76	92.19	130	0.00		1.20	0.70
Gate valve	or po		200	38	37.76	02.10		0.30		1.20	0.02
	es	1	200	38	37 76			3		1 20	0.22
Minor Losse	es		200	38 38	37.76 37.76			3 1.00		1.20 1.20	0.22
Minor Losse Exit	es Losses (m)						-			
Minor Losse Exit <mark>Total Head</mark>	Losses (m)						-			0.07
Minor Losse Exit Total Head Static Head	Losses (m	•						-			0.07
Minor Losse Exit Total Head Static Head Total Dyna	l Losses (m mic Head (n	, n)	200					-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat	l Losses (m mic Head (r er Detentic	, n)	200					-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna	l Losses (m mic Head (r er Detentic	, n)	200					-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur	l Losses (m mic Head (r er Detentic ve	, n)	200					-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat	l Losses (m mic Head (r er Detentic ve	, n)	200			h		-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moo	l Losses (m mic Head (r er Detentic ve	, n)	200	38				-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur	l Losses (m mic Head (r er Detentic ve	n) on Facility	200					-			0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moo 1,750	l Losses (m mic Head (r er Detentic ve lel	n) on Facility	200	38 0% Speed			2	-	s Op.	1.20	0.07 1.02 5.50 7
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moo 1,750 1	l Losses (m mic Head (r er Detentic ve lel	n) on Facility RPM	200	38 0% Speed		Power	2 Flow	1.00		1.20	0.07 1.02 5.50
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Moo 1,750 1 1,750 1 1 Flow	Losses (m mic Head (r er Detentic ve iel Stages TDH	n) on Facility RPM Pump Op TDH	200 10 perating Eff	38 0% Speed Flow	37.76	Power (HP)		1.00	H	1.20 3 F	0.07 1.02 5.50 7
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur 1,750 1 1,750 1 1 Flow (USgpm)	Losses (m mic Head (r er Detentic ve lel Stages TDH (ft/stage)	n) on Facility RPM Pump Op TDH (ft)	200 10 perating	38 0% Speed Flow (L/s)	37.76		Flow	1.00	H 1)	1.20 3 F Flow	0.07 1.02 5.50 7 Yumps O TDH (m)
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moo 1,750 1 1,750 1 1 Flow (USgpm) 0	I Losses (m mic Head (r er Detentic ve iel Stages TDH (ft/stage) 125.0	RPM Pump Op TDH (ft) 125.0	200 100 perating Eff (%)	38 0% Speed Flow (L/s) 0	37.76	(HP)	Flow (L/s) 0	1.00 Pump TD (n 27	H 1) .4	1.20 3 F Flow (L/s) 0	0.07 1.02 5.50 7 7 7 7 7 7 7 7 7 7 7 7 7
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moo 1,750 1 1 Flow (USgpm) 0 300	I Losses (m mic Head (r er Detentic ve tel Stages TDH (ft/stage) 125.0 120	RPM Pump Op TDH (ft) 125.0 120.0	200 100 erating Eff (%) 65.09	38 0% Speed Flow (L/s) 0 79	37.76 TDH (m) 27.4 25.9	(HP) 41.5	Flow (L/s) 0 159	Pump TD (m 27 25	H 1) .4 .9	1.20 3 F Flow (L/s) 0 238	0.07 1.02 5.50 7 Yumps O TDH (m) 27.4 25.9
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moo 1,750 1 1,750 1 1 Flow (USgpm) 0 300 500	I Losses (m mic Head (r er Detentic ve iel Stages TDH (ft/stage) 125.0 120 117	n) on Facility RPM Pump Op TDH (ft) 125.0 120.0 117.0	200 100 perating Eff (%) 65.09 70.09	38 0% Speed Flow (L/s) 0 79 559	37.76 TDH (m) 27.4 25.9 24.4	(HP) 41.5 72.5	Flow (L/s) 0 159 317	1.00 Pump TD (m 27 25 24	H 1) .4 .9 .4	1.20 3 F Flow (L/s) 0 238 476	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Curr Pump Moo 1,750 1 1,750 1 1 1 Flow (USgpm) 0 300 500 800	I Losses (m mic Head (r er Detentic ve Jel Stages TDH (ft/stage) 125.0 120 117 109	n) on Facility RPM Pump Op TDH (ft) 125.0 120.0 117.0 109.0	200 100 perating Eff (%) 65.09 70.09 75.09	38 0% Speed Flow (L/s) 0 % 79 59 59 6 238	37.76 TDH (m) 27.4 25.9 24.4 22.9	(HP) 41.5 72.5 95.1	Flow (L/s) 0 159 317 476	1.00 Pump TD (m 25 24 22	H .4 .9 .4 .9	1.20 3 F Flow (L/s) 0 238 476 713	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4 22.9
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Cur Pump Moc 1,750 1 1,750 1 1 Flow (USgpm) 0 300 500 800 900	I Losses (m mic Head (r er Detentic ve iel Stages (ft/stage) 125.0 120 117 109 105	n) on Facility Pump Op TDH (ft) 125.0 120.0 117.0 109.0 105.0	200 erating Eff (%) 65.09 70.09 75.09 80.09	38 6% Speed Flow (L/s) 0 % 79 % 159 % 238 % 317	37.76 TDH (m) 27.4 25.9 24.4 22.9 21.3	(HP) 41.5 72.5 95.1 111.0	Flow (L/s) 0 159 317 476 634	Pump TD (m 27 25 24 22 21	H .4 .9 .4 .9 .3	1.20 3 F Flow (L/s) 0 238 476 713 951	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4 22.9 21.3
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Moo 1,750 1 1,750 1 1 Flow (USgpm) 0 300 500 800 900 1000	Losses (m mic Head (r er Detentic ve iel Stages TDH (ft/stage) 125.0 120 120 117 109 105 101	RPM Pump Op TDH (ft) 125.0 120.0 117.0 109.0 105.0 101.0	200 10 perating Eff (%) 65.09 70.09 75.09 80.09 85.09	38 6% Speed Flow (L/s) 0 79 % 159 % 238 % 317 % 396	37.76 TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	Pump TD (m 27 24 22 21 18	H 4 9 4 9 3 3 3	3 F Flow (L/s) 0 238 476 713 951 1,189	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Moo Pump Moo 1,750 1 1,750 1 1,750 1 1 Flow (USgpm) 0 300 500 800 900 1000 1200	Losses (m mic Head (r er Detentic ve iel Stages (ft/stage) 125.0 120 120 117 109 105 101 90	RPM Pump Op TDH (ft) 125.0 120.0 117.0 109.0 105.0 101.0 90.0	200 10 perating Eff (%) 65.09 70.09 70.09 80.09 85.09 85.09 85.09	38 0% Speed Flow (L/s) 0 79 0 79 5238 396 396 476	37.76 TDH (m) 27.4 25.9 24.4 22.9 21.3	(HP) 41.5 72.5 95.1 111.0	Flow (L/s) 0 159 317 476 634	Pump TD (m 27 25 24 22 21	H 4 9 4 9 3 3 3	1.20 3 F Flow (L/s) 0 238 476 713 951	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4 22.9 21.3
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Mod 1,750 1 1,750 1 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300	Losses (m mic Head (r er Detentic ve iel Stages TDH (ft/stage) 125.0 120 120 117 109 105 101 90 83	RPM Pump Op TDH (ft) 125.0 120.0 117.0 109.0 105.0 101.0 90.0 83.0	200 10 perating Eff (%) 65.09 70.09 70.09 85.09 85.09 85.09 85.09 85.09 82.09	38 0% Speed Flow (L/s) 0 79 159 % 238 % 317 % 396 % 476	37.76 TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	Pump TD (m 27 24 22 21 18	H 4 9 4 9 3 3 3	3 F Flow (L/s) 0 238 476 713 951 1,189	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3
Minor Losse Exit Total Head Static Head Total Dyna Stormwat Pump Moo Pump Moo 1,750 1 1,750 1 1 Flow (USgpm) 0 300 500 800 900 1000 1200	Losses (m mic Head (r er Detentic ve iel Stages (ft/stage) 125.0 120 120 117 109 105 101 90	RPM Pump Op TDH (ft) 125.0 120.0 117.0 109.0 105.0 101.0 90.0	200 10 perating Eff (%) 65.09 70.09 70.09 80.09 85.09 85.09 85.09	38 0% Speed Flow (L/s) 0 79 159 6 238 317 396 % 376 % 396 %	37.76 TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	Pump TD (m 27 24 22 21 18	H 4 9 4 9 3 3 3	3 F Flow (L/s) 0 238 476 713 951 1,189	0.07 1.02 5.50 7 TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3

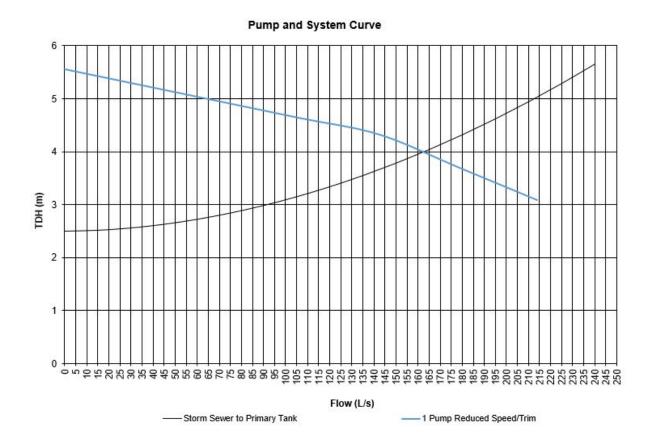
Reduced Speed 1750	RPM	100%	Speed						1750	RPM - 1009
1	Pump Op		speeu			2	Pu	mps Op.	3	Pumps Op
- 10	. and ob	Eff	Flow	TDH	Power	Flow		TDH	Flow	TDH
		(%)	(L/s)	(m)	(HP)	(L/s)		(m)	(L/s)	(m)
		0.0%	0	27.4		0		27.4	0	27.4
		65.0%	79	25.9	41.5	159		25.9	238	25.9
		70.0%	159	24.4	72.5	317	1	24.4	476	24.4
		75.0%	238	22.9	95.1	476		22.9	713	22.9
		80.0%	317	21.3	111.0	634		21.3	951	21.3
		85.0%	396	18.3	111.9	793		18.3	1,189	18.3
		85.0%	476	15.2	111.9	951	•	15.2	1,427	15.2
		82.0%								
		76.0%								
		70.0%								
		0.0%								

Pump and System Curve


Stormwater Deter	nuon Fac	anty	Flow in L/s, head in m									
Pump Selection					No. of Pumps							
						55.11	1	2	3	4		
Secondary Tank to Se	ewer				Flow	0	5.500	5.500	5.500	5.500		
					(L/s)	15	5.510	5.506	5.506	5.505		
			_			30	5.538	5.525	5.522	5.521		
Pumps Operating		1				45	5.583	5.555	5.550	5.548		
Flow		1200.0	L/s			60	5.646	5.598	5.588	5.584		
		10. 1				75	5.725	5.652	5.637	5.631		
Discharge HGL=		77.39				90	5.820	5.717	5.697	5.689		
Suction HGL=		71.89	m			105	5.931	5.795	5.767	5.757		
						120	6.059	5.884	5.848	5.835		
						135	6.203	5.984	5.940	5.924		
Hazen-Williams C Valu	ue	130.00	n i			150	6.363	6.096	6.043	6.023		
		********				165	6.538	6.220	6.156	6.133		
					[180	6.729	6.355	6.280	6.252		
					[195	6.937	6.502	6.415	6.383		
						210	7.159	6.660	6.560	6.523		
						225	7.398	6.830	6.716	6.674		
					[240	7.651	7.011	6.882	6.835		
	Dia			Flow in			1		-			
Element	100000000000000000000000000000000000000	I.D.	Total Flow	Element	Length	"C"	"K"	"CV"	Velocity	Delta H		
Element	(nom) in	mm	L/s	L/s	m	L	n	CV	m/s	m		
Discharge elbow	m	350	1,200	1200.00			0.05		111/5	- III		
Sch. 40 Steel Pipe	-	350	1,200	1200.00	51.39	130	0.05		12.47	15.51		
Gate valve	-	350	1,200	1200.00	51.55	130	0.30		12.47	2.38		
Minor Losses	-	350	1,200	1200.00			3	-	12.47	23.79		
Exit	-	350	1,200	1200.00	1. S. S.		1.00	-	12.47	7.93		
	1	550	1,200	1200.00	l d		1.00		12.41	49.61		
Total Head Losses (m Static Head	1)									5.50		

Stormwater Detention Facility Pump Curve

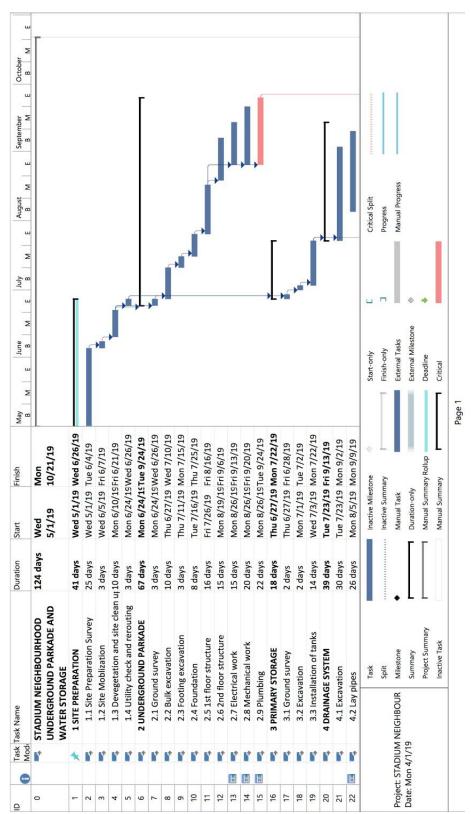
Pump Mod	lel										
1,750		RPM	100%	Speed							
1	Stages					13		-		2	
1		Pump Op	erating				2	Pu	mps Op.	3	Pumps Op.
Flow	TDH	TDH	Eff	Flow	TDH	Power	Flow		TDH	Flow	TDH
(USgpm)	(ft/stage)	(ft)	(%)	(L/s)	(m)	(HP)	(L/s)		(m)	(L/s)	(m)
0	125.0	125.0		0	27.4		0	1	27.4	0	27.4
300	120	120.0	65.0%	79	25.9	41.5	159		25.9	238	25.9
500	117	117.0	70.0%	159	24.4	72.5	317		24.4	476	24.4
800	109	109.0	75.0%	238	22.9	95.1	476		22.9	713	22.9
900	105	105.0	80.0%	317	21.3	111.0	634	•	21.3	951	21.3
1000	101	101.0	85.0%	396	18.3	111.9	793	•	18.3	1,189	18.3
1200	90	90.0	85.0%	476	15.2	111.9	951		15.2	1,427	15.2
1300	83	83.0	82.0%				100000		1000000		0.000
1,400	73.0	73.0	76.0%								
1,500	61.0	61.0	70.0%								
ed											


Reduced Speed 963 1 RPM 55% 963 RPM - 55% Speed Pump Operating Pumps Op. Pumps Op. 2 3 TDH Power Eff Flow Flow TDH Flow TDH (%) 0.0% (L/s) 0 (m) 8.3 (L/s) 0 (HP) (L/s) (m) (m) 8.3 8.3 0 ۲ 65.0% 44 7.8 6.9 87 7.8 131 7.8 ۲ 70.0% 87 7.4 12.1 174 7.4 262 7.4 • 75.0% 15.8 262 6.9 392 6.9 131 6.9 . 80.0% 174 6.5 18.5 349 6.5 523 6.5 . 85.0% 218 5.5 18.6 436 5.5 654 5.5 ۲ 85.0% 4.6 4.6 262 18.6 523 785 4.6 82.0% 76.0% 70.0% 0.0%

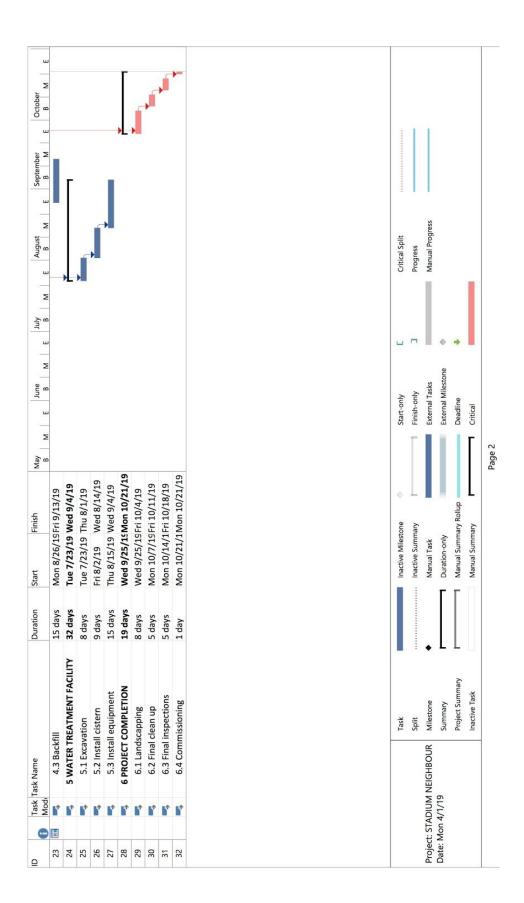
Pump and System Curve

Pump 3 - Storm sewer to Primary Tank

Stormwater	Detent	ion Fac	ility			Flow in L/s, head in m						
Pump Selec	tion							No	o. of Pum	ps		
						<u>.</u>	91.91	1	2	3	4	
Storm Sewer t	to Primar	y Tank				Flow	0	2.500	2.500	2.500	2.500	
						(L/s)	15	2.516	2.508	2.506	2.506	
Durana On seat	1002			1			30	2.559	2.531	2.525	2.523	
Pumps Operat Flow	ing		1 1369.4	1.40			45 60	2.629	2.568 2.619	2.556 2.598	2.551 2.590	
FIUW			1309.4	JUS			75	2.841	2.684	2.652	2.590	
Discharge HGI	=		79.89	lm			90	2.983	2.762	2.718	2.702	
Suction HGL=			77.39				105	3.148	2.855	2.795	2.774	
				1.000			120	3.337	2.960	2.885	2.857	
							135	3.548	3.080	2.985	2.951	
Hazen-William	s C Value		130.00				150	3.782	3.212	3.098	3.055	
							165	4.039	3.359	3.222	3.171	
							180	4.317	3.518	3.357	3.298	
							195 210	4.618	3.691 3.877	3.504 3.662	3.435 3.583	
							225	5.286	4.076	3.832	3.742	
							240	5.653	4.288	4.013	3.912	
							2.10	0.000			0.0.12	
	1	Dia			Flow in		·					
Elemen	t	(nom)	I.D.	Total Flow	Element	Length	"C"	"K"	"CV"	Velocity	Delta H	
		in	mm	L/s	L/s	m				m/s	m	
Discharge elbo			350	1,369	1369.44		1	0.05				
Sch. 40 Steel F	ripe		350	1,369	1369.44	116.73	130	0.00		14.23	45.01	
Gate valve Minor Losses			350 350	1,369 1,369	1369.44 1369.44	-	-	0.30		14.23 14.23	3.10 30.98	
Exit			350	1,369	1369.44		2	1.00	-	14.23	10.33	
Total Head Los	sses (m)		550	1,505	1303.44		-9- 7-7-	1.00		14.20	89.41	
Static Head	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										2.50	
Total Dynamic	Head (m))									92	
JUIIIWat	ei Detein	uvii racii	ц									
Pump Cur	ve											
12												
Pump Mod												
		DDM		100% 5700								
1,750	del	RPM		100% Speed	1							
1,750 1			100 100		1		2	Pumps	On 3	3 Pum	ns On	
1,750 1 1	del	Pump	Operat	ing		Power	2 Flow	Pumps			ps Op. DH	
1,750 1	tel Stages TDH	Pump TDH	Operat		w TDH	Power (HP)		Pumps (TDH (m)		w T	ps Op. DH m)	
1,750 1 1 Flow	tel Stages TDH	Pump TDH	Operati	ing Eff Flor	w TDH		Flow	TDH (m) 27.4	Flo (L	ow T /s) (I	DH	
1,750 1 1 Flow (USgpm)	Stages TDH (ft/stage 125.0 120	Pump TDH e) (ft) 125.1 120.1	Operati Operati	ing Eff Flor %) (L/s 0 0.0% 79	w TDH ;) (m) 27.4		Flow (L/s)	TDH (m) 27.4 25.9	Flo (L)	ow T (s) (i) 21	DH m)	
1,750 1 Flow (USgpm) 0 300 500	Stages TDH (ft/stage 125.0 120 117	Pump TDH (ft) 125. 120. 117.	Operati 0 0 0 0 0 0 70	ing Eff Flov %) (L/s 0 5.0% 79 0.0% 155	w TDH (m) 27.4 25.9 24.4	(HP) 41.5 72.5	Flow (L/s) 0 159 317	TDH (m) 27.4 25.9 24.4	Flo (L) 23 47	bw T (s) (1) 27 38 25 76 24	DH m) 7.4 5.9 4.4	
1,750 1 1 (USgpm) 0 300 500 800	Stages TDH (ft/stage 125.0 120 117 109	Pump TDH e) (ft) 125. 120. 117. 109.	Operati 0 0 0 0 0 70 0 75	ing Eff Flov %) (L/s 0 0.0% 79 0.0% 155 0.0% 233	w TDH (m) 27.4 25.9 24.4 3 22.9	(HP) 41.5 72.5 95.1	Flow (L/s) 0 159 317 476	TDH (m) 27.4 25.9 24.4 22.9	Flo (L) 23 47 71	ow Ti /s) (i 0 21 38 29 76 24 13 21	DH m) 7.4 5.9 4.4 2.9	
1,750 1 Flow (USgpm) 0 300 500 800 900	1el Stages TDH (ft/stage 125.0 120 120 117 109 105	Pump TDH e) (ft) 125. 120. 120. 117. 109. 105.	Operati 0 0 0 0 0 70 0 75 0 80	ing Eff Flo %) (L/s 0 0.0% 79 0.0% 155 0.0% 230 0.0% 31	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3	(HP) 41.5 72.5 95.1 111.0	Flow (L/s) 0 159 317 476 634	TDH (m) 27.4 25.9 24.4 22.9 21.3	Fic (L) 23 47 71 95	DW Ti (s) (i 0 21 38 29 76 24 13 21 51 21	DH m) 7.4 5.9 4.4 2.9 1.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000	Stages TDH (ft/stage 125.0 120 117 109 105 101	Pump TDH (ft) 125. 120. 120. 117. 109. 105. 101.	Operati 0 0 0 0 0 70 0 75 0 80 0 80 0 85	ing Eff Flov %) (L/s 0 1.0% 79 1.0% 155 1.0% 231 1.0% 311 1.0% 390	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3 8.3	
1,750 1 Flow (USgpm) 0 300 500 500 800 900 1000 1200	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90	Pump TDH (ft) 125. 120. 117. 109. 105. 101. 90.0	Operati 0 0 0 0 0 0 75 0 80 0 85 0 85 0 85	ing Eff Flow %) (L/s 0.0% 79 15% 0.0% 23% 0.0% 31° 0.0% 31°	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0	Flow (L/s) 0 159 317 476 634	TDH (m) 27.4 25.9 24.4 22.9 21.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300	TDH (ff/stage 125.0 120 117 109 105 101 90 83	Pump TDH (ft) 125. 120. 117. 109. 105. 101. 90.0 83.0	Operati 0 0 0 0 0 0 70 0 75 0 80 0 85 0 85 0 85	ing Eff Flow %) (L/s 0% 79 1.0% 155 0.0% 233 1.0% 311 0.0% 311 0.0% 470 1.0%	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3 8.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400	Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0	Pump TDH (ft) 125. 120. 117. 109. 105. 101. 90.0 83.0 73.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow %) (L/s 0% (L/s 0% 75 1.0% 233 1.0% 311 1.0% 399 1.0% 471 1.0% 471 1.0%	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3 8.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300	TDH (ff/stage 125.0 120 117 109 105 101 90 83	Pump TDH (ft) 125. 120. 117. 109. 105. 101. 90.0 83.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow %) (L/s 0% 79 1.0% 155 0.0% 233 1.0% 311 0.0% 311 0.0% 470 1.0%	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3 8.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400	Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0	Pump TDH (ft) 125. 120. 117. 109. 105. 101. 90.0 83.0 73.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow %) (L/s 0% (L/s 0% 75 1.0% 233 1.0% 311 1.0% 399 1.0% 471 1.0% 471 1.0%	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3 8.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 117. 109. 105. 101. 90.0 83.0 73.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow %) (L/s 0% (L/s 0% 75 1.0% 233 1.0% 311 1.0% 399 1.0% 471 1.0% 471 1.0%	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3	Fic (L) 23 47 71 95 1,1	DW Ti (s) (i) 0 21 038 25 76 24 13 22 51 21 89 18	DH m) 7.4 5.9 4.4 2.9 1.3 8.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flov %) (L/s 0% (L/s 0% 79 15% 23% 15% 39% 15% 23% 15% 23% 15% 15% 15% 15% 15% 15% 15% 15	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2	(HP) 41.5 72.5 95.1 111.0 111.9	Flow (L/s) 0 159 317 476 634 793 951	TDH (m) 27.4 24.4 22.9 21.3 18.3 15.2	Fic (L) (23 47 71 95 1,1 1,4	788 RPM	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45%	
1,750 1 Flow (USgpm) 0 300 500 500 500 900 1000 1000 1200 1300 1,400 1,500 Reduced	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 65 0 70 0 80 0 85 0 8	ing Eff Flov %) (L/s 0% (23) 10% 231 10% 31' 10% 31' 10% 390 10% 470 10% 10% 470 10% 10% 5pe ing	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed	(HP) 41.5 72.5 95.1 111.0 111.9 111.9	Flow (L/s) 0 159 317 476 634 793 951	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2	Fic (L) (23 47 71 95 1,1 1,4	788 RPM 788 Pumj	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op.	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flov %) (L/s 0% 10% 155 10% 231 10% 311 10% 311 10% 311 10% 471 10% 471 10% 10% 471 10% 10% 5pe	w TDH w TDH w TDH w TDH	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power	Flow (L/s) 0 159 317 476 634 793 951 2 Flow	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2 Pumps (TDH	Fic (L) 23 47 71 95 1,1 1,4 0 0 0 0 0 7 1 1,2 1 1,4 1 ,4 1 ,4 1 ,4 1 ,4 1 ,4 1	DW Till (s) (i) 0 27 38 29 13 22 51 27 89 18 1/27 15 788 RPM 3 3 Pump 5 Pump	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 65 0 80 0 85 0 82 0 82 0 76 0 70 0 87 0 82 0 76 0 70 0 82 0 76 0 70 0 82 0 70 0 82 0 70 0 85 0 82 0 70 0 85 0 82 0 70 0 85 0 8	ing Eff Flov %) (L/s 0% 79 0% 155 0% 233 0% 399 0% 479 0% 479 0% 479 0% 5pe ing Eff Flov %) (L/s	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m)	(HP) 41.5 72.5 95.1 111.0 111.9 111.9	Flow (L/s) 0 159 317 476 634 793 951 2 Flow (L/s)	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2 Pumps (TDH (m)	Fic (L) (23 47 7 1,1 95 1,1 1,4 0 5 5 1,1 1,4 0 5 5 (L) (L)	ow Till (s) (i) 38 29 38 29 13 21 51 21 89 18 127 15 788 RPM 788 RPM 3 Pump 5 Pump 5 (i)	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH m)	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 80 0 80 0 85 0 85 0 85 0 87 0 85 0 87 0 85 0 8	ing Eff Flow %) (L/s 0% (L/s 0% 15% 10% 23% 10% 31% 0% 31% 0% 47% 10% 0% 47% 10% 10% 10% 10% 10% 10% 10% 10	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6	(HP) 41.5 95.1 111.0 111.9 111.9 111.9 Power (HP)	Flow (L/s) 0 159 317 476 634 793 951 2 Flow (L/s) 0	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2 Pumps (TDH (m) 5.6	Fic (L) (23 477 71 95 1,1 1,4 0 5 (L) (L) (L) (C)	DW Till (s) (i) 38 29 38 29 38 29 38 29 51 21 89 18 27 19 788 RPM 19 788 RPM 19 788 RPM 10 50 00 51 27	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH m) 5.6	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow 0% (L/s) 00% 759 10% 155 10% 233 10% 311 10% 311 10% 311 10% 311 10% 470 10% 10% 10% 10% 10% 10% 0% 0% 0% 10% 0% 366	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 15.2 ed w TDH (m) 5.6 5.2	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8	Flow (L/s) 0 159 317 476 634 793 951 2 Flow (L/s) 0 71	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2 Pumps (TDH (m) 5.6 5.2	Dp. 3	DW Till (s) (i) 0 2: 76 2: 76 2: 76 2: 76 2: 76 2: 73 2: 51 2: 89 18 .27 15 788 RPM 3 Dump 78 Dw Till .3 Pump .30 (i) .30 50	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 5.2 - 45% ps Op. DH m) 0.6 5.2	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 85 0 8	ing Eff Flow 0% (L/s) 0.0% 75 1.0% 155 1.0% 233 1.0% 311 1.0% 399 1.0% 10% 1.0% 10% 1.0% 10% 1.0% 10% 0.0% 10% 0.0% 0% 0.0% 366 0.0% 366 0.0% 366 0.0% 71	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH 5.6 5.2 4.9	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6	Flow (L/s) 0 159 317 476 634 793 951 2 Flow (L/s) 0 71 143	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2 Pumps (TDH (m) 5.6 5.6 5.6 5.2 4.9	Fic (L) 0 23 477 74 95 1,1 1,4 1,4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1	DW Till (s) (i) 0 27 38 24 76 24 13 24 51 27 89 18 127 15 788 RPM 3 3 Pump D 5 0 5 0 5 0 5 14 4	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 5.2 - 45% ps Op. DH m) 5.6 5.2 1.9	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow %) (L/s) 0.0% 75 1.0% 155 1.0% 234 1.0% 31° 1.0% 31° 1.0% 31° 1.0% 31° 1.0% 31° 1.0% 39° 1.0% 10° 1.0% 10° 1.0% 10°	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7	Flow (L/s) 0 159 317 476 634 793 951 2 Flow (L/s) 0 71 143 214	TDH (m) 27.4 25.9 24.4 22.9 21.3 18.3 15.2 Pumps (TDH (m) 5.6 5.2 4.9 4.6	Dp. 3 Flo (L) 23 47 71 95 1,1 1,4 Dp. 3 Flo (L) 21 32 32	DW Till (s) (i) 0 27 38 24 76 24 13 27 51 27 89 18 297 15 788 RPM 3 90w Till 0) 55 14 4 21 4	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 5.2 - 45% ps Op. DH m) 6.6 5.2 .9 4.6	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 85 0 82 0 82 0 82 0 82 0 70 0 80 0 85 0 82 0 85 0 82 0 85 0 82 0 85 0 82 0 70 0 85 0 85 0 82 0 85 0 82 0 70 0 85 0 8	ing Eff Flor %) (L/s 0.0% 79 0.0% 155 0.0% 155 0.0% 319 0.0% 399 0.0% 309 0.0% 470 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 10 0.0% 10 0.0% 10	w TDH (m) 27.4 25.9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6 3 4.3	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7 10.1	Flow (L/s) 0 159 317 476 634 793 951 251 Flow (L/s) 0 71 143 214 285	TDH (m) 27.4 25.9 22.9 21.3 18.3 15.2 Pumps (TDH (m) 5.6 5.2 4.9 4.4 4.3	E Fic (L) (1) (1) (1) (2) (2) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	ow Till (s) (i) 0 27 38 29 13 22 51 27 89 18 13 27 89 18 127 19 788 RPM 9 3 Pumj 50 5 507 5 14 4 21 4 28 4	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 5.2 - 45% ps Op. DH m) 6.6 5.2 4.9 1.6 1.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ing Eff Flow %) (L/s) 0.0% 75 1.0% 155 1.0% 234 1.0% 31° 1.0% 31° 1.0% 31° 1.0% 31° 1.0% 31° 1.0% 39° 1.0% 10° 1.0% 10° 1.0% 10°	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6 3 4.3 3 3.7	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7 10.1 10.2	Flow (L/s) 0 159 317 476 634 793 951 2 Flow (L/s) 0 71 143 214	TDH (m) 27.4 25.9 22.9 21.3 18.3 15.2 Pumps 5.6 5.2 5.2 4.9 4.6 4.3 7 3.7	Fic (L) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	DW Till (s) (i) 0 27 38 24 76 24 13 22 51 27 13 22 89 18 277 15 788 RPM 3 9 10 50 50 10 55 14 4 28 4 35 3	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH m) 6.6 5.2 1.9 4.6 1.3 3.7	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 80 0 85 0 70 0 70 0 70 0 70 0 70 0 85 0 85 0 70 0 85 0 70 0 85 0 70 0 85 0 85 0 85 0 85 0 70 0 85 0 85 0 85 0 70 0 85 0 70 0 85 0 85 0 85 0 70 0 85 0 8	ing Eff Flow 0% (L/s) 0.0% 79 1.0% 155 0.0% 155 0.0% 311 0.0% 311 0.0% 311 0.0% 341 0.0% 341 0.0% 341 0.0% 341 0.0% 471 0.0% 471 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 101 0.0% 141 0.0% 147	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6 3 4.3 3 3.7	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7 10.1	Flow (L/s) 0 159 317 476 634 793 951 251 Flow (L/s) 0 71 143 214 285 357	TDH (m) 27.4 24.4 22.9 21.3 18.3 15.2 Pumps (TDH (m) 5.6 5.2 4.9 4.6 4.3 3.7 3.7	Fic (L) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	DW Till (s) (i) 0 27 38 24 76 24 13 22 51 27 13 22 89 18 277 15 788 RPM 3 9 10 50 50 10 55 14 4 28 4 35 3	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 5.2 - 45% ps Op. DH m) 6.6 5.2 4.9 1.6 1.3	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 85 0 85 0 85 0 85 0 85 0 70 0 70 0 75 0 70 0 75 85 85 85 85 85 85 85 85 85 8	ing Eff Flow 0% (L/s) 0.0% 79 1.0% 15% 0.0% 311 0.0% 311 0.0% 311 0.0% 311 0.0% 470 0.0% 470 0.0% 0 0.0% 101 0.0% 0 0.0% 36 0.0% 36 0.0% 71 0.0% 101 0.0% 104 0.0% 141 0.0% 171 0.0% 21	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6 3 4.3 3 3.7	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7 10.1 10.2	Flow (L/s) 0 159 317 476 634 793 951 251 Flow (L/s) 0 71 143 214 285 357	TDH (m) 27.4 25.9 22.9 21.3 18.3 15.2 Pumps 5.6 5.2 5.2 4.9 4.6 4.3 7 3.7	Fic (L) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	DW Till (s) (i) 0 27 38 24 76 24 13 22 51 27 13 22 89 18 277 15 788 RPM 3 9 10 50 50 10 55 14 4 28 4 35 3	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH m) 6.6 5.2 1.9 4.6 1.3 3.7	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 85 0 85 0 85 0 85 0 85 0 85 0 70 0 75 80 85 85 85 85 85 85 85 85 85 85	ing Eff Flor 0.0% (L/s) 0.0% 759 10.0% 155 10.0% 155 10.0% 311 10.0% 311 10.0% 311 10.0% 311 10.0% 311 10.0% 311 10.0% 311 10.0% 101 10.0% 101 10.0% 101 10.0% 101 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147 10.0% 147	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6 3 4.3 3 3.7	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7 10.1 10.2	Flow (L/s) 0 159 317 476 634 793 951 251 Flow (L/s) 0 71 143 214 285 357	TDH (m) 27.4 25.9 22.9 21.3 18.3 15.2 Pumps 5.6 5.2 5.2 4.9 4.6 4.3 7 3.7	Fic (L) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	DW Till (s) (i) 0 27 38 24 76 24 13 22 51 27 13 22 89 18 277 15 788 RPM 3 9 10 50 50 10 55 14 4 28 4 35 3	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH m) 6.6 5.2 1.9 4.6 1.3 3.7	
1,750 1 Flow (USgpm) 0 300 500 800 900 1000 1200 1300 1,400 1,500 Reduced 3 788	1el Stages TDH (ft/stage 125.0 120 117 109 105 101 90 83 73.0 61.0	Pump TDH (ft) 125. 120. 1105. 105. 105. 105. 00. 83.0 83.0 83.0 83.0 83.0 83.0 83.0	Operati 0 65 0 70 0 85 0 82 0 85 0 82 0 85 0 82 0 76 0 70 0 85 0 85 82 70 70 85 80 85 82 70 70 70 70 70 70 70 70 70 70	ing Eff Flow 0 0 0.0% 15% 0.0% 15% 0.0% 31% 0.0%	w TDH (m) 27.4 25.9 9 24.4 3 22.9 7 21.3 5 18.3 5 15.2 ed w TDH (m) 5.6 5.2 4.9 7 4.6 3 4.3 3 3.7	(HP) 41.5 72.5 95.1 111.0 111.9 111.9 111.9 Power (HP) 3.8 6.6 8.7 10.1 10.2	Flow (L/s) 0 159 317 476 634 793 951 251 Flow (L/s) 0 71 143 214 285 357	TDH (m) 27.4 25.9 22.9 21.3 18.3 15.2 Pumps 5.6 5.2 5.2 4.9 4.6 4.3 7 3.7	Fic (L) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	DW Till (s) (i) 0 27 38 24 76 24 13 22 51 27 13 22 89 18 277 15 788 RPM 3 9 10 50 50 14 4 21 4 35 3	DH m) 7.4 5.9 4.4 2.9 1.3 8.3 5.2 - 45% ps Op. DH m) 6.6 5.2 1.9 4.6 1.3 3.7	


Appendix D - Piping System Sample Calculations

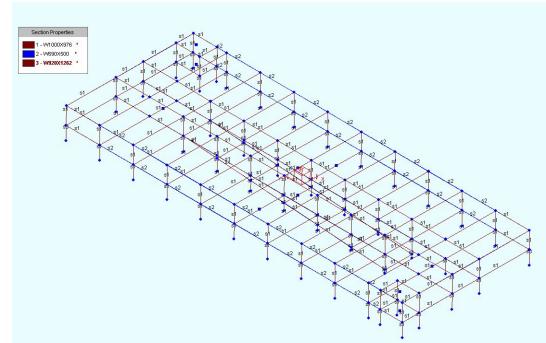
Volume Capacity V $_{\text{Cap}}$ = Q $_{\text{Cap}}/(\pi D^2/4)$


Flow Capacity

 $Q_{Cap} = \pi D^2/4 (D/4)^{2/3} slope^{1/2} n$

	Elevation (m)
Primary (Entrance)	79.885
Primary (Exit-Cistern)	79.385
Primary (Exit-Secondary)	79.635
Cistern (Entrance)	79.135
Cistern (Exit)	78.861
Stadium	80.385
Secondary (Entrance)	73.385
Secondary (Exit)	71.885
Storm Sewer	77.385
Botanical Garden	70.058
1	71.38
2	72.236
3	73.177
4	74.835

Appendix E - Detailed Construction Schedule

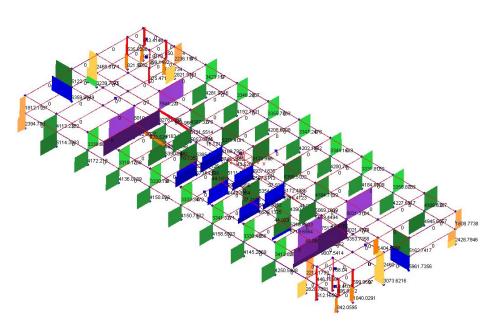


Appendix F - Cost Excel Calculations Dimensions and other parameters used for cost calculation, parkade

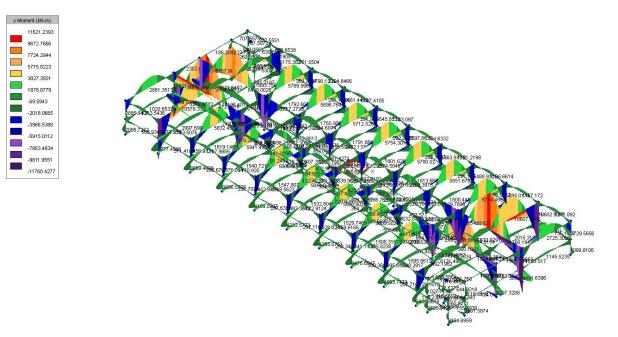
Project total:

Differisions and other				101 0	ost carculatio	•••	, purnauc
				Units			Units
Width			37.50	m	123.0)3	feet
Length			100.00	m	328.0)8	feet
Height of each floor			3.66	m	12.0	00	feet
Perimeter			275.00	m	902.2	23	feet
Area per floor			3,750.00	square	em 40,364.6	53	square feet
Volume, per floor			13,716.00	cubic r	m 484,376.4	11	cubic feet
Total area			7,500.00	square	em 80,729.2	25	square feet
Depth of excavation			9.29	m	30.4	18	feet
Excavation Volume			34,834.47	cubic r	n 1,230,168.8	34	cubic feet
Slab thickness, floors and foundat	io	n	0.15	m	0.4	19	feet
Total wall area			2,011.68	square	em 21,653.5	54	square feet
Concrete block partitions			75.81	square	em 816.0)0	square feet
Pipes			920.4	m	3019.	69	feet
Stairs, flights (2 per floor)			8				
Floors			2.0				
Interior doors			6				
Exterior doors			4				
Elevators			2				
Dimensions and other p	a	ramete	rs used f	for cos	st calculation,	, f	ield tank
Width			60.0	m	196.9	f	feet
Length			60.0	m	196.9	, f	feet
Depth of excavation			2.0	m	6.6	f	feet
Depth of tank			1.37	m	4.5	f	feet
Perimeter			240.0	m	787.4	f	feet
Area			3,600.0	square			square feet
Storage Volume			4,932.0	cubic m			
Stone backfill				cubic m			cubic yards
Leveling bed				cubic m	38750.	1 (cubic feet
Number of modules, ST-18 + ST-36	6		2625				
Annual maintenance				Indices	s used for cost ca		ulations
Parkade	\$	125,000.00		ouver Inde		ic	1.11
Detention Tank s	\$	189,303.21			nal Index, USD		1.00
Water Treatment Facility	\$	40,000.00			Index, 2012		85.6
Total	\$	354,303.21	Histo	orical Cost	Index, 2019		100
Proi	e	ct Tota	l Costs	Sumr	narv		
Project subtotal:			\$ 8,83	3,913.47 \$	9,528,410.59 \$,725,743.26
Project total:			\$ 12.04	1 683 23 \$	13 959 121 52 \$	15	713 213 88

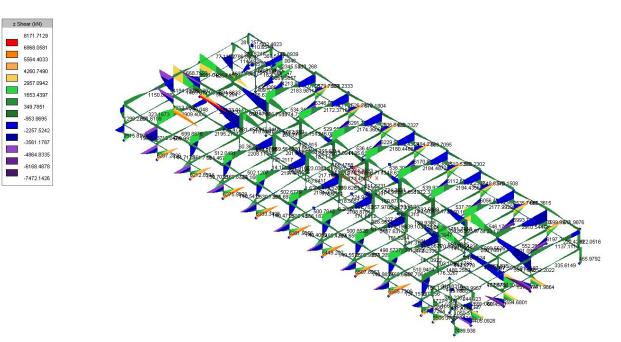
Appendix G - Structural Analysis Calculations

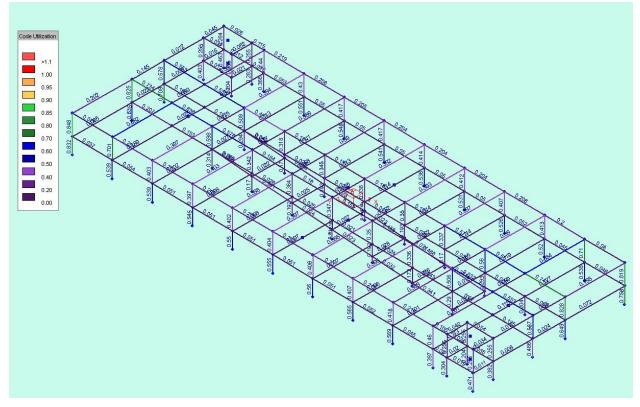


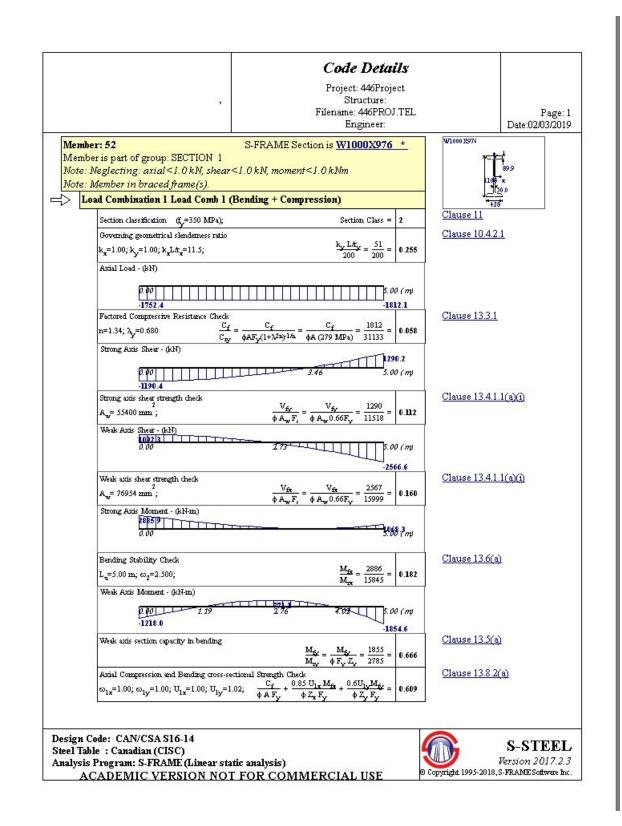
Steel Sections


Demands

Axial:




Moments:


Shear:

Capacity to Demand Ratios

Example Capacity Calculations for a Column and Composite Beam Generated in S-Steel

	21 9 (Code Detai Project: 446Proje Structure: Filename: 446PROJ. Engineer:	ct	Page: 1 Date:02/03/2019
Memb Note: . Note: .	er: 310 er is part of group: SECTION 1 Neglecting: axial <1.0 kM, shear Member in braced frame(s). vad Combination 1 Load Comb 1 (* W1000 19974 (compo 150 mm shb, 0 mm 110 mm shb, 0 mm	
	Section classification (f_=350 MPa); Strong Axis Shear - (kN) 0.001 -1089.3		1 Clause 11	
	Strong axis shear strength check A _w = 55400 mm ² ; Strong Axis Moment - (kN-m) 10191.4	$\frac{V_{5y}}{\phi A_{w}F_{s}} = \frac{V_{5y}}{\phi A_{w}0.66F_{y}} = \frac{3301}{11518} =$	Clause 13.4.1	<u>1(a)()</u>
	Bending Stability Check $L_u=10.00 m; \omega_2=2.197;$ Skrinkage deflection for pin end condition	$\frac{M_{fx}}{M_{fx}} = \frac{11760}{15845} = \frac{11760}{15845}$ (mm).Ribs parallel.	60.2 0.742 Clause 13.6(s Clause 17.3.1(s)	
	Q ₁ =1123 kN (41%, 11 studs/shear span);	¹ M _{nc} 16553	Clause 17.9.3 0.616 Clause 17.3.1	
	Bfective moment of inertis including cree p=0.41; I _f =31296;	$I_{b} = 0.85(I_{c} + 0.85(p)^{0.23}(I_{c}I_{c})) =$		<u></u>
Steel Tab	ode: CAN/CSA S16-14 le : Canadian (CISC) Program: S-FRAME (Linear sta	tic analysis)		S-STEEL Version 2017.2.3
		FOR COMMERCIAL USE	© Copyright 1995-2018,	S-FRAME Software Inc.

Calculations

beem to slab slifterss fation

$$\begin{aligned}
\theta_{1} &= \frac{F_{b}I_{b}}{F_{s}I_{s}} = \frac{s.25 \times 10^{14} \times 200 \times 10^{3}}{24650 \times \frac{1}{12}(3700 \times 360^{3})} = 29.6 \\
\theta_{1} &= \frac{F_{b}I_{b}}{2} = \frac{29.61}{24650 \times \frac{1}{12}(3700 \times 360^{3})} = 29.6 \\
\theta_{2} &= \frac{29.61}{2} + 27.61 = 29.61 > 2.0 \\
\vdots & use & am = 2.0 \\
\theta_{2} &= \frac{1}{2} + 25.0 \quad p \text{ checheol} \quad p \frac{14.75^{2}}{10^{2}} = 2.175^{2} \times 10^{2} + 10^{2}$$

14.75m 10 m 360mm 0.59 Mo 2782 KN =21224N 0.35M6 -0.16MB =-21/0KN -0.65Mb -0.7Mg -0.65M0 =-2941 =-39411 = - 9233 MN disticbute moment transve For interior span within beam strip $M_b = \frac{\alpha_i}{0.3 + \alpha_i} \left(1 - \frac{l_2}{3 l_1}\right) M$ $=\frac{29.6}{0.3129.6}\left(1-\frac{1}{3}\right)M$ = 0.66M for exterior spin $M_{b} = \frac{29.6}{0.3+29.6} \left(1 - \frac{16}{3\times14.75}\right) M' = 0.77M$

distirbute moment in longitudinal directivo

d - Jan - Anne -

interior span: transverse disturbution with 1 is supports midspon
within bern 0.66+(-3941) 0.66 (2122)
strip =-26018Nm (As=15538m²) 1400HVm (As = 7988 mm²)
(within -(3941-2601) 2122-1400
strip =-1340KVm (As = 7694) = 722 (As = 4042)
exterior spin transvese disturbution support
bern -210KVm (As = 7694) = 722 (As = 4042)
exterior spin transvese disturbution support
bern -2108KVm (As = 7694) = 722 (As = 10402)
(As = 1230 mm³) (As = 709 MVm
(As = 1230 mm³) (As = 10463mm²) (As = 52199 mm²)
(As = 10268mm²) (As = 12568mm²)
strip 0 : 1790HVm - 21141Mm
(As = 0.0015 b iso(d - J² = secont)
determine regulard slab depth:
d >
$$\frac{22.85 \times .7109 \times 10^6}{30 \times 3700}$$

d > 496.6
: Choose hs = 500 mm
d = .600 - 50mm = 550 mm
(As = 100 - 50mm = 550 mm
(As = 100 - 50mm = 550 mm
(As - 1.80por of -1 einforcence (2000)
A = 1.80por of -1 einforcence (2000)
A = 1.80por of -1 einforcence (2000)
A = .600 - 50mm = 500 mm
(A = .600 - 50mm = .600 mm
(A = .600 - 50mm = .600 mm
(A = .600 - 50mm = .600 mm
(A = .600 - 5

Foundalin analysis
gall = 12,000 psf = 575kPa
Pf, max = 9752kN

$$A \ge \frac{P_{f}}{Jall} = \frac{9752}{575} = 16.96 \text{ m}^2$$

Will the sequenced =: "4.116m for symme foundation
steel column section: W1000 x976
 $H = 50$ [108
 $H = 752 \text{ kN}$ 9752x10³
 $B = C = 770 \text{ mm}$ width of plate tequined
 $Column is too big : increase base plate:
 $B = 600$ $C = 1200$ $BC = 600,000 \text{ mm}^2 > 41.56 \text{ mm}^2$
 $M = \frac{2}{2} = \frac{2}{2}$$

$$t_{p} = \binom{m}{m} x \int_{1200}^{2} \frac{2 \times 9752 \times 10^{5}}{1200^{2} \times 0.9 \times 1000} = .25 \text{ , an thick parte}$$

$$design \quad a \qquad 4.5 \times 4.5 \text{ m. Spread foundation}$$

$$factured \quad Soil \quad pressure:$$

$$q_{P} = \frac{9252}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9252}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 481.6 \text{ kPa} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 482 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$f = \frac{9}{4.5 \times 4.5} = 442 \text{ kPa}$$

$$b_{0} = 7.47$$

$$B_{C} = \frac{C}{B} = \frac{1.2}{0.6} = 2$$

$$V_{C} = (1 + \frac{2}{2}) 0.19 \text{ Ade } \text{ Jter}^{T}$$

$$= 12 (0.19) \text{ Ade } \text{ bs } \text{ J30} = 1.35 \text{ MPa}$$

$$V_{C} = (\frac{4 \times 1}{7.44} + 0.19) \times 0.65 \text{ J30} = 2.6 \text{ APa}$$

$$\therefore \text{ Dc} = 1.35 \text{ MPa} \text{ is governing one}$$

$$= 2 \text{ bd} = 0.967 \text{ m}$$

$$determine \text{ ovedl fooling } depth \text{ h}$$

$$d_{b} = 25 \text{ mm} \longrightarrow 25 \text{ M Hebor}$$

$$Cover = 75 \text{ mm}$$

$$h = 0.9677 + \frac{25}{2} + 75 = 1062 \text{ mm} = 1100 \text{ mm}$$

$$\therefore d = (100 - \frac{25}{2} - 75) = 1012, 5 = 1020 \text{ mm}$$

$$check \text{ one } \text{ my shear fegularized}$$

$$V_{4} = 94 \text{ Xb} \times (\frac{b - (B \text{ or } C)}{2} - d) = 1360 \text{ KM } \text{ or } 1908 \text{ M}$$

$$2017$$

$$Av = \max \left(0.94 , 0.72h \right) = 0.18 = 0.12$$

$$B = \frac{230}{10007911} = 0.12$$

$$V_{C} = 0.65 \times 0.12 \int 30 4500 \times 916 = 17654h$$

$$\therefore \text{ Shear reinforcenent is tegained}$$

$$V_{S} = V_{L} - V_{C} = 2017 - 1765 = 252hh$$

$$S = \frac{0.85 \times 200 \times 400 \times 418 \times 1.43}{252 \times 10^{3}} = 359 \text{ mm}$$

$$\therefore 10M @ 350 \text{ mm Spacing}$$

bending teinforcenent:

$$M_{T} = g_{T} \left(\frac{b-t}{2} \right) \left(\frac{b-t}{4} \right) 5$$

$$t = B \text{ or } C = 0.46 \text{ or } 1.2m$$

$$\therefore M_{T} = 2.95 3 \text{ MNm} \text{ or } 4124$$

$$\int (C) \qquad (B)$$

$$A_{S}^{(4)} = 8536 \text{ mm}^{2} \qquad A_{S}^{(4)} = 12024 \text{ mm}^{2}$$

$$17-25M \qquad S = 163mm$$

(75 mm clear Cover) 1200 mm A DI 1 24-25M @ 160mm Spaciny CTSMM Cleur COVAR I 25mm steel R 10 M-Stinup @ 350mm c c c c z 30mm clean spacin D 0 ea space 25M@ 240 mm spacing 17-4.50 Stirking 350mm 660 mm DI W1000x976 + h=1100mm I 25m steel plate Q4-25M@ D40m. SPLICIN C C e I75mm Clear care 17-2SMB 240mm 4.5M

basemut well analysis:

$$S = 25 H$$
 (min 400 Psf)
 $\sigma_{mux} = 738 \text{ psf}$
 $\sigma = 35 \text{ kPa}$
 $WF = 35 \text{ kPa} \text{ In } 19.2 \text{ Km}$
 $WF = 35 \text{ kPa} \text{ In } 19.2 \text{ Km}$
 $WF = 35 \text{ kPa} \text{ In } 19.2 \text{ Km}$
 $WF = 58 \text{ kN}$ \rightarrow From sframe
 $VF = 58 \text{ kN}$ \rightarrow From sframe
 $VF = 58 \text{ kN}$ \rightarrow From sframe
 $VF = 58 \text{ kN}$ \rightarrow From sframe
 $V = 500 \text{ FS} \text{ In } \text{ Sconm}$
 $d = 500 \text{ FS} - 15 \text{ Km} \text{ In } \text{ Sconm}$
 $As = 0.0015(36)(1000)(418 - 5418^2 - 385(44) \text{ MB}^3 \text{ Sox}/000)$
 $= 306 \text{ rm}^3$
 $S = 5200 \frac{1000}{316} = 653$
 \therefore Use Smax = 500 \text{ ISMO 500 mm}

$$A_{s} = 400 \text{ m}^{2}$$

$$P = \frac{A_{s}}{b^{3}} = \frac{400}{1000 \text{ will}} = 6.0096 \text{ d.C} 0.027 = 0.6}{1000 \text{ will}}$$

$$ghear design i.o.k$$

$$ghear design i.o.k$$

$$B = \frac{230}{1000 \text{ t376}} = 6.17$$

$$V_{c} = 0.65 \times 1 \times 0.17 \text{ Jso } \times 1000 \times 376 = 2286 \text{ J/s} < V_{c}$$

$$\therefore no shear senforcenen/needed$$

$$Min her, 20/e1 \text{ tenframent}$$

$$A_{g} = 1000 \times 50c = 500 \times 10^{3} \text{ m}^{2}$$

$$A_{min} = 6.002 \text{ Ag} = 1000 \text{ m}^{2}$$

$$S = A_{s} \frac{1000}{\text{ As}} = 2c0$$

$$\therefore S = 2c0 \text{ m}$$

$$Min \text{ Votice}^{1} \text{ tenforcent}$$

$$A_{s} = 0.0015 \times 500 \times 10^{3} = 750 \text{ m}^{3}$$

$$\therefore S = 2.00 \frac{1000}{750} = 2.60 \text{ m} \text{ for yoursel}$$

500MM Well 0.5 4 6 TT 15 MQ ZUCHM Spucing 15M@ 260mm Spacing 6 9m 6 BOMMSPare 10001 12comm SPACE -0 OR 0 0 4.5m 1) 15M@ 200mm Checr cover = 75mm for foundation and 30mm for wall for rebor foundation Kay all baco En and