UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Life Cycle Assessment: Earth Sciences Building Joshua Power University of British Columbia CIVL 498C November 01, 2013

Disclaimer: "UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report".

# PROVISIO

This study has been completed by undergraduate students as part of their coursework at the University of British Columbia (UBC) and is also a contribution to a larger effort – the UBC LCA Project – which aims to support the development of the field of life cycle assessment (LCA).

The information and findings contained in this report have not been through a full critical review and should be considered preliminary.

If further information is required, please contact the course instructor Rob Sianchuk at rob.sianchuk@gmail.com





## Life Cycle Assessment: Earth Sciences Building

Joshua Power CIVL 498C Final Report November 2013

University of British Columbia

## **Executive Summary**

This study, a life cycle assessment (LCA) of the Earth Sciences Building (ESB) serves as a contribution to the on-going process of creating a LCA building database at UBC while also showing the environmental impacts associated with the product and construction process stages of the building. These stages include: raw material extraction, transportation of materials to the manufacturer, manufacturing, transportation to the construction site, and the construction-installation process.

On-Screen Takeoff and the Athena Impact Estimator for Buildings software were utilized to measure material quantities in the ESB and estimate the environmental impacts of these materials. The building materials were classified according to the Canadian Institute of Quantity Surveyors Level 3 Elements format in order to standardize the elements in a way that enables comparison and analysis.

The results of the assessment show that the Earth Sciences building contributes higher to all impact categories compared to the class benchmark, excluding Ozone Layer Depletion. The ESB performs relatively well when comparing cost to GWP for various buildings on campus. To improve the previous model and recommend future improvements, data adjustments and substitutions were made and uncertainties in the analysis were discussed.

## Table of Contents

| Executive Summary                                                                                                                                                                                                                                                                                                                               | ii                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Table of Contents ii                                                                                                                                                                                                                                                                                                                            | ii                                         |
| List of Figures                                                                                                                                                                                                                                                                                                                                 | v                                          |
| List of Tables                                                                                                                                                                                                                                                                                                                                  | vi                                         |
| 1.0 General Information on the Assessment         1.1 Purpose of the Assessment         1.1.1 Intended Use of the Assessment         1.1.2 Reasons for Carrying Out the Study         1.1.3 Intended Audience         1.1.4 Intended for Comparative Assertions         1.2 Identification of Building         1.3 Other Assessment Information | <b>1</b><br>1<br>.1<br>.1<br><b>2</b><br>3 |
| <ul> <li>2.0 General Information on the Object of Assessment</li></ul>                                                                                                                                                                                                                                                                          | 4<br>5<br>6                                |
| 3.0 Statement of Boundaries and Scenarios Used in the Assessment         3.1 System Boundary         3.2 Product Stage         3.2.1 Raw Material Supply         1         3.2.2 Transport         1         3.2.3 Manufacturing         1         3.3 Construction Stage                                                                       | 9<br>9<br>0<br>0<br>0<br>0                 |
| 3.3.1 Transport.13.3.2 Construction-Installation Process.14.1 Data Sources14.2 Data adjustments and Substitutions14.3 Data Quality14.3.1 Types of Uncertainty14.3.2 Data Uncertainty14.3.3 Model Uncertainty14.3.4 Temporal Variability14.3.5 Spatial Variability14.3.6 Variability Between Objects/Sources1                                    | 1<br>2<br>3<br>5<br>7<br>7<br>7<br>7<br>8  |
| 5.0 List of Indicators Used for Assessment & Expression of Results       1         5.1 Impact Assessment Method       1         5.2 Impact Categories       1         5.2.1 Fossil Fuel Consumption       2         5.2.2 Global Warming Potential       2         5.2.3 Acidification Potential       2                                        | <b>9</b><br>9<br>9<br>20<br>20             |

| 5.2.4 Human Health Respiratory Effects Potential (HH Particulate) | 21 |
|-------------------------------------------------------------------|----|
| 5.2.5 Eutrophication Potential                                    |    |
| 5.2.6 Ozone Depletion Potential                                   | 21 |
| 5.2.7 Smog Potential                                              |    |
| 6.0 Model Development                                             | 23 |
| 6.1 Previous Model Development                                    |    |
| 6.2 Improving the Model's Accuracy                                | 24 |
| 6.3 Reference Flow and Bill of Materials                          | 25 |
| 7.0 Communication of Assessment Results                           | 28 |
| 7.1 Life Cycle Results                                            |    |
| 7.1 1 Summary Measures                                            |    |
| 7.1.2 Hotspots                                                    |    |
|                                                                   |    |
| Annex A – Interpretation of Assessment Results                    |    |
| Benchmark Development                                             |    |
| UBC Academic Building Benchmark                                   |    |
| Annex B – Recommendations for LCA Use                             |    |
| Life Cycle Modules and Building Design                            |    |
| LCA in Practice                                                   |    |
| Issues in Application                                             |    |
| Annow C Author Deflection                                         | 40 |
| Annex C – Author Reflection                                       |    |
| CEAR Creducto Attributos                                          |    |
| CEAD GIAUUALE ALLI IDULES                                         |    |
| Annex D - Impact Estimator Inputs and Assumptions                 |    |
| Impact Estimator Inputs                                           |    |
| Impact Estimator Assumptions                                      |    |

## List of Figures

| Figure 1: ESB Atrium                                                         | 2  |
|------------------------------------------------------------------------------|----|
| Figure 2: A11 Foundations                                                    | 8  |
| Figure 3: A23 Roof Construction                                              | 8  |
| Figure 4: B11 Partitions                                                     | 8  |
| Figure 5: A21 Lowest Floor Construction                                      | 8  |
| Figure 6: A31 Walls Below Grade                                              | 8  |
| Figure 7: A22 Upper Floor Construction                                       | 8  |
| Figure 8: A32 Walls Above Grade                                              | 8  |
| Figure 9: Summary Measure ESB Building                                       |    |
| Figure 10: Summary Measures A11 Foundations                                  | 29 |
| Figure 11: Summary Measures A21 Lowest Floor Construction                    | 29 |
| Figure 12: Summary Measures A22 Upper Floor Construction                     |    |
| Figure 13: Summary Measures A23 Roof Construction                            | 30 |
| Figure 14: Summary Measures A31 Walls Below Grade                            | 31 |
| Figure 15: Summary Measures A32 Walls Above Grade                            | 31 |
| Figure 16: Summary Measures B11 Partition                                    | 32 |
| Figure 17: Percent Difference in Environmental Impacts Between ESB and Class |    |
| Benchmark by Whole Building                                                  |    |
| Figure 18: Percent Difference in Environmental Impacts Between ESB and Class |    |
| Benchmark by Level 3 Element                                                 |    |
| Figure 19: Cost vs. GWP of Class Studies                                     |    |

## List of Tables

| Table 1: Summary of Assessment Information                             | 3  |
|------------------------------------------------------------------------|----|
| Table 2: Functional Equivalent                                         | 5  |
| Table 3: Building Definition                                           | 7  |
| Table 4: Life Cycle Stages for Building Products According to EN 15978 | 9  |
| Table 5: Potential Inaccuracies                                        | 13 |
| Table 6: Types of Uncertainty at Each LCA stage                        | 15 |
| Table 7: Impact Assessment Categories                                  |    |
| Table 8: Improving the Model                                           | 24 |
| Table 9: BoM A11 Foundations                                           |    |
| Table 10: BoM A21 Lowest Floor Construction                            |    |
| Table 11: BoM A22 Upper Floor Construction                             |    |
| Table 12: BoM A23 Roof Construction                                    |    |
| Table 13: BoM A31 Walls Below Grade                                    |    |
| Table 14: BoM A32 Walls Above Grade                                    | 26 |
| Table 15: BoM B11 Partitions                                           | 27 |
| Table 16: GWP Hotspots by Level 3 Element                              |    |
| Table 17: GWP Hotspots by Life Cycle Stage and Process Module          | 34 |
| Table 18: Graduate Attributes                                          | 41 |
| Table 19: IE Inputs                                                    |    |
| Table 20: IE Assumptions                                               |    |

## 1.0 General Information on the Assessment

#### 1.1 Purpose of the Assessment

Performing a life cycle assessment on the Earth Sciences Building is an effective method of quantifying the environmental performance of the building.

#### 1.1.1 Intended Use of the Assessment

The intended use of this assessment, alongside other LCA assessments from the CIVL 489C class, is to contribute to the UBC LCA benchmark for the construction of new buildings at the University of British Columbia.

#### 1.1.2 Reasons for Carrying Out the Study

This study was completed to promote the development of the UBC LCA database and is intended to provide future scholars and green building practitioners with the necessary information to carry out similar LCA studies.<sup>1</sup>

#### 1.1.3 Intended Audience

The results of this study are intended for building practitioners and policy makers at UBC as well as students and professionals who will be continuing the advancement of the UBC LCA database. This study may also be useful for external organizations interested in developing LCA framework for buildings.

#### 1.1.4 Intended for Comparative Assertions

This study will contribute to the UBC LCA database and is intended for comparative assertions alongside other UBC building LCAs in the creation of a UBC building benchmark. By using the Athena Impact Estimator for Buildings (IE), and conforming to the same goal and scope, the studies created as part of the contribution to the UBC LCA database are comparable because the assumptions and context of each of these studies are equivalent.<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> ESSB Final Report 2012

<sup>&</sup>lt;sup>2</sup> Life cycle assessment- Requirements and guidelines (ISO 14044:2006)

#### 1.2 Identification of Building

Located at 2202 Main Mall, the Earth Sciences Building is one of the newest additions to UBC. Construction on the \$75 million project began in Fall 2010<sup>3</sup> and was completed in September 2012. The architects for the project were Busby and Associates Architects and Maple Argo Architects. The general contractor was Bird Construction Company and the Environmental Construction Engineer was ACM Environmental Corporation.<sup>4</sup>



Figure 1: ESB Atrium

The ESB is a 5 storey mid-rise, with 2 below ground floors, and a gross square area of 15,238 m<sup>2</sup>. The site boundary is defined by a 12 m setback from the Main Mall oak trees to the East, a 30.5 m setback from the Scarfe building to the North, alignment with the South face of the Beaty Biodiversity Whale Pavilion to the South, and the EOS Main building to the West.<sup>5</sup>

Constructed to LEED Gold standards, the ESB is the largest panelized wood building and the largest application of cross-laminated timber in North America.<sup>6</sup> This institutional building is home to the Department of Earth and Ocean Science (EOS), the Department of Statistics, the Pacific Institute for Mathematical Sciences (PIMS), the Dean of Science, and the Pacific Museum of the Earth (PME).<sup>7</sup>

<sup>&</sup>lt;sup>3</sup> UBC Planning <u>http://planning.ubc.ca/vancouver/projects-consultations/completed/academic-lands/earth-sciences-building-esb</u>

<sup>&</sup>lt;sup>4</sup> ESSB Final Report 2012

<sup>&</sup>lt;sup>5</sup> UBC Planning <u>http://planning.ubc.ca/vancouver/projects-consultations/completed/academic-lands/earth-sciences-building-esb</u>

 <sup>&</sup>lt;sup>6</sup> UBC Earth Science Building: <u>http://science.ubc.ca/about/esb</u>
 <sup>7</sup> UBC Properties:

http://www.ubcproperties.com/portfolio\_detail.php?category=Location&list=Vancouver&id=Earth %20Science%20Building

#### 1.3 Other Assessment Information

#### **Table 1: Summary of Assessment Information**

| Client for assessment                  | Completed as coursework in Civil<br>Engineering technical elective course at the<br>University of British Columbia                   |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Name and qualification of the assessor | First author: Joshua Power – Clean Energy<br>Engineering<br>Previous authors: Robert Baumann, Hilda Ho and<br>Maria Jose Valdebenito |
| Impact assessment method               | Athena Impact Estimator for Buildings Version<br>4.2 (Public Release)                                                                |
| Point of assessment                    | 1 year                                                                                                                               |
| Period of validity                     | 5 years                                                                                                                              |
| Date of assessment                     | Completed in December, 2013                                                                                                          |
| Verifier                               | Student work, study not verified                                                                                                     |

## 2.0 General Information on the Object of Assessment

#### 2.1 Functional Equivalent

Functional units allow the systems under consideration to be compared on an equivalent basis by providing a reference to which the input and output data are normalized.<sup>8</sup> The metric chosen is based on some performance characteristic of the system, and comparisons between systems are made on the basis of fulfilling the same function, quantified by the same functional unit.<sup>9</sup> In order to compare the environmental impacts of one building relative to another, or relative to a benchmark database, the functional units across the buildings under review need to be explicit and consistent.

<sup>&</sup>lt;sup>8</sup> Life cycle assessment- Requirements and guidelines (ISO 14044:2006)

<sup>&</sup>lt;sup>9</sup> Life cycle assessment- Requirements and guidelines (ISO 14044:2006)

#### **Table 2: Functional Equivalent**

| Aspect of Object of<br>Assessment           | Description                                                                                                                                                                                                                                                         |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Building type                               | Institutional                                                                                                                                                                                                                                                       |
| Technical and<br>functional<br>requirements | <ol> <li>BC Technical Guidelines - serve as the code of quality and performance<br/>for the design, construction and renovation of University-owned<br/>institutional buildings.<sup>10</sup></li> <li>National Building Code</li> <li>BC Building Code</li> </ol>  |
| Pattern of use                              | <ul> <li>[1] The Earth Science Building (ESB) includes teaching, laboratory, and office spaces.</li> <li>[2] Occupant load of 1628 people.<sup>11</sup></li> </ul>                                                                                                  |
| Required service<br>life <sup>12</sup>      | <ul> <li>[1] 100 year service life for the structure and the exterior envelope</li> <li>[2] 25 years for interior components and systems, and designed to facilitate change and adaptability</li> <li>[3] Roof systems shall have a minimum 30 year life</li> </ul> |

#### 2.2 Reference Study Period

According to EN 15978, a standard methodology for reporting construction sector environmental data in Europe,<sup>13</sup> the default value for the reference study period is the required service life of the building. At UBC, the service life for key building systems is 100 years for the structure and the exterior envelope.<sup>14</sup>

This LCA study excludes the use stage, end of life stage and benefits and loads beyond the system boundary, modules B, C and D respectively because they are outside the specified scope of the project due to time restrictions. For this study, the emphasis was on sorting the materials during the Product and Construction stages.

<sup>13</sup> Athena News: <u>http://www.athenasmi.org/first-north-american-building-declaration-to-en-</u> 15978/

<sup>&</sup>lt;sup>10</sup> UBC Technical Guidelines <u>http://www.technicalguidelines.ubc.ca/</u>

<sup>&</sup>lt;sup>11</sup> Building architectural drawings

<sup>&</sup>lt;sup>12</sup> UBC Technical Guidelines – Performance Objectives:

http://www.technicalguidelines.ubc.ca/technical/performance\_obj.html

<sup>&</sup>lt;sup>14</sup> UBC Technical Guidelines – Performance Objectives:

http://www.technicalguidelines.ubc.ca/technical/performance\_obj.html

#### 2.3 Object of Assessment Scope

#### 2.3.1 Description of Building Materials<sup>15</sup>

The ESB foundation and columns are made up mostly of rebar and concrete with the exception of a smaller number of wood columns through the building. The 3-tier floors are mostly made of concrete, insulation and wood. The roof assembly consists of two different levels: the first level is referred to as the deck of the fifth floor, and the roof of the building itself is on top of the fifth floor. The main structural component of the roof is cross-laminated timber. The wall assemblies consist of concrete cast-in-place interior and exterior walls in the basement and sub-basement levels. The building was designed with three different structural cores made of reinforced concrete.

Previously, it was reported that the decision to omit other building components, such as electrical aspects, HVAC system, finishing and detailing, etc., is associated with the limitations of available data and the IE software.<sup>16</sup> In this project, major components of the building were broken down into Level 3 Elemental format as established by the Canadian Institute of Quantity Surveyors (CIQS), in order to standardize the elements in a way that enables comparison and analysis. The building components included in each Level 3 Element are shown and a description and quantity of each metric used to normalize the results of impact categories by Level 3 Element are shown in Table 3: Building Definition.

<sup>&</sup>lt;sup>15</sup> ESSB Final Report 2012: Inventory Analysis

<sup>&</sup>lt;sup>16</sup> ESSB Final Report 2012

#### Table 3: Building Definition

| CIVL 498c Level 3     | Description                                    | Quantity | Units          |
|-----------------------|------------------------------------------------|----------|----------------|
| Elements              |                                                |          |                |
| A11 Foundations       | Total area of the slab-on-grade                | 1178     | m <sup>2</sup> |
| A21 Lowest Floor      | Total area of the slab-on-grade                | 1178     | m <sup>2</sup> |
| Construction          |                                                |          |                |
| A22 Upper Floor       | Sum of the total area of all upper floors      | 7,524.7  | m <sup>2</sup> |
| Construction          | measured from the outside face of the exterior |          |                |
|                       | walls                                          |          |                |
| A23 Roof Construction | Sum of the total area of the roofs measured    | 708      | m <sup>2</sup> |
|                       | from the outside face of the exterior walls    |          |                |
| A31 Walls Below       | Sum of the total surface area of the exterior  | 1,953.7  | m <sup>2</sup> |
| Grade                 | walls above grade                              |          |                |
| A32 Walls Above       | Sum of the total surface area of the exterior  | 6,221.9  | m <sup>2</sup> |
| Grade                 | walls below grade                              |          |                |
| B11 Partitions        | Sum of the total surface area of the interior  | 9,863.1  | m <sup>2</sup> |
|                       | walls                                          |          |                |

| Standard Foundations     | Wall and column footings (eg. strip and pad<br>footings)     Pile caps, column pedestrals and grade beams     Perimeter insulation     Crawl space walls                                                                                |                                | Structural frame     Suspended roofs and decks     Fireproofing and fire stopping     Miscellaneous metals relating to the roof     structure                                                              | Fixed Partitions                            | Interior fixed partition walls including wallboard       Balustrades and railings     Interior balcony fronts     Sound attenuation     Interior windows and storefronts     Interior glazed partitions                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special Foundations      | <ul> <li>Piling</li> <li>Caissons</li> <li>Raft foundation</li> <li>Ground and rock anchors</li> <li>Underpinning</li> <li>Special dewatering</li> <li>Any other special foundations</li> <li>Shoring to special foundations</li> </ul> | I<br>I<br>I<br>Columns & Beams | <ul> <li>Skylight structural framing</li> <li>Waterproofing and vapour barrier</li> <li>Insulation</li> <li>Roofing membrane</li> <li>Skylights</li> <li>All columns and beams supporting roofs</li> </ul> | Movable Partitions<br>Structural Partitions | <ul> <li>Interior glazed balustrades and screens</li> <li>All miscellaneous metals, rough carpentry, sealing, caulking, shielding and protection within the wall assembly</li> <li>Demountable partitions</li> <li>Retractable and movable partitions</li> <li>Operable partitions</li> <li>Loadbearing partitions</li> </ul> |
| Figure 2: A11 Foundation | 15                                                                                                                                                                                                                                      | Figure 3: A23 Roof Const       | ruction                                                                                                                                                                                                    | Doors                                       | All interior doors including finish     Door frames     Door hardware     Access doors     Door opening elements                                                                                                                                                                                                              |

Figure 4: B11 Partitions

| Figure 5: A21 Lowest Floor | <ul> <li>Slabs on grade</li> <li>Waterproofing and vapour barrier</li> <li>Insulation</li> <li>Slab thickening below interior bearing walls</li> </ul> | Walls Below Grade<br>Structural Walls Below<br>Grade | <ul> <li>Exterior wall construction below grade and above lowest floor slab on grade</li> <li>Interior furring, wallboard</li> <li>Insulation and vapour barrier</li> <li>All miscellaneous metals, wood blocking, sealing and caulking etc. within the wall assembly</li> <li>Windows and doors</li> <li>Structural components of walls below grade</li> </ul> |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                        |                                                      | '                                                                                                                                                                                                                                                                                                                                                               |



| Upper Floor Construction | Structural frame     Suspended floors and decks (including<br>exterior balcony slabs)     Inclined and stepped floors     Expansion and contraction joints     Suspended ramps     Structural and non-structural toppings     Sound attenuation/insulation in floors     Special floor construction (ex. catwalks,<br>space frames, etc.)     Miscellaneous metals relating to the floor<br>structure     Fireproofing and firestopping     All columns and beams supporting floors |           |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Stair Construction       | Stair structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br> <br> |
| L                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |

Figure 7: A22 Upper Floor Construction

Walls Above Grade Exterior wall construction with facing Ξ. materials, exterior applied finishes, back-I up construction, framing, wallboard, I insulation and vapour barriers I All miscellaneous metals, relieving angles, wood blockings, sealing and caulking, etc. within the wall assembly 1 Windows and doors Structural Walls Above Structural components of walls above Grade grade I L Curtain Walls Curtain walls -

Figure 8: A32 Walls Above Grade

# 3.0 Statement of Boundaries and Scenarios Used in the Assessment

#### 3.1 System Boundary

This LCA study is limited to the product stage and construction process stage, module A and B respectively shown in Table 4: Life Cycle Stages for Building Products; however, it is expected this study will be expanded upon in the future to make use of Athena's software capability to break impacts down into 6 life cycle phases;<sup>17</sup>

- Resource extraction
- Product manufacturing
- Construction of the building
- Building occupancy and maintenance
- Building demolition
- Materials disposition (disposal or transfer for recycling or reuse)

|                 | SUPPLEMENTARY<br>INFORMATION |                        |               |                     |
|-----------------|------------------------------|------------------------|---------------|---------------------|
| A 1-3           | A 4-5                        | B 1-7                  | C 1-4         | D                   |
| PRODUCT         | CONSTRUCTION                 | USE                    | END OF LIFE   | Benefits and loads  |
| stage           | PROCESS                      | stage                  | stage         | beyond the system   |
|                 | stage                        |                        |               | boundary            |
| A1: Raw         | A4: Transport                | B1: Use                | C1: De-       | Reuse-recovery-     |
| material supply |                              |                        | construction  | recycling-potential |
|                 |                              |                        | demolition    |                     |
| A2: Transport   | A5: Construction-            | B2: Maintenance        | C2: Transport |                     |
|                 | installation                 |                        |               |                     |
|                 | process                      |                        |               |                     |
| A3:             |                              | B3: Repair             | C3: Waste     |                     |
| Manufacturing   |                              |                        | Processing    |                     |
|                 |                              | B4: Replacement        | C4: Disposal  |                     |
|                 |                              | B5:                    |               |                     |
|                 |                              | Refurbishment          |               |                     |
|                 |                              | B6: Operational        |               |                     |
|                 |                              | Energy Use             |               |                     |
|                 |                              | <b>B7: Operational</b> |               |                     |
|                 |                              | Water Use              |               |                     |

#### Table 4: Life Cycle Stages for Building Products According to EN 15978

<sup>&</sup>lt;sup>17</sup> Athena LCA summary page

The upstream process of the product stage begins with raw material supply and ends with the downstream process of manufacturing. The construction process begins with the transportation of the finished products from the product stage to the construction site, and ends with the downstream process of construction and installation.

#### 3.2 Product Stage

#### 3.2.1 Raw Material Supply

The life cycle phase Resources Extraction in the IE includes, extraction of raw resources, tracking of energy use, emissions to air, water and land per unit of resource extracted. Raw material supply also includes data from activities such as reforestation and beneficiation.<sup>18</sup> Electricity use is based on the grid characteristics of the location selected.

#### 3.2.2 Transport

The Resources Extraction phase also includes the transportation of raw resources to the location where they're processed, defining the boundary between extraction and manufacturing.<sup>19</sup> Transportation distances and modes reflect regional averages and each material has a transportation distance associated with it.<sup>20</sup>

#### 3.2.3 Manufacturing

The manufacturing process begins with raw resources and other materials being delivered to the plant gate and ends with the finished product ready for shipment. The IE follows international guidelines for product LCAs addressing secondary components and assemblies, data sources and verification, and system boundaries.<sup>21</sup> Note that to the extent possible to the extent possible, all offshore products are

<sup>&</sup>lt;sup>18</sup> Athena LCA summary page: www.athenasmi.org

<sup>&</sup>lt;sup>19</sup> Athena LCA summary page: www.athenasmi.org

<sup>&</sup>lt;sup>20</sup> Athena FAQ: <u>http://calculatelca.com/faqs/#ie4b\_databases</u>

<sup>&</sup>lt;sup>21</sup> Athena LCA summary page: www.athenasmi.org

treated as though they were manufactured in North America.<sup>22</sup> Electricity use is based on the grid characteristics of the location selected.

#### 3.3 Construction Stage

#### 3.3.1 Transport

In the IE tool, the On-Site Construction stage begins with the transportation of individual products and sub-assemblies from manufacturing facilities to distributors. The average transportation distances to building sites within each city are calculated based on regional surveys.<sup>23, 24</sup>

#### 3.3.2 Construction-Installation Process

The construction process takes into account the energy used to construct the structural elements of the building and creates an inventory of the associated emissions to air, water and land. Other processes included are waste generation, energy use of machines such as cranes (energy required to lift materials an average distance of half of the height of the building) and mixers, the transportation of equipment to and from the site, concrete form work, and temporary heating and ventilation.<sup>25, 26</sup> Again, electricity use is based on the grid characteristics of the selected location within the IE.

<sup>&</sup>lt;sup>22</sup> Impact Estimator Software And Database Overview

<sup>&</sup>lt;sup>23</sup> Athena LCA summary page: <u>www.athenasmi.org</u>

<sup>&</sup>lt;sup>24</sup> Impact Estimator Software And Database Overview

<sup>&</sup>lt;sup>25</sup> Athena LCA summary page: <u>www.athenasmi.org</u>

<sup>&</sup>lt;sup>26</sup> Impact Estimator Software And Database Overview

## 4.0 Environmental Data

#### 4.1 Data Sources

Life cycle inventory (LCI) involves the process of collecting and calculating the flows associated with the product system. These flows include raw resources or materials, energy, water, and emissions to air, water and land.<sup>27</sup>

The Impact Estimator draws information about building materials and products from the Athena LCI Database. The database has been developed as a result of continuing research from the Athena Institute, the managing body, a non-profit research organization specializing in LCA. Database development comes from LCIs or LCAs of specific industries, product groups, transportation, construction processes, and maintenance tasks in accordance with LCA standards such as ISO 14040 and ISO 14044 as well as internal/external peer review.<sup>28</sup>

Another LCI database that the Impact Estimator draws from, in this case for information on energy combustion/pre-combustion processes for electricity generation and transportation, is the US LCI Database. This database is publicly available and is maintained by the National Renewable Energy Laboratory's (NREL) High-Performance Buildings research group alongside government stakeholders and industry partners.<sup>29</sup> The database project began in 2001, and since its inception has been supported and funded by a wide variety of stakeholders including the U.S Department of Energy, the American Chemistry Council, and the U.S. Green Building Council, to name a few.<sup>30</sup> Currently, the database is developed and maintained by U.S. Life Cycle Inventory (LCI) Database project management team.

<sup>&</sup>lt;sup>27</sup> Athena LCA summary page: <u>www.athenasmi.org</u>

<sup>&</sup>lt;sup>28</sup> LCI Background Data: <u>http://calculatelca.com/software/impact-estimator/lca-database-reports/</u>

<sup>&</sup>lt;sup>29</sup> U.S. Life Cycle Inventory Database: <u>http://www.nrel.gov/lci/about.html</u>

<sup>&</sup>lt;sup>30</sup> U.S. Life Cycle Inventory Database: <u>http://www.nrel.gov/lci/about.html</u>

#### 4.2 Data adjustments and Substitutions

A few IE inputs with a high contribution to Global Warming Potential (GWP) were investigated to uncover potential inaccuracies. Improvement strategies for these inaccuracies are recommended in Table 5: Potential Inaccuracies.

#### Table 5: Potential Inaccuracies

|                                  | Element and Material Modeling Review                                                      |                                                                               |                                                                                                                |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| Level 3 Element                  | Type and Property Selection (ex. concrete strength, rebar size, roof/floor loading, etc.) |                                                                               |                                                                                                                |  |  |  |
|                                  | IE Inputs (GWP hotspots)                                                                  | Description of Inaccuracy(ies)                                                | Improvement Strategy(ies)                                                                                      |  |  |  |
|                                  |                                                                                           | known rebar of 25M, IE input of 20M                                           | search for a supplementary LCI database containing this input                                                  |  |  |  |
| A11 Foundations                  |                                                                                           | known concrete flyash of 40%, IE input of 35%                                 | search for a supplementary LCI database containing this input                                                  |  |  |  |
|                                  | A11 Foundations- Footing_PF4                                                              | known concrete MPa of 25, IE input of 30                                      | search for a supplementary LCI database containing this input                                                  |  |  |  |
| A21 Lowest Floor<br>Construction |                                                                                           | known length and thickness values<br>adjusted in IE to account for<br>changes | known values can be inputted once other<br>restrictions are addressed (see assumptions<br>from previous model) |  |  |  |
|                                  | A11 Foundations- Footing_SF4                                                              | known concrete MPa of 25, IE input<br>of 30                                   | search for a supplementary LCI database containing this input                                                  |  |  |  |
|                                  |                                                                                           | known concrete flyash of 40%, IE input of 35%                                 | search for a supplementary LCI database containing this input                                                  |  |  |  |
|                                  | A21 Lowest Floor Construction-                                                            | known concrete MPa of 25, IE input<br>of 30                                   | search for a supplementary LCI database containing this input                                                  |  |  |  |
| A22 Upper Floor<br>Construction  | Concrete_SOG_200                                                                          | known concrete flyash of 40%, IE<br>input of 35%                              | search for a supplementary LCI database containing this input                                                  |  |  |  |
|                                  | A22 Upper Floor Construction-<br>Concrete_Beam_N/A_Base ment                              | known supported area of 86.29m2,<br>IE input of 86.31m2                       | change IE input                                                                                                |  |  |  |
| A23 Roof                         | A31 Walls Below Grade- Wall_Cast-in-                                                      | known concrete MPa of 25, IE input of 30                                      | search for a supplementary LCI database containing this input                                                  |  |  |  |
| Construction                     | Place_W6_350mm                                                                            | known concrete flyash of 40%, IE<br>input of 35%                              | search for a supplementary LCI database containing this input                                                  |  |  |  |

|                       |                                      | known length and thickness values<br>adjusted in IE to account for<br>changes | known values can be inputted once other<br>restrictions are addressed (see assumptions<br>from previous model) |
|-----------------------|--------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| A21 Walls Dolow       | B11 Partitions-                      | thickness of insulation unknown<br>and no IE input                            | review drawings                                                                                                |
| Grade                 | Curtain_Wall_Interior_2700 mm Height | spandrel type unknown and no IE<br>input                                      | review drawings                                                                                                |
|                       |                                      |                                                                               |                                                                                                                |
| A22 Walls Above       |                                      |                                                                               |                                                                                                                |
| A32 walls Above       |                                      |                                                                               |                                                                                                                |
| Grade                 |                                      |                                                                               |                                                                                                                |
|                       |                                      |                                                                               |                                                                                                                |
| <b>B11</b> Partitions |                                      |                                                                               |                                                                                                                |
|                       |                                      |                                                                               |                                                                                                                |

## 4.3 Data Quality

#### 4.3.1 Types of Uncertainty

Table 6: Types of Uncertainty at Each LCA stage<sup>31</sup>

| Туре                          | Description                                                                                     | Goal & Scope                                                                                                                                                                                                                                         | Inventory Analysis                                                                                                       | Impact Assessment                                                                         |
|-------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Data uncertainty              | Uncertainty introduced<br>due to the nature of the<br>data itself.                              |                                                                                                                                                                                                                                                      | <ol> <li>Collection</li> <li>Allocation methods use to<br/>create data</li> <li>Inaccuracies</li> <li>No data</li> </ol> | <ol> <li>Uncertainty in lifetimes of<br/>substances</li> <li>Travel potential</li> </ol>  |
| Model uncertainty             | Uncertainty introduced from the use of modeling.                                                |                                                                                                                                                                                                                                                      | 5. Linear vs. non-linear modeling                                                                                        | 3. Characterization factors not known or uncertain                                        |
| Uncertainty due to<br>choices | Uncertainty introduced<br>into the assessment due to<br>the choices of the LCA<br>practitioner. | <ol> <li>Functional unit</li> <li>System boundary</li> <li>Service life</li> <li>Maintenance cycles</li> <li>Methods</li> <li>Tools used in modeling</li> <li>Choice of allocation<br/>methods</li> <li>IA methods</li> <li>IA categories</li> </ol> |                                                                                                                          |                                                                                           |
| Temporal variability          | Uncertainty introduced<br>due to the changes to<br>relevant LCA information<br>with time.       |                                                                                                                                                                                                                                                      | 6. Difference in yearly factory<br>emissions<br>7. Data vintage                                                          | <ul><li>4. Interpretation of impacts over<br/>time</li><li>5. Effect of climate</li></ul> |

<sup>31</sup> CIVL 498C Class Notes: Week 8

| Spatial variability                    | Uncertainty introduced<br>due to the changes in<br>relevant LCA conditions<br>over space. |         | 8. Regional differences between factories                                             | <ul><li>6. Regional differences in<br/>environmental sensitivity</li><li>7. Distribution of emissions</li></ul> |
|----------------------------------------|-------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Variability between<br>objects/sources | Uncertainty due to<br>inconsistencies between<br>LCA processes and<br>interactions.       |         | 9. Difference between factories<br>10. Technologies which produce<br>the same product | 8. Difference in human exposure patterns                                                                        |
| Mistakes                               | Uncertainty due to<br>mistakes made by the LCA<br>practitioner.                           | 10. Any | 11. Any                                                                               | 9. Any                                                                                                          |

It is impossible to completely remove the uncertainty from a LCA, but it is possible to minimize the uncertainty introduced into the study with clear and comparable studies and databases. The LCI databases used in the study, the Athena LCI Database and the US LCI Database are updated frequently to remain current as new data is obtained. In the case of the Athena Database, most of the research at Athena goes into developing, verifying and updating the databases that form the basis of the Athena software tools.<sup>32</sup>

<sup>&</sup>lt;sup>32</sup> Athena LCI Database: <u>http://www.athenasmi.org/our-software-data/lca-databases/</u>

#### 4.3.2 Data Uncertainty

An example of data uncertainty in this study is the use of survey sheets sent to companies to collect data to obtain an average of industry values. Uncertainty is introduced when specific companies are chosen or choose to participate in the data collection process. The IE uses average values for generic building profiles rather than manufacturer specific data.

#### 4.3.3 Model Uncertainty

A specific example of model uncertainty in this study is the characterization factors associated with the global warming impact category. The global warming potentials associated with various compounds are based on the amount of infrared absorption a substance has relative to carbon dioxide over a certain time period. The GWP being considered changes depending on the reference time period, but there is also uncertainty (some compounds more than others) in the lifetimes of these substances in the atmosphere which affects the utilized GWP values in the software.

#### 4.3.4 Temporal Variability

An example of temporal variability is the effect of the climate on the impact assessment phase of the study. The IE can model impact assessment specifically for Vancouver, but depending on the time of year that emissions are released, the impacts can vary widely. For example, Smog Potential is greatly influence by climate inversions keeping the pollution low to the ground and these inversions are likely to change throughout the year.

#### 4.3.5 Spatial Variability

An example of spatial variability affecting the inventory analysis is the regional difference between factories. For example, human health impacts could be very different between a factory that is located in a densely populated region compared to a factory located where emissions are blown out over the ocean. In the IE, these factories are modeled the same way as long as they're located in Vancouver.

#### 4.3.6 Variability Between Objects/Sources

An example of variability between sources for impact assessment is the difference in human exposure patterns. Some people may have a different threshold for certain pollutants, but exposure is modeled the same way.

| Impact Category | Category<br>Indicator | Possible Endpoint Impacts | 5.0 List of Indicators Used |
|-----------------|-----------------------|---------------------------|-----------------------------|
|                 |                       |                           | for Assessment &            |

## **Expression of Results**

#### 5.1 Impact Assessment Method

The impact assessment stage of the study characterizes the LCI input and output flows into relevant environmental impacts. The Impact Estimator filters the LCA results through a set of characterization measures based on the mid-point impact assessment methodology developed by the US Environmental Protection Agency (US EPA), the Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI).<sup>33</sup> TRACI is the North American standard for life cycle assessment, and the IE software is adjusted each time the US EPA updates TRACI.<sup>34</sup>

#### 5.2 Impact Categories

In developing TRACI, the impact categories that were ultimately included in the tool were narrowed down from a large list of impact categories identified in a preliminary study by the US EPA. This manageable list was selected for a variety of reasons, including consistency with existing regulations and policies, perceived importance, and ease of modeling.<sup>35</sup> See Table 7: Impact Assessment Categories for the TRACI impact assessment categories available in the IE that are included in this study as well as their respective category indicators and possible endpoint impacts. Additional information on individual impact categories is provided in the sections following.

<sup>&</sup>lt;sup>33</sup> ESSB previous report

<sup>&</sup>lt;sup>34</sup> Athena Sustainable Materials Institute News: <u>http://www.athenasmi.org/impact-estimator-for-buildings-version-4-2-build-02-press-release/</u>

<sup>&</sup>lt;sup>35</sup> US EPA TRACI User's Manual: <u>http://www.pre-sustainability.com/download/TRACI 2 1 User Manual.pdf</u>

| Fossil fuel         | MJ                    | - Decreased fossil fuel reserves            |
|---------------------|-----------------------|---------------------------------------------|
| consumption         |                       | - Increased difficulty in extraction        |
| Global warming      | kg CO <sub>2</sub> eq | - Increased coastal area damage from SLR    |
| potential           |                       | - Damaged ecosystems                        |
|                     |                       | - Agricultural effects                      |
| Acidification       | kg SO <sub>2</sub> eq | - Ecosystem damage                          |
| potential           |                       | - Building damage                           |
| Human health        | kg PM2.5 eq           | - Toxicological human health impacts        |
| respiratory effects |                       | - Decreased productivity                    |
| potential           |                       | - Increased stresses on hospital system     |
| Eutrophication      | kg N eq               | - Impacts boaters, swimmers, fishermen      |
| potential           |                       | - Creates lake hypoxia, impacting ecosystem |
|                     |                       | - Impacts agriculture industry              |
|                     |                       | - Potential toxicity to humans              |
| Ozone depletion     | kg CFC-11 eq          | - Skin cancer                               |
| potential           |                       | - Crop damage                               |
|                     |                       | - Marine-life damage                        |
| Smog potential      | kg O <sub>3</sub> eq  | - Health impacts on vulnerable populations  |
|                     |                       | - Plant mortality                           |

**Table 7: Impact Assessment Categories** 

#### 5.2.1 Fossil Fuel Consumption

Fossil fuel consumption describes the total energy used to transport and transform raw materials into products. It includes the energy involved in extraction, processing, manufacturing, construction, and indirect energies from processing or transforming this energy.<sup>36</sup>

#### 5.2.2 Global Warming Potential

Global Warming Potential is a

measure of the ability of a gas to contribute to global warming relative to carbon dioxide. This potential is based on the radiative forcing and residence time of gases released into the atmosphere. TRACI uses GWPs with 100-year time horizons and utilizes a hierarchy of data sources consistent with international acceptance.<sup>37</sup> Emissions with high GWP come from activities such as burning fossil fuels for electricity, and cement production.

<sup>&</sup>lt;sup>36</sup> ESSB Final Report 2012

<sup>&</sup>lt;sup>37</sup> TRACI User Manual: <u>http://www.pre-sustainability.com/download/TRACI\_2\_1\_User\_Manual.pdf</u>

#### 5.2.3 Acidification Potential

Acidification potential is a measure of the increasing concentration of hydrogen ions (acidity) relative to sulfur dioxide. In TRACI 2.1, an acidification model incorporates increased hydrogen ion potential within the environment.<sup>38</sup> The release of acidic emissions into the atmosphere from agriculture and fossil fuel combustion results in acid rain.

#### 5.2.4 Human Health Respiratory Effects Potential (HH Particulate)

HH Particulate is a measure of the particulate matter in ambient that form as a result of chemical processes in the air, or are released during combustion. The two groups of concern are inhalable coarse particles (between 2.5 micrometers and 10 micrometers in diameter) and fine particles (smaller than or equal to 2.5 micrometers in diameter). The latter are often products of combustion processes.<sup>39</sup>

#### 5.2.5 Eutrophication Potential

Eutrophication potential is a measure of a product's ability to enrich an aquatic ecosystem with nutrients, thereby increasing the growth of algae biomass. These nutrients, phosphorus and nitrogen among the most potent, are introduced into aquatic ecosystems through wastewater treatment processes and fertilizer runoff from agricultural practices. Eutrophication often leads to hypoxic (depleted oxygen) regions resulting in dead zones for other aquatic life.

#### 5.2.6 Ozone Depletion Potential

Ozone depletion potential is a measure of a chemical's ability to react in the atmosphere and breakdown stratospheric ozone. Substances linked to this breakdown are chlorofluorocarbons that are used as refrigerants, foam blowing agents, solvents, and

<sup>&</sup>lt;sup>38</sup> TRACI User Manual: <u>http://www.presustainability.com/download/TRACI\_2\_1\_User\_Manual.pdf</u>

<sup>&</sup>lt;sup>39</sup> TRACI User Manual: <u>http://www.presustainability.com/download/TRACI 2 1 User Manual.pdf</u>

halons that are used as fire extinguishing agents.<sup>40</sup> Once released, these compounds react in the upper atmosphere in a series of chain reactions that result in the breakdown of ozone.

#### 5.2.7 Smog Potential

Unrelated to stratospheric ozone, smog potential is a measure of the ground level ozone formation as a result of photochemical oxidation. Compounds such as volatile organic compounds and nitrogen oxides from the combustion process in vehicles react with sunlight to create smog pollution.

<sup>&</sup>lt;sup>40</sup> TRACI User Manual: <u>http://www.presustainability.com/download/TRACI 2 1 User Manual.pdf</u>

### 6.0 Model Development

Before modeling the ESB in Athena, takeoff quantities from the digital building drawings were imported into On-Screen Takeoff 3 (OST) to document the area, linear, and count quantities. Originally, the inputs were organized into an excel Inputs Document into the following Assembly Groups: [1] Foundation, [2] Walls, [3] Columns and Beams, [4] Floors, [5] Roof, and [6] Extra Basic Materials. The Inputs Document was accompanied by various assumptions documents that have since been aggregated and organized into one IE Assumptions document. Both the updated IE Inputs and IE Assumptions documents are available in

#### Table 18: Graduate Attributes

| Graduate<br>Attribute |                                                                                                                                                                                     |                           |                                                                                                                |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|
| Name                  | Description                                                                                                                                                                         | Content Code              | Which of the CEAB graduate attributes you believe you had to demonstrate during your final project experience. |
| Knowledge<br>Base     | Demonstrated competence in<br>university level mathematics, natural<br>sciences, engineering fundamentals,<br>and specialized engineering knowledge<br>appropriate to the program.  | IA = introduced & applied | LCA framework and standards were introduced in class and then applied to our individual building.              |
| Problem<br>Analysis   | An ability to use appropriate<br>knowledge and skills to identify,<br>formulate, analyze, and solve complex<br>engineering problems in order to reach<br>substantiated conclusions. | I = introduced            | Introduced work arounds within the Impact Estimator to add new material types.                                 |

| Investigation                  | An ability to conduct investigations of<br>complex problems by methods that<br>include appropriate experiments,<br>analysis and interpretation of data, and<br>synthesis of information in order to<br>reach valid conclusions.                                                                                                                | IDA = introduced,<br>developed &<br>applied | Interpretation of comparisons between buildings i.e. class benchmarking.                                                                                                                                                                                                |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design                         | An ability to design solutions for<br>complex, open-ended engineering<br>problems and to design systems,<br>components or processes that meet<br>specified needs with appropriate<br>attention to health and safety risks,<br>applicable standards, and economic,<br>environmental, cultural and societal<br>considerations.                   | N/A = not<br>applicable                     |                                                                                                                                                                                                                                                                         |
| Use of<br>Engineering<br>Tools | An ability to create, select, apply, adapt,<br>and extend appropriate techniques,<br>resources, and modern engineering<br>tools to a range of engineering<br>activities, from simple to complex, with<br>an understanding of the associated<br>limitations.                                                                                    | IA = introduced & applied                   | Using Athena Impact Estimator for Buildings to model the<br>environmental performance of the ESB. Limitations of the<br>IE were a main topic of discussion and investigation<br>throughout the class.                                                                   |
| Individual and<br>Team Work    | An ability to work effectively as a<br>member and leader in teams,<br>preferably in a multi-disciplinary<br>setting.                                                                                                                                                                                                                           | DA = developed &<br>applied                 | Team work throughout class exercises led to a better<br>understanding of LCA concepts such as functional unit and<br>product life cycle stages. Individual work was carried out<br>to complete each of the stages and the final project.                                |
| Communication                  | An ability to communicate complex<br>engineering concepts within the<br>profession and with society at large.<br>Such ability includes reading, writing,<br>speaking and listening, and the ability<br>to comprehend and write effective<br>reports and design documentation, and<br>to give and effectively respond to clear<br>instructions. | IA = introduced & applied                   | Assignment 1 - 'Getting into the know' was an effective<br>way to learn about LCA and communicate some of the<br>barriers and successes associated with LCA in practice.<br>The final report is also requires the effective<br>communication of results and reflection. |

| Professionalism                                               | An understanding of the roles and<br>responsibilities of the professional<br>engineer in society, especially the<br>primary role of protection of the public<br>and the public interest.                                                                                                                                                                                                                                           | N/A = not<br>applicable                     |                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impact of<br>Engineering on<br>Society and the<br>Environment | An ability to analyze social and<br>environmental aspects of engineering<br>activities. Such ability includes an<br>understanding of the interactions that<br>engineering has with the economic,<br>social, health, safety, legal, and cultural<br>aspects of society, the uncertainties in<br>the prediction of such interactions; and<br>the concepts of sustainable design and<br>development and environmental<br>stewardship. | IDA = introduced,<br>developed &<br>applied | In class we talked about possible end point impacts<br>associated with impact categories that bring the LCA down<br>to the social level. We were also introduced to Life Cycle<br>Costing (LCC) and how this can play a major role in<br>decision-making.                             |
| Ethics and<br>Equity                                          | An ability to apply professional ethics, accountability, and equity.                                                                                                                                                                                                                                                                                                                                                               | N/A = not<br>applicable                     |                                                                                                                                                                                                                                                                                       |
| Economics and<br>Project<br>Management                        | An ability to appropriately incorporate<br>economics and business practices<br>including project, risk, and change<br>management into the practice of<br>engineering and to understand their<br>limitations.                                                                                                                                                                                                                       | I = introduced                              | Again, in LCC we touched on net present value, the<br>discounting of future costs and how this affects project<br>decisions.                                                                                                                                                          |
| Life-long<br>Learning                                         | An ability to identify and to address<br>their own educational needs in a<br>changing world in ways sufficient to<br>maintain their competence and to allow<br>them to contribute to the advancement<br>of knowledge.                                                                                                                                                                                                              | IDA = introduced,<br>developed &<br>applied | LCA is an emerging field and the information and<br>framework is always changing. Our projects and research<br>will put us on par with similar efforts around the world.<br>The UBC LCA building database will help give decision<br>makers a tool to compare new projects on campus. |

#### Annex D – Impact Estimator Inputs and Assumptions.

#### 6.1 Previous Model Development<sup>41</sup>

For the foundation, the areas of footings were found using the area conditions in OST. The thickness of each footing was listed in the Footing schedule in the structural drawings of the building.

For the columns and beams, count conditions were used to find the number of columns and beams on each floor. The floor-to-floor heights were calculated from the elevations of each floor from the structural drawings.

The areas of each floor were also estimated using OST. Several take-offs were performed depending on the number of materials the floor was composed of. Only the structural materials were taken into account.

The roof take-offs were performed in the same manner as the floors. Areas were taken separately from the roof level and from level five, which included a deck around the perimeter of the floor.

For walls, a linear condition was used in OST. The assembly of each wall was determined through architectural plans, sections and elevations. The drawings provided specific details for each type of wall, describing structural components as well as interior and exterior finish schedules. For concrete walls, the information was provided by the structural drawings, containing shear walls and retaining walls. Doors and windows were associated with each type of wall using a count condition in OST.

#### 6.2 Improving the Model's Accuracy

The updated IE Inputs document is sorted into Level 3 Elemental format as established by CIQS. To improve the accuracy of the model in this new sorting

<sup>&</sup>lt;sup>41</sup> ESSB Final Report 2012: Material Takeoff Development

format, the changes outlined in Table 8: Improving the Model were undertaken. The table highlights the Extra Basic Materials in the original model and matches them with their corresponding assemblies. These materials were then sorted according to Level 3 Elemental format and added accordingly to the improved model in Athena IE.

| Extra Basic Material in original model |                           | Material's<br>corresponding | Corresponding assembly name in IE<br>Inputs                          |  |
|----------------------------------------|---------------------------|-----------------------------|----------------------------------------------------------------------|--|
| Name                                   | Amount                    | Level 3<br>Element          |                                                                      |  |
| Glulam<br>Sections                     | 17.03 m <sup>3</sup>      | A23                         | 6.2.1 Columns_GL_Wood(Total Sum) EXTRA<br>BASIC MATERIAL             |  |
| Hollow<br>Structural<br>Steel          | 23.33<br>tonnes           | A22                         | 6.1.1 Columns_HSS_350W(Total Sum)<br>EXTRA BASIC MATERIAL            |  |
| Laminated<br>Veneer<br>Lumber          | 107.616<br>m <sup>3</sup> | A23                         | 5.2.1Roof_CrossLaminatedTimber EXTRA<br>BASIC MATERIAL               |  |
| Parallel Strand<br>Lumber              | 271.984<br>m <sup>3</sup> | A22                         | 4.1.2 Floor_Wood_SuspendedSlab_89mm<br>EXTRA BASIC MATERIAL          |  |
| Polyiso Foam<br>Board<br>(unfaced)     | 6,686 m <sup>2</sup>      | A22                         | 4.1.3<br>Floor_Insulation_SuspendedSlab_25mm<br>EXTRA BASIC MATERIAL |  |
|                                        |                           | A23                         | 5.1.1 Roof_insulation EXTRA BASIC<br>MATERIAL                        |  |

#### Table 8: Improving the Model

Note that the area of polyiso foam board estimated for the entire building was originally 6,686 m<sup>2</sup>. For Level 3 sorting, this area was separated into the insulation present in the roof, and the insulation present in the floor. Insulation is present as a sublayer of the floor in between concrete and wood and the roof is composed mainly of cross-laminated timber and insulation.<sup>42</sup> The area of polyiso insulation in the IE is 3056 m<sup>2</sup> and 3590 m<sup>2</sup> respectively.

<sup>&</sup>lt;sup>42</sup> ESSB Final Report 2012

One assembly name that was included in the original inputs document, but not included in the model was a below ground concrete block wall, denoted as 2.2.1 Wall\_E6.2\_ConcreteBlock\_152mmSteelStud. This assembly was added to the improved model under the same assembly name into A21 Lowest Floor Construction.

Once the inputs were organized, Athena Impact Estimator for Buildings was used to complete a life cycle assessment of the ESB. The model achieves this by applying a set of algorithms to the inputted takeoff data to generate a bill of materials (BoM). This BoM utilizes the built in Athena Life Cycle Inventory (LCI) Database, in order to estimate a cradle-to-grave LCI profile for the building.<sup>43</sup> For this project, the cradle-to-gate LCI profile of the ESB is being considered.

#### 6.3 Reference Flow and Bill of Materials

A reference flow is a quantified amount of the product(s), including product parts, necessary for a specific product system to deliver the performance described by the functional unit.<sup>44</sup> These are the flows associated with a product system that allow comparison between other product systems with the same functional unit. The BoMs for the ESB for each Level 3 Element are presented below.

| Material                     | Quantity | Unit   |
|------------------------------|----------|--------|
| Concrete 30 MPa (flyash 35%) | 361.2324 | m3     |
| Rebar, Rod, Light Sections   | 4.1779   | Tonnes |

#### Table 9: BoM A11 Foundations

#### Table 10: BoM A21 Lowest Floor Construction

| Material                     | Quantity | Unit |
|------------------------------|----------|------|
| Concrete 20 MPa (flyash av)  | 11.298   | m3   |
| Concrete 30 MPa (flyash 35%) | 229.53   | m3   |

<sup>43</sup> ESSB Final Report 2012

http://www2.mst.dk/Udgiv/Publications/2004/87-7614-233-7/pdf/87-7614-234-5.PDF

<sup>&</sup>lt;sup>44</sup> The Product, Functional Unit and Reference Flows in LCA:
| Rebar, Rod, Light Sections     | 0.3997 | Tonnes |
|--------------------------------|--------|--------|
| Welded Wire Mesh / Ladder Wire | 1.0646 | Tonnes |

#### Table 11: BoM A22 Upper Floor Construction

| Material                     | Quantity  | Unit      |
|------------------------------|-----------|-----------|
| Concrete 30 MPa (flyash 25%) | 1547.2385 | m3        |
| Concrete 30 MPa (flyash av)  | 401.7851  | m3        |
| GluLam Sections              | 20.1125   | m3        |
| Hollow Structural Steel      | 23.5633   | Tonnes    |
| Parallel Strand Lumber       | 274.7038  | m3        |
| Polyiso Foam Board (unfaced) | 3250.8    | m2 (25mm) |
| Rebar, Rod, Light Sections   | 267.1474  | Tonnes    |

#### Table 12: BoM A23 Roof Construction

| Material                     | Quantity | Unit      |
|------------------------------|----------|-----------|
| GluLam Sections              | 19.3205  | m3        |
| Laminated Veneer Lumber      | 108.6922 | m3        |
| Polyiso Foam Board (unfaced) | 753.9    | m2 (25mm) |

#### Table 13: BoM A31 Walls Below Grade

| Material                     | Quantity  | Unit      |
|------------------------------|-----------|-----------|
| 6 mil Polyethylene           | 2794.4744 | m2        |
| Concrete 30 MPa (flyash 35%) | 782.659   | m3        |
| Expanded Polystyrene         | 5378.3634 | m2 (25mm) |
| Nails                        | 0.1628    | Tonnes    |
| Rebar, Rod, Light Sections   | 24.4376   | Tonnes    |

#### Table 14: BoM A32 Walls Above Grade

| Material                      | Quantity   | Unit      |
|-------------------------------|------------|-----------|
| #15 Organic Felt              | 849.5761   | m2        |
| 5/8" Regular Gypsum Board     | 1792.5246  | m2        |
| 6 mil Polyethylene            | 1728.6455  | m2        |
| Aluminum                      | 63.6087    | Tonnes    |
| Cold Rolled Sheet             | 0.1786     | Tonnes    |
| Double Glazed Hard Coated Air | 299.8641   | m2        |
| EPDM membrane (black, 60 mil) | 1222.2277  | kg        |
| FG Batt R11-15                | 12200.4791 | m2 (25mm) |
| Fiber Cement                  | 819.7396   | m2        |
| Galvanized Sheet              | 4.6633     | Tonnes    |
| Galvanized Studs              | 10.8348    | Tonnes    |
| Glazing Panel                 | 126.0137   | Tonnes    |
| Joint Compound                | 1.789      | Tonnes    |
| Mortar                        | 25.7429    | m3        |
| MW Batt R11-15                | 4636.3693  | m2 (25mm) |
| Nails                         | 0.697      | Tonnes    |
| Ontario (Standard) Brick      | 928.5675   | m2        |
| Oriented Strand Board         | 2275.7105  | m2 (9mm)  |
| Paper Tape                    | 0.0205     | Tonnes    |

| Screws Nuts & Bolts     | 2.1444  | Tonnes |
|-------------------------|---------|--------|
| Water Based Latex Paint | 88.1742 | L      |

#### Table 15: BoM B11 Partitions

| Material                               | Quantity   | Unit      |
|----------------------------------------|------------|-----------|
| 5/8" Fire-Rated Type X Gypsum Board    | 6757.8395  | m2        |
| 5/8" Moisture Resistant Gypsum Board   | 536.3436   | m2        |
| 5/8" Regular Gypsum Board              | 10921.0693 | m2        |
| Aluminum                               | 8.278      | Tonnes    |
| Cold Rolled Sheet                      | 0.0848     | Tonnes    |
| Concrete 30 MPa (flyash 35%)           | 119.4662   | m3        |
| EPDM membrane (black, 60 mil)          | 109.391    | kg        |
| FG Batt R11-15                         | 22637.5623 | m2 (25mm) |
| Galvanized Sheet                       | 9.3489     | Tonnes    |
| Galvanized Studs                       | 27.5522    | Tonnes    |
| Glazing Panel                          | 24.6493    | Tonnes    |
| Joint Compound                         | 18.1792    | Tonnes    |
| Mortar                                 | 12.2171    | m3        |
| Nails                                  | 1.4843     | Tonnes    |
| Ontario (Standard) Brick               | 440.6813   | m2        |
| Oriented Strand Board                  | 586.1111   | m2 (9mm)  |
| Paper Tape                             | 0.2086     | Tonnes    |
| Rebar, Rod, Light Sections             | 2.8178     | Tonnes    |
| Screws Nuts & Bolts                    | 1.7713     | Tonnes    |
| Small Dimension Softwood Lumber, kiln- | 25.4275    | m3        |
| dried                                  |            |           |
| Solvent Based Alkyd Paint              | 44.5118    | L         |
| Water Based Latex Paint                | 1075.4168  | L         |

## 7.0 Communication of Assessment Results

### 7.1 Life Cycle Results

#### 7.1.1 Summary Measures

The summary measures for the Product and Construction life cycle stages for each impact category organized by whole building and Level 3 Element sorting are presented in this section.

|                  |                    | Fossil Fuel Consumption | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|-------------------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)                    | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |                         |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 21248593.69             | 1969786.969    | 17175.59385     | 10653.75468  | 983.3774168    | 0.009518242   | 219854.8078 |
|                  | Transport          | 958364.418              | 52230.4695     | 340.5235041     | 9.416464846  | 23.71331599    | 2.12987E-06   | 12054.04479 |
|                  | Total              | 22206958.11             | 2022017.439    | 17516.11735     | 10663.17114  | 1007.090733    | 0.009520372   | 231908.8526 |
| CONSTRUCTION     | Construction-      | 1262272.862             | 107919.217     | 828.7519742     | 132.2869255  | 49.94900266    | 0.000334459   | 22842.29952 |
|                  | Transport          | 1365531.578             | 98615.95894    | 484.2952468     | 14.68002427  | 34.70321483    | 3.93749E-06   | 17124.83028 |
|                  | Total              | 2627804.439             | 206535.176     | 1313.047221     | 146.9669497  | 84.65221749    | 0.000338397   | 39967.1298  |
| USE              | Replacement        |                         |                |                 |              |                |               |             |
|                  | Replacement        |                         |                |                 |              |                |               |             |
|                  | Operational Energy |                         |                |                 |              |                |               |             |
|                  | Total              |                         |                |                 |              |                |               |             |
| END OF LIFE      | Material           |                         |                |                 |              |                |               |             |
|                  | Transport          |                         |                |                 |              |                |               |             |
|                  | Total              |                         |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 22,510,866.55           | 2,077,706.19   | 18,004.35       | 10,786.04    | 1,033.33       | 0.01          | 242,697.11  |
|                  | Transport          | 2,323,896.00            | 150,846.43     | 824.82          | 24.10        | 58.42          | 0.00          | 29,178.88   |
|                  | Operational Energy | 0.00                    | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 24,834,762.55           | 2,228,552.61   | 18,829.16       | 10,810.14    | 1,091.74       | 0.01          | 271,875.98  |

Figure 9: Summary Measure ESB Building

|                  |                    | Fossil Fuel | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|-------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)        | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |             |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 518449.1801 | 78449.50136    | 514.7949275     | 214.1362323  | 25.59930972    | 0.000459555   | 10719.92977 |
|                  | Transport          | 70969.3835  | 3135.798178    | 24.97616987     | 0.653535028  | 1.711105753    | 1.29845E-07   | 884.4251074 |
|                  | Total              | 589418.5636 | 81585.29954    | 539.7710974     | 214.7897673  | 27.31041547    | 0.000459685   | 11604.35488 |
| CONSTRUCTION     | Construction-      | 41283.69395 | 5077.379709    | 31.66852474     | 10.75072066  | 1.469104315    | 2.29776E-05   | 783.06343   |
|                  | Transport          | 62262.04828 | 4673.411941    | 22.11652879     | 0.679671758  | 1.591837067    | 1.86509E-07   | 782.1048172 |
|                  | Total              | 103545.7422 | 9750.79165     | 53.78505354     | 11.43039241  | 3.060941381    | 2.31641E-05   | 1565.168247 |
| USE              | Replacement        |             |                |                 |              |                |               |             |
|                  | Replacement        |             |                |                 |              |                |               |             |
|                  | Operational Energy |             |                |                 |              |                |               |             |
|                  | Total              |             |                |                 |              |                |               |             |
| END OF LIFE      | Material           |             |                |                 |              |                |               |             |
|                  | Transport          |             |                |                 |              |                |               |             |
|                  | Total              |             |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 559,732.87  | 83,526.88      | 546.46          | 224.89       | 27.07          | 0.00          | 11,502.99   |
|                  | Transport          | 133,231.43  | 7,809.21       | 47.09           | 1.33         | 3.30           | 0.00          | 1,666.53    |
|                  | Operational Energy | 0.00        | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 692,964.31  | 91,336.09      | 593.56          | 226.22       | 30.37          | 0.00          | 13,169.52   |

Figure 10: Summary Measures A11 Foundations

|                  |                    | Fossil Fuel | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|-------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)        | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |             |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 330548.954  | 51954.30601    | 339.9460832     | 142.4024425  | 15.02364434    | 0.000304539   | 7079.949697 |
|                  | Transport          | 46155.06398 | 2047.995445    | 16.26057966     | 0.425834707  | 1.114273618    | 8.47925E-08   | 575.8033147 |
|                  | Total              | 376704.018  | 54002.30146    | 356.2066629     | 142.8282772  | 16.13791796    | 0.000304624   | 7655.753011 |
| CONSTRUCTION     | Construction-      | 70140.01957 | 6217.087155    | 46.5388486      | 7.410429981  | 2.579319801    | 1.52269E-05   | 1423.998193 |
|                  | Transport          | 42454.39192 | 3126.14439     | 15.07051238     | 0.459968052  | 1.082296273    | 1.2481E-07    | 532.9287358 |
|                  | Total              | 112594.4115 | 9343.231545    | 61.60936098     | 7.870398033  | 3.661616074    | 1.53517E-05   | 1956.926929 |
| USE              | Replacement        |             |                |                 |              |                |               |             |
|                  | Replacement        |             |                |                 |              |                |               |             |
|                  | Operational Energy |             |                |                 |              |                |               |             |
|                  | Total              |             |                |                 |              |                |               |             |
| END OF LIFE      | Material           |             |                |                 |              |                |               |             |
|                  | Transport          |             |                |                 |              |                |               |             |
|                  | Total              |             |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 400,688.97  | 58,171.39      | 386.48          | 149.81       | 17.60          | 0.00          | 8,503.95    |
|                  | Transport          | 88,609.46   | 5,174.14       | 31.33           | 0.89         | 2.20           | 0.00          | 1,108.73    |
|                  | Operational Energy | 0.00        | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 489,298.43  | 63,345.53      | 417.82          | 150.70       | 19.80          | 0.00          | 9,612.68    |

Figure 11: Summary Measures A21 Lowest Floor Construction

|                  |                    | Fossil Fuel   | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|---------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)          | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |               |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 8768121.768   | 692269.5746    | 4787.707537     | 1411.078731  | 549.4261419    | 0.003105223   | 83140.17982 |
|                  | Transport          | 468257.7468   | 27228.14898    | 168.929037      | 4.742083923  | 11.81750139    | 1.107E-06     | 5979.495769 |
|                  | Total              | 9236379.515   | 719497.7236    | 4956.636574     | 1415.820815  | 561.2436433    | 0.00310633    | 89119.67559 |
| CONSTRUCTION     | Construction-      | 662645.7477   | 56883.85105    | 447.4550852     | 69.08543881  | 28.29525535    | 0.00015561    | 13342.2437  |
|                  | Transport          | 398571.1286   | 28803.47984    | 141.5318221     | 4.289415267  | 10.14121602    | 1.15028E-06   | 5004.719277 |
|                  | Total              | 1061216.876   | 85687.33089    | 588.9869072     | 73.37485407  | 38.43647136    | 0.00015676    | 18346.96297 |
| USE              | Replacement        |               |                |                 |              |                |               |             |
|                  | Replacement        |               |                |                 |              |                |               |             |
|                  | Operational Energy |               |                |                 |              |                |               |             |
|                  | Total              |               |                |                 |              |                |               |             |
| END OF LIFE      | Material           |               |                |                 |              |                |               |             |
|                  | Transport          |               |                |                 |              |                |               |             |
|                  | Total              |               |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 9,430,767.52  | 749,153.43     | 5,235.16        | 1,480.16     | 577.72         | 0.00          | 96,482.42   |
|                  | Transport          | 866,828.88    | 56,031.63      | 310.46          | 9.03         | 21.96          | 0.00          | 10,984.22   |
|                  | Operational Energy | 0.00          | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 10,297,596.39 | 805,185.05     | 5,545.62        | 1,489.20     | 599.68         | 0.00          | 107,466.64  |

Figure 12: Summary Measures A22 Upper Floor Construction

|                  |                    | Fossil Fuel  | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|--------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)         | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |              |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 1011565.806  | 64589.39279    | 511.3505968     | 81.18458022  | 17.29675175    | 6.67855E-05   | 3453.662627 |
|                  | Transport          | 29211.94862  | 2203.31683     | 10.37373935     | 0.319357774  | 0.74707532     | 8.78551E-08   | 366.812206  |
|                  | Total              | 1040777.755  | 66792.70962    | 521.7243361     | 81.50393799  | 18.04382707    | 6.68733E-05   | 3820.474833 |
| CONSTRUCTION     | Construction-      | 18159.72182  | 1176.475144    | 11.47598352     | 0.995464793  | 0.58655384     | 3.35016E-06   | 251.4071825 |
|                  | Transport          | 15209.44758  | 559.9060848    | 5.296559945     | 0.132409869  | 0.358195816    | 2.28389E-08   | 187.2242828 |
|                  | Total              | 33369.1694   | 1736.381229    | 16.77254347     | 1.127874662  | 0.944749656    | 3.373E-06     | 438.6314653 |
| USE              | Replacement        |              |                |                 |              |                |               |             |
|                  | Replacement        |              |                |                 |              |                |               |             |
|                  | Operational Energy |              |                |                 |              |                |               |             |
|                  | Total              |              |                |                 |              |                |               |             |
| END OF LIFE      | Material           |              |                |                 |              |                |               |             |
|                  | Transport          |              |                |                 |              |                |               |             |
|                  | Total              |              |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 1,029,725.53 | 65,765.87      | 522.83          | 82.18        | 17.88          | 0.00          | 3,705.07    |
|                  | Transport          | 44,421.40    | 2,763.22       | 15.67           | 0.45         | 1.11           | 0.00          | 554.04      |
|                  | Operational Energy | 0.00         | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 1,074,146.92 | 68,529.09      | 538.50          | 82.63        | 18.99          | 0.00          | 4,259.11    |

Figure 13: Summary Measures A23 Roof Construction

|                    | Fossil Fuel  | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|--------------------|--------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Process Module     | (MJ)         | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                    |              |                |                 |              |                |               |             |
| Manufacturing      | 1575500.741  | 188797.4848    | 1214.950391     | 471.0966355  | 78.56414246    | 0.000995978   | 24574.0365  |
| Transport          | 157397.6283  | 7066.230313    | 55.41938102     | 1.455889528  | 3.801133638    | 2.92201E-07   | 1962.385356 |
| Total              | 1732898.37   | 195863.7151    | 1270.369772     | 472.552525   | 82.3652761     | 0.00099627    | 26536.42186 |
| Construction-      | 243474.7719  | 21278.713      | 161.2165779     | 24.40279388  | 9.214450224    | 4.97939E-05   | 4968.798423 |
| Transport          | 136922.1465  | 10255.61125    | 48.63302669     | 1.493420241  | 3.499497123    | 4.09301E-07   | 1719.800801 |
| Total              | 380396.9184  | 31534.32425    | 209.8496046     | 25.89621412  | 12.71394735    | 5.02032E-05   | 6688.599224 |
| Replacement        |              |                |                 |              |                |               |             |
| Replacement        |              |                |                 |              |                |               |             |
| Operational Energy |              |                |                 |              |                |               |             |
| Total              |              |                |                 |              |                |               |             |
| Material           |              |                |                 |              |                |               |             |
| Transport          |              |                |                 |              |                |               |             |
| Total              |              |                |                 |              |                |               |             |
| Non-Transport      | 1,818,975.51 | 210,076.20     | 1,376.17        | 495.50       | 87.78          | 0.00          | 29,542.83   |
| Transport          | 294,319.77   | 17,321.84      | 104.05          | 2.95         | 7.30           | 0.00          | 3,682.19    |
| Operational Energy | 0.00         | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
| Total              | 2,113,295.29 | 227,398.04     | 1,480.22        | 498.45       | 95.08          | 0.00          | 33,225.02   |

Figure 14: Summary Measures A31 Walls Below Grade

|                  |                    | Fossil Fuel  | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|--------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)         | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |              |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 6018455.354  | 635289.8849    | 7806.120889     | 6901.375524  | 185.2331713    | 0.003266638   | 71140.86546 |
|                  | Transport          | 65587.90369  | 3907.320611    | 23.53699457     | 0.666286602  | 1.650787106    | 1.57927E-07   | 832.7465658 |
|                  | Total              | 6084043.258  | 639197.2055    | 7829.657884     | 6902.04181   | 186.8839584    | 0.003266796   | 71973.61202 |
| CONSTRUCTION     | Construction-      | 75375.59265  | 5916.3285      | 50.51081018     | 7.580055464  | 2.60750663     | 3.08243E-05   | 918.760309  |
|                  | Transport          | 450226.5233  | 33643.4318     | 159.8416123     | 4.904180101  | 11.49858222    | 1.34179E-06   | 5651.926235 |
|                  | Total              | 525602.116   | 39559.7603     | 210.3524225     | 12.48423557  | 14.10608885    | 3.21661E-05   | 6570.686544 |
| USE              | Replacement        |              |                |                 |              |                |               |             |
|                  | Replacement        |              |                |                 |              |                |               |             |
|                  | Operational Energy |              |                |                 |              |                |               |             |
|                  | Total              |              |                |                 |              |                |               |             |
| END OF LIFE      | Material           |              |                |                 |              |                |               |             |
|                  | Transport          |              |                |                 |              |                |               |             |
|                  | Total              |              |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 6,093,830.95 | 641,206.21     | 7,856.63        | 6,908.96     | 187.84         | 0.00          | 72,059.63   |
|                  | Transport          | 515,814.43   | 37,550.75      | 183.38          | 5.57         | 13.15          | 0.00          | 6,484.67    |
|                  | Operational Energy | 0.00         | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 6,609,645.37 | 678,756.97     | 8,040.01        | 6,914.53     | 200.99         | 0.00          | 78,544.30   |

Figure 15: Summary Measures A32 Walls Above Grade

|                  |                    | Fossil Fuel  | Global Warming | Acidification   | Human Health | Eutrophication | Ozone Layer   | Smog        |
|------------------|--------------------|--------------|----------------|-----------------|--------------|----------------|---------------|-------------|
| Life Cycle Stage | Process Module     | (MJ)         | (kg CO2eq)     | (moles of H+eq) | (kg PM10eq)  | (kg Neq)       | (kg CFC-11eq) | (kg O3eq)   |
|                  |                    |              |                |                 |              |                |               |             |
| PRODUCT          | Manufacturing      | 2904155.751  | 253481.9592    | 1979.797617     | 1436.175181  | 111.7982798    | 0.001065764   | 19571.85259 |
|                  | Transport          | 121948.9097  | 6713.318222    | 41.46573213     | 1.165839511  | 2.902136427    | 2.73162E-07   | 1467.889359 |
|                  | Total              | 3026104.661  | 260195.2774    | 2021.26335      | 1437.341021  | 114.7004162    | 0.001066037   | 21039.74195 |
| CONSTRUCTION     | Construction-      | 147539.1925  | 11295.09463    | 80.22443902     | 12.25566865  | 5.244266632    | 4.39879E-05   | 1197.0338   |
|                  | Transport          | 253358.87    | 17050.99348    | 89.48656468     | 2.649011192  | 6.364181273    | 6.81917E-07   | 3164.140628 |
|                  | Total              | 400898.0625  | 28346.08811    | 169.7110037     | 14.90467984  | 11.60844791    | 4.46698E-05   | 4361.174428 |
| USE              | Replacement        |              |                |                 |              |                |               |             |
|                  | Replacement        |              |                |                 |              |                |               |             |
|                  | Operational Energy |              |                |                 |              |                |               |             |
|                  | Total              |              |                |                 |              |                |               |             |
| END OF LIFE      | Material           |              |                |                 |              |                |               |             |
|                  | Transport          |              |                |                 |              |                |               |             |
|                  | Total              |              |                |                 |              |                |               |             |
| TOTAL EFFECTS    | Non-Transport      | 3,051,694.94 | 264,777.05     | 2,060.02        | 1,448.43     | 117.04         | 0.00          | 20,768.89   |
|                  | Transport          | 375,307.78   | 23,764.31      | 130.95          | 3.81         | 9.27           | 0.00          | 4,632.03    |
|                  | Operational Energy | 0.00         | 0.00           | 0.00            | 0.00         | 0.00           | 0.00          | 0.00        |
|                  | Total              | 3,427,002.72 | 288,541.37     | 2,190.97        | 1,452.25     | 126.31         | 0.00          | 25,400.92   |

Figure 16: Summary Measures B11 Partition

#### 7.1.2 Hotspots

Identifying hotspots in the Product and Construction stages of the product system, and at the elemental level is a useful way to identify which processes and individual assemblies are contributing the majority of the environmental impacts in the ESB. The IE has a built in tool to show the percent contribution of each assembly in the project to a given impact category. As a class, GWP was voted as the impact category of highest concern and the GWP hotspots for ESB are identified in Table 16: GWP Hotspots by Level 3 Element, and Table 17: GWP Hotspots by Life Cycle Stage and Process Module. Further discussion is included in the Annexes.

| Level 3<br>Elemen<br>t | Life Cycle Stage                                                                  | IE Inputs document Assembly Name                                                                                                                                                                                                   | Contribution to<br>GWP (%) |
|------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| A11                    | A11 Foundations-Footing_PF4                                                       | 1.2.4 Footing_PF4                                                                                                                                                                                                                  | 27.89                      |
| A21                    | 21 Lowest Floor Construction-<br>Concrete_SOG_200                                 | 1.1.2 SOG_200mm                                                                                                                                                                                                                    | 87.86                      |
| A22                    | A22 Upper Floor Construction-<br>Floor_concrete_suspendedslab_10<br>0mm           | 4.1.4<br>Floor_Concrete_SuspendedSlab_100mm                                                                                                                                                                                        | 48.25                      |
| A23                    | A23 Roof Construction-Extra<br>Basic Materials                                    | <ul> <li>[1] 6.2.1 Columns_GL_Wood(Total Sum)</li> <li>EXTRA BASIC MATERIAL</li> <li>[2] 5.2.1 Roof_CrossLaminatedTimber</li> <li>EXTRA BASIC MATERIAL</li> <li>[3] 5.1.1 Roof_insulation EXTRA BASIC</li> <li>MATERIAL</li> </ul> | 99.45                      |
| A31                    | A31 Walls Below Grade-<br>Wall_Cast-in-Place_W6_350mm                             | 2.1.5 Wall_Cast-in-Place_W6_350mm                                                                                                                                                                                                  | 32.95                      |
| A32                    | A32 Walls Above Grade-<br>Wall_CurtainWall_Opaque Glass<br>Spandrel_2390mm Height | 2.3.7 Wall_CurtainWall_Opaque Glass<br>Spandrel_2390mm Height                                                                                                                                                                      | 32.04                      |
| B11                    | B11 Partitions-<br>Curtain_Wall_Interior_2700mm<br>Height                         | 2.3.9<br>Curtain_Wall_Interior_2700mm_Height                                                                                                                                                                                       | 23.87                      |

#### Table 16: GWP Hotspots by Level 3 Element

| Level 3<br>Element | Life Cycle Stage | Contribution to<br>GWP (%) | Process Module<br>within hotspot Life<br>Cycle Stage | Contribution to GWP<br>(%) |
|--------------------|------------------|----------------------------|------------------------------------------------------|----------------------------|
| A11                | Product          | 89.32                      | Manufacturing                                        | 96.16                      |
| A21                | Product          | 85.25                      | Manufacturing                                        | 87.75                      |
| A22                | Product          | 89.36                      | Manufacturing                                        | 96.22                      |
| A23                | Product          | 97.47                      | Manufacturing                                        | 96.70                      |
| A31                | Product          | 86.13                      | Manufacturing                                        | 96.39                      |
| A32                | Product          | 94.17                      | Manufacturing                                        | 98.92                      |
| B11                | Product          | 90.18                      | Manufacturing                                        | 95.97                      |

### Table 17: GWP Hotspots by Life Cycle Stage and Process Module

## Annex A – Interpretation of Assessment Results

### **Benchmark Development**

Benchmarking in LCA is a way to assess the environmental impacts of a product system in away that makes sense relative to other product systems with the same function. It is impossible to justify the sustainable construction of new buildings and to demonstrate that improvements have been made if there is no standard against which to measure the improved buildings.<sup>45</sup> Benchmarking allows for a meaningful interpretation of LCA results, that would otherwise stand alone.

According to ISO guidelines, in a comparative study, product systems shall be compared using the same functional unit and equivalent methodological considerations, such as performance, system boundary, data quality, allocation procedures, decision rules on evaluating inputs, and outputs and impact assessment.<sup>46</sup> Basically, the studies being compared need to have a common goal and scope so that they can be compared on an equivalent basis.

The functional equivalence of the benchmark assures that all buildings in the benchmark are used to fulfill the same purpose over the same length of time. At UBC, all buildings are subject to the same codes and technical guidelines; however, differences will arise in standards due to the time in which the buildings were constructed.

### UBC Academic Building Benchmark

The ESB is higher in all impact categories compared to the class benchmark, excluding Ozone Layer Depletion. The comparison between the ESB and benchmark can be seen by whole building and by Level 3 Element.

<sup>&</sup>lt;sup>45</sup> Using LCAs for Benchmarking: <u>http://www.bousteadusa.com/UsingLCAs/benchmarking.html</u>

<sup>&</sup>lt;sup>46</sup> Life cycle assessment- Requirements and guidelines (ISO 14044:2006)

Note that the contribution to each impact category for the class benchmark is 100% and the percent difference of the ESB compared to this benchmark is displayed in Figure 17: Percent Difference in Environmental Impacts Between ESB and Class Benchmark by Whole Building.



Figure 17: Percent Difference in Environmental Impacts Between ESB and Class Benchmark by Whole Building

Note that the contribution to each impact category for each Level 3 Element is 100% for the class benchmark and the percent difference of the ESB by Level 3 Element compared to the benchmark is displayed in Figure 18: Percent Difference in Environmental Impacts Between ESB and Class Benchmark by Level 3 Element.



Figure 18: Percent Difference in Environmental Impacts Between ESB and Class Benchmark by Level 3 Element

Figure 19: Cost vs. GWP of Class Studies, highlights the cost of each building in the study against its respective contribution to global warming potential. The ESB is the most expensive building among those compared, and relative to its cost compares fairly well against the other buildings. For example, at 395 kg CO<sub>2</sub> eq for a price of \$75M, the ESB contributes only 25% more to GWP at about 7 times the cost compared to AERL.

The supported GWP measure in the IE currently treats biogenic carbon as climate change neutral, but does not credit sequestered carbon in any material.<sup>47</sup> If the sequestered carbon from the wood materials were taken into account the building might be modeled to have a better performance since the ESB uses over 1,300 tons of BC sourced and engineered cross laminated timber, and it's estimated that the wood materials used in the building will sequester about 2,600 tons of CO<sub>2</sub>.<sup>48</sup>



Figure 19: Cost vs. GWP of Class Studies

<sup>&</sup>lt;sup>47</sup> Impact Estimator Software and Database Overview

<sup>&</sup>lt;sup>48</sup> UBC's Earth Sciences Building: <u>http://science.ubc.ca/about/esb</u>

## Annex B – Recommendations for LCA Use

## Life Cycle Modules and Building Design

It's important to highlight that this LCA study only includes the Process and Construction stages and not the Use and End-of-Life stages. These additional stages have their own considerations that could have a huge impact on the overall LCA of the ESB. For example, the ESB, as one of the newest buildings on campus, is built to LEED Gold Standard, and it is very likely that energy conservation measures in the design of the building will result in notable energy use differences throughout its service life compared to the class benchmark. These energy improvements will lead to smaller environmental impacts in a variety of impact categories such as fossil fuel consumption and global warming potential.

The use of LCA in the design phase of a building has many benefits. Since most of a building's materials, energy, and environmental loading are established in the design phase and environmental impacts occur largely during the use phase<sup>49</sup>, it is most beneficial to use a LCA framework earlier on in the process to maximize its benefit. The IE software has the ability to show the environmental impacts of different material mixes and design choices, allowing the user to consider the trade-offs in their design. This is extremely useful when starting off with a baseline design and then looking into how changes in building materials can improve its environmental performance.<sup>50</sup>

#### LCA in Practice

LCA is making its way into mainstream practice. The USGBC's latest update to the LEED system now incorporates LCA into two available credits for smaller components of the building. One credit is the Building Product Disclosure and Optimization – Environmental Product Declarations (EPDs) that aims to promote the use of materials for which life-cycle information is available and that have preferable life-cycle impacts. The second credit

<sup>&</sup>lt;sup>49</sup> BD&C White Paper: Life Cycle Assessment and Sustainability

<sup>&</sup>lt;sup>50</sup> Impact Estimator Software And Database Overview

is the Building Life Cycle Impact Reduction that seeks to encourage the reuse of materials to optimize their environmental performance.<sup>51</sup>

Some confusion in LCA arises due to the fact that there is no one all encompassing LCA standard. LCA standardization is moving forward in two directions; one is through testing professionals with a competency exam enabling them to practice professionally, and another is through the development of EPDs. LCA provides the science-based background behind EPDs that must meet and comply with specific methodological requirements defined in Product Category Rules (PCRs)<sup>52</sup> that standardize the goal and scope of various product categories.

The following steps are recommended in order to operationalize LCA methods, data and their use in practice at UBC:

- Promote education programs for faculty and students
- Follow consistent LCA framework across UBC to make studies transparent and easy to replicate
- Make studies available
- Promote access and training to suitable software

### **Issues in Application**

One issue in application is the prioritization of impact categories among various stakeholders. One way to determine which impact categories should be considered in an analysis (other than by surveying stakeholders) is to include all categories within the model and to normalize each impact category relative to the background impacts in that category, i.e. regional or global. The highest contributing impacts in the model can then be chosen as the areas of focus.

<sup>&</sup>lt;sup>51</sup> EarthShift: Environmental Product Declarations and LCA To Earn LEED Points

<sup>&</sup>lt;sup>52</sup> EarthShift: Product Category Rules, Environmental Product Declarations, and Eco-Labels

## Annex C – Author Reflection

### Reflections on the Final Project and LCA

Before taking this course, other than learning about a few concepts, I had very little experience with LCA. Although I found parts of the project difficult, overall I had good experience working on a practical LCA project. Many of the concepts that I'd heard about became a lot clearer in actually being thrown into a project. The format of the course, and the topics covered in class, generally followed the LCA framework and in my mind, helped to give an otherwise overwhelming process some order.

The course began with a general introduction to life cycle assessment including history and standards, and moved on to cover goal and scope in depth. The time spent covering goal and scope development was appropriate since the goal and scope of the project have numerous considerations and dictate the rest of the LCA process. We then talked about life cycle inventory analysis, life cycle impact assessment and uncertainty in results.

After learning about LCA in this class, it seemed like one of the most obvious tools that decision makers should be using. I was surprised to find out that LCA is still in the development stage, and really just how complex the LCA process is. The main sticking point for me after taking this class is the fact that it doesn't make sense to have conversations about sustainability without taking a systems view approach. Claims around sustainability can't be justified if the conversation isn't on an equivalent basis. In the case of our buildings, it's difficult to have any meaningful conversation around the impacts associated with that building without having a benchmark to compare to.

I also like the idea that LCA has a wide variety of applications that can be integrated into any engineering discipline. Although the focus in this course was civil-related, as an environmental engineering student, I'll be able to take away the LCA framework and approach to apply it to other systems I encounter.

### CEAB Graduate Attributes

#### **Table 18: Graduate Attributes**

| Graduate<br>Attribute |                                                                                                                                                                                                                                 |                                             |                                                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Name                  | Description                                                                                                                                                                                                                     | Content Code                                | Which of the CEAB graduate attributes you believe you had to demonstrate during your final project experience. |
| Knowledge<br>Base     | Demonstrated competence in<br>university level mathematics, natural<br>sciences, engineering fundamentals,<br>and specialized engineering knowledge<br>appropriate to the program.                                              | IA = introduced & applied                   | LCA framework and standards were introduced in class<br>and then applied to our individual building.           |
| Problem<br>Analysis   | An ability to use appropriate<br>knowledge and skills to identify,<br>formulate, analyze, and solve complex<br>engineering problems in order to reach<br>substantiated conclusions.                                             | I = introduced                              | Introduced work arounds within the Impact Estimator to add new material types.                                 |
| Investigation         | An ability to conduct investigations of<br>complex problems by methods that<br>include appropriate experiments,<br>analysis and interpretation of data, and<br>synthesis of information in order to<br>reach valid conclusions. | IDA = introduced,<br>developed &<br>applied | Interpretation of comparisons between buildings i.e. class benchmarking.                                       |

| Design                         | An ability to design solutions for<br>complex, open-ended engineering<br>problems and to design systems,<br>components or processes that meet<br>specified needs with appropriate<br>attention to health and safety risks,<br>applicable standards, and economic,<br>environmental, cultural and societal<br>considerations.                   | N/A = not<br>applicable     |                                                                                                                                                                                                                                                                         |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use of<br>Engineering<br>Tools | An ability to create, select, apply, adapt,<br>and extend appropriate techniques,<br>resources, and modern engineering<br>tools to a range of engineering<br>activities, from simple to complex, with<br>an understanding of the associated<br>limitations.                                                                                    | IA = introduced & applied   | Using Athena Impact Estimator for Buildings to model the<br>environmental performance of the ESB. Limitations of the<br>IE were a main topic of discussion and investigation<br>throughout the class.                                                                   |
| Individual and<br>Team Work    | An ability to work effectively as a<br>member and leader in teams,<br>preferably in a multi-disciplinary<br>setting.                                                                                                                                                                                                                           | DA = developed &<br>applied | Team work throughout class exercises led to a better<br>understanding of LCA concepts such as functional unit and<br>product life cycle stages. Individual work was carried out<br>to complete each of the stages and the final project.                                |
| Communication                  | An ability to communicate complex<br>engineering concepts within the<br>profession and with society at large.<br>Such ability includes reading, writing,<br>speaking and listening, and the ability<br>to comprehend and write effective<br>reports and design documentation, and<br>to give and effectively respond to clear<br>instructions. | IA = introduced & applied   | Assignment 1 - 'Getting into the know' was an effective<br>way to learn about LCA and communicate some of the<br>barriers and successes associated with LCA in practice.<br>The final report is also requires the effective<br>communication of results and reflection. |
| Professionalism                | An understanding of the roles and<br>responsibilities of the professional<br>engineer in society, especially the<br>primary role of protection of the public<br>and the public interest.                                                                                                                                                       | N/A = not<br>applicable     |                                                                                                                                                                                                                                                                         |

| Impact of<br>Engineering on<br>Society and the<br>Environment | An ability to analyze social and<br>environmental aspects of engineering<br>activities. Such ability includes an<br>understanding of the interactions that<br>engineering has with the economic,<br>social, health, safety, legal, and cultural<br>aspects of society, the uncertainties in<br>the prediction of such interactions; and<br>the concepts of sustainable design and<br>development and environmental<br>stewardship. | IDA = introduced,<br>developed &<br>applied | In class we talked about possible end point impacts<br>associated with impact categories that bring the LCA down<br>to the social level. We were also introduced to Life Cycle<br>Costing (LCC) and how this can play a major role in<br>decision-making.                             |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ethics and<br>Equity                                          | An ability to apply professional ethics, accountability, and equity.                                                                                                                                                                                                                                                                                                                                                               | N/A = not<br>applicable                     |                                                                                                                                                                                                                                                                                       |
| Economics and<br>Project<br>Management                        | An ability to appropriately incorporate<br>economics and business practices<br>including project, risk, and change<br>management into the practice of<br>engineering and to understand their<br>limitations.                                                                                                                                                                                                                       | I = introduced                              | Again, in LCC we touched on net present value, the<br>discounting of future costs and how this affects project<br>decisions.                                                                                                                                                          |
| Life-long<br>Learning                                         | An ability to identify and to address<br>their own educational needs in a<br>changing world in ways sufficient to<br>maintain their competence and to allow<br>them to contribute to the advancement<br>of knowledge.                                                                                                                                                                                                              | IDA = introduced,<br>developed &<br>applied | LCA is an emerging field and the information and<br>framework is always changing. Our projects and research<br>will put us on par with similar efforts around the world.<br>The UBC LCA building database will help give decision<br>makers a tool to compare new projects on campus. |

# Annex D – Impact Estimator Inputs and Assumptions

## Impact Estimator Inputs

#### Table 19: IE Inputs

| Level 3           | o        |       | Assembly    |                    |                   | Input          | Values    |
|-------------------|----------|-------|-------------|--------------------|-------------------|----------------|-----------|
| Element           | Quantity | Units | Туре        | Assembly Name      | Input Fields      | Known/Measured | IE Inputs |
| A11<br>Foundation | 1178     | m2    |             |                    |                   |                |           |
|                   |          |       | 1.2 Concret | e Footing          |                   |                |           |
|                   |          |       |             | 1.2.1 Footing_PF1  |                   |                |           |
|                   |          |       |             |                    | Length (m)        | 18.2           | 18.2      |
|                   |          |       |             |                    | Width (m)         | 1.4            | 1.4       |
|                   |          |       |             |                    | Thickness (mm)    | 350            | 350       |
|                   |          |       |             |                    | Concrete (MPa)    | 25             | 30        |
|                   |          |       |             |                    | Concrete flyash % | 40%            | 35%       |
|                   |          |       |             |                    | Rebar             | 20M            | 20M       |
|                   |          |       |             | 1.2.2 Footing_PF2  |                   |                |           |
|                   |          |       |             |                    | Length (m)        | 8              | 8         |
|                   |          |       |             |                    | Width (m)         | 0.8            | 0.8       |
|                   |          |       |             |                    | Thickness (mm)    | 250            | 250       |
|                   |          |       |             |                    | Concrete (MPa)    | 25             | 30        |
|                   |          |       |             |                    | Concrete flyash % | 40%            | 35%       |
|                   |          |       |             |                    | Rebar             | 15M            | 15M       |
|                   |          |       |             | 1.2.3. Footing_PF3 |                   |                |           |
|                   |          |       |             |                    | Length (m)        | 12.6           | 15.12     |

|                   | Width (m)         | 1.8 |   |
|-------------------|-------------------|-----|---|
|                   | Thickness (mm)    | 600 |   |
|                   | Concrete (MPa)    | 25  |   |
|                   | Concrete flyash % | 40% | 3 |
|                   | Rebar             | 20M | 2 |
| 1.2.4 Footing_PF4 |                   |     |   |
|                   | Length (m)        | 32  | e |
|                   | Width (m)         | 3.2 |   |
|                   | Thickness (mm)    | 950 |   |
|                   | Concrete (MPa)    | 25  |   |
|                   | Concrete flyash % | 40% | 3 |
|                   | Rebar             | 25M | 2 |
| 1.2.5 Footing_PF5 |                   |     |   |
|                   | Length (m)        | 12  | 1 |
|                   | Width (m)         | 2.4 |   |
|                   | Thickness (mm)    | 700 |   |
|                   | Concrete (MPa)    | 25  |   |
|                   | Concrete flyash % | 40% | 3 |
|                   | Rebar             | 25M | 2 |
| 1.2.6 Footing_PF6 |                   |     |   |
|                   | Length (m)        | 19  |   |
|                   | Width (m)         | 1   |   |
|                   | Thickness (mm)    | 350 |   |
|                   | Concrete (MPa)    | 25  |   |
|                   | Concrete flyash % | 40% | 3 |
|                   | Rebar             | 15M | 1 |
| 1.2.7 Footing_SF1 |                   |     |   |

|                    | Length (m)        | 107.046     | 107.05     |
|--------------------|-------------------|-------------|------------|
|                    | Width (m)         | 0.5         | 0.5        |
|                    | Thickness (mm)    | 300         | 300        |
|                    | Concrete (MPa)    | 25          | 30         |
|                    | Concrete flyash % | 40%         | 35%        |
|                    | Rebar             | 15M         | 15M        |
| 1.2.8 Footing_SF2  |                   |             |            |
|                    | Length (m)        | 87.43166667 | 87.4300000 |
|                    | Width (m)         | 0.6         | 0.6        |
|                    | Thickness (mm)    | 250         | 250        |
|                    | Concrete (MPa)    | 25          | 30         |
|                    | Concrete flyash % | 40%         | 35%        |
|                    | Rebar             | 15M         | 15M        |
| 1.2.9 Footing_SF3  |                   |             |            |
|                    | Length (m)        | 77.628      | 77.63      |
|                    | Width (m)         | 1           | 1          |
|                    | Thickness (mm)    | 350         | 350        |
|                    | Concrete (MPa)    | 25          | 30         |
|                    | Concrete flyash % | 40%         | 35%        |
|                    | Rebar             | 15M         | 15M        |
| 1.2.10 Footing_SF4 |                   |             |            |
|                    | Length (m)        | 83.10266667 | 83.10      |
|                    | Width (m)         | 1.5         | 1.5        |
|                    | Thickness (mm)    | 350         | 350        |
|                    | Concrete (MPa)    | 25          | 30         |
|                    | Concrete flyash % | 40%         | 35%        |
|                    | Rebar             | 15M         | 15M        |

| 0=                | Length (m)        | 44.0765     | 44 076 |
|-------------------|-------------------|-------------|--------|
|                   | Width (m)         | 11.0703     | 11.070 |
|                   |                   | 2           |        |
|                   | Thickness (mm)    | 350         | 35     |
|                   | Concrete (MPa)    | 25          | 3      |
|                   | Concrete flyash % | 40%         | 35     |
|                   | Rebar             | 15M & 25M   | 15     |
| 1.2.12 Footing_SF | 7                 |             |        |
|                   | Length (m)        | 37.53688889 | 37.5   |
|                   | Width (m)         | 2.7         | 2      |
|                   | Thickness (mm)    | 350         | 3      |
|                   | Concrete (MPa)    | 25          | :      |
|                   | Concrete flyash % | 40%         | 35     |
|                   | Rebar             | 15M & 25M   | 15     |
| 1.2.13 Footing_SF | 8                 |             |        |
|                   | Length (m)        | 16.95903505 | 16.9   |
|                   | Width (m)         | 2.197       | 2.1    |
|                   | Thickness (mm)    | 400         | 4      |
|                   | Concrete (MPa)    | 25          |        |
|                   | Concrete flyash % | 40%         | 35     |
|                   | Rebar             | 15M & 35M   | 15     |
| 1.2.14 Footing_SF | 9                 |             |        |
| U_                | Length (m)        | 37.1795     | 37.17  |
|                   | Width (m)         | 2           |        |
|                   | Thickness (mm)    | 300         | 3      |
|                   | Concrete (MPa)    | 25          | :      |
|                   |                   | ···         |        |

|                                        | ]        |    |                     | Rehar                             | 15M & 25M   | 15M   |
|----------------------------------------|----------|----|---------------------|-----------------------------------|-------------|-------|
| A21 Lowest<br>Floor<br>Constructio     | <u> </u> | 1  |                     | itebai                            | 1314 & 2314 | 13M   |
| n                                      | 1178     | m2 |                     |                                   |             |       |
|                                        |          |    | 1.1 Concrete Slab-o | on-Grade                          |             |       |
|                                        |          |    | 1.1.1 5             | SOG_125mm                         |             |       |
|                                        |          |    |                     | Length (m)                        | 10.00       | 10.00 |
|                                        |          |    |                     | Width (m)                         | 13.60       | 17.00 |
|                                        |          |    |                     | Thickness (mm)                    | 125         | 100   |
|                                        |          |    |                     | Concrete (MPa)                    | 25          | 30    |
|                                        |          |    |                     | Concrete flyash %                 | 40%         | 35%   |
|                                        |          |    | 1.1.2 \$            | SOG_200mm                         |             |       |
|                                        |          |    |                     | Length (m)                        | 33.60       | 33.60 |
|                                        |          |    |                     | Width (m)                         | 30.00       | 30.00 |
|                                        |          |    |                     | Thickness (mm)                    | 200         | 200   |
|                                        |          |    |                     | Concrete (MPa)                    | 25          | 30    |
|                                        |          |    |                     | Concrete flyash %                 | 40%         | 35%   |
| A22 Upper<br>Floor<br>Constructio<br>n | 4468.7   | m2 |                     |                                   |             |       |
|                                        |          |    | 3.1 Concrete Colun  | nns                               |             |       |
|                                        |          |    | 3.1.1               | Column_Concrete_Beam_N/A_Basement |             |       |
|                                        |          |    |                     | Number of Beams                   | 0           | 0     |
|                                        |          |    |                     | Number of Columns                 | 55          | 55    |
|                                        |          |    |                     | Floor to floor height<br>(m)      | 4.2         | 4.2   |
|                                        |          |    |                     | Bay sizes (m)                     | 9.29        | 9.29  |
|                                        |          |    |                     | Supported span (m)                | 9.29        | 9.29  |

|  |                     | Supported Area                      | 86.29 | 86.31 |  |
|--|---------------------|-------------------------------------|-------|-------|--|
|  |                     | Live load (kPa)                     | 4.8   | 4.8   |  |
|  | 3.1.2 Column Concre | te Beam Level1                      | -     |       |  |
|  |                     | Number of Beams                     | 16    | 16    |  |
|  |                     | Number of Columns                   | 34    | 34    |  |
|  |                     | Floor to floor height<br>(m)        | 5     | 5     |  |
|  |                     | Bay sizes (m)                       | 5.53  | 5.53  |  |
|  |                     | Supported span (m)                  | 5.53  | 5.53  |  |
|  |                     | Supported Area<br>(m2)              | 30.63 | 30.63 |  |
|  |                     | Live load (kPa)                     | 4.8   | 4.8   |  |
|  | 3.1.3 Column_Concre | 1.3 Column_Concrete_Beam_N/A_Level2 |       |       |  |
|  |                     | Number of Beams                     | 0     | 0     |  |
|  |                     | Number of Columns                   | 30    | 30    |  |
|  |                     | Floor to floor height<br>(m)        | 4.2   | 4.2   |  |
|  |                     | Bay sizes (m)                       | 6.95  | 6.95  |  |
|  |                     | Supported span (m)                  | 6.95  | 6.95  |  |
|  |                     | Supported Area<br>(m2)              | 48.34 | 48.34 |  |
|  |                     | Live load (kPa)                     | 3.6   | 3.6   |  |
|  | 3.1.4 Column_Concre | te_Beam_N/A_Level3                  |       |       |  |
|  |                     | Number of Beams                     | 0     | 0     |  |
|  |                     | Number of Columns                   | 38    | 38    |  |
|  |                     | Floor to floor height<br>(m)        | 4.2   | 4.2   |  |
|  |                     | Bay sizes (m)                       | 6.30  | 6.30  |  |
|  |                     | Supported span (m)                  | 6.30  | 6.30  |  |
|  |                     | Supported Area                      | 39.67 | 39.7  |  |

|           | (m2)                                    |                |       |
|-----------|-----------------------------------------|----------------|-------|
|           | Live load (kPa)                         | 3.6            | 3.6   |
|           | 3.1.5 Column_Concrete_Beam_N/A_Level4   |                |       |
|           | Number of Beams                         | 0              | 0     |
|           | Number of Columns                       | 38             | 38    |
|           | Floor to floor height<br>(m)            | 4.2            | 4.2   |
|           | Bay sizes (m)                           | 6.30           | 6.30  |
|           | Supported span (m)                      | 6.30           | 6.30  |
|           | Supported Area<br>(m2)                  | 39.67          | 39.7  |
|           | Live load (kPa)                         | 3.6            | 3.6   |
| 6.1 Steel |                                         |                |       |
|           | 6.1.1 Columns_HSS_350W(Total Sum) EXTRA | BASIC MATERIAL |       |
|           | Hollow Structural<br>Steel (tonnes)     | 23.33          | 23.33 |
| 3.2 Wood  | Columns                                 |                |       |
|           | 3.2.1 Column_GL_Wood_Level1             |                |       |
|           | Number of Beams                         | 0              | 0     |
|           | Number of Columns                       | 67             | 67    |
|           | Floor to floor height<br>(m)            | 5              | 5     |
|           | Bay sizes (m)                           | 5.53           | 5.53  |
|           | Supported span (m)                      | 5.53           | 5.53  |
|           | Supported Area<br>(m2)                  | 30.63          | 30.63 |
|           | Live load (kPa)                         | 4.80           | 4.8   |
|           | 3.2.2 Column_GL_Wood_Level2             |                |       |
|           | Number of Beams                         | 0              | 0     |
|           | Number of Columns                       | 34             | 34    |

|                                | Floor to floor height        | 4.2   | 4.2         |
|--------------------------------|------------------------------|-------|-------------|
|                                | (III)<br>Bay sizes (m)       | 6.95  | 4.2         |
|                                | Supported span (m)           | 6.95  | 6.95        |
|                                | Supported Area<br>(m2)       | 48.34 | 48.34       |
|                                | Live load (kPa)              | 3.6   | 3.6         |
| 3.2.3 Column_GL                | _Wood_Level3                 |       |             |
|                                | Number of Beams              | 0     | 0           |
|                                | Number of Columns            | 40    | 40          |
|                                | Floor to floor height<br>(m) | 4.2   | 4.2         |
|                                | Bay sizes (m)                | 6.30  | 6.30        |
|                                | Supported span (m)           | 6.30  | 6.30        |
|                                | Supported Area<br>(m2)       | 39.67 | 39.67       |
|                                | Live load (kPa)              | 3.6   | 3.6         |
| 3.2.4 Column_Wo                | ood_Level4                   |       |             |
|                                | Number of Beams              | 0     | 0           |
|                                | Number of Columns            | 40    | 40          |
|                                | Floor to floor height<br>(m) | 4.2   | 4.2         |
|                                | Bay sizes (m)                | 6.30  | 6.30        |
|                                | Supported span (m)           | 6.30  | 6.30        |
|                                | Supported Area<br>(m2)       | 39.67 | 39.67       |
|                                | Live load (kPa)              | 3.6   | 3.6         |
| 4.1 Insulated suspended slab f | floor                        |       |             |
| 4.1.1 Floor_Concr              | ete_Suspendedslab_193mm      |       |             |
|                                | Width(m)                     | 88    | 88.05128205 |
|                                | Span (m)                     | 9.75  | 9.75        |

|       | Concrete (Mpa)                      | 35                   | 35          |
|-------|-------------------------------------|----------------------|-------------|
|       | Concrete flyash %                   | 0.25                 | 0.25        |
|       | Live load (kPa)                     | 4.8                  | 4.80        |
|       |                                     |                      |             |
|       |                                     |                      |             |
| 4.1.2 | Floor_Wood_SuspendedSlab_89mm EXT   | 'RA BASIC MATERIAL   |             |
|       | Thickness (m)                       | 0.089                |             |
|       | Area (m2)                           | 3056                 |             |
|       | Volume (m3)                         | 271.984              | 271.984     |
|       | Live load (kPa)                     | 3.3                  |             |
|       |                                     |                      |             |
|       |                                     |                      |             |
|       |                                     |                      |             |
| 4.1.3 | Floor_Insulation_SuspendedSlab_25mm | EXTRA BASIC MATERIAL |             |
|       | Thickness(m)                        | 0.025                |             |
|       | Area(m2)                            | 3096                 | 3096        |
|       | Live load (kPa)                     | 3.3                  |             |
|       |                                     |                      |             |
|       |                                     |                      |             |
|       |                                     |                      |             |
|       |                                     |                      |             |
| 4.1.4 | Floor_Concrete_SuspendedSlab_100mm  | 1                    |             |
|       | Width(m)                            | 370.2769231          | 370.2769231 |
|       | Span (m)                            | 9.75                 | 9.75        |
|       | Concrete (Mpa)                      | 35                   | 35          |
|       | Concrete flyash %                   | 0.25                 | 0.25        |
|       | Live load (kPa)                     | 3.3                  | 3.30        |

| A23 Roof<br>Constructio |        |    |                            |                                 |             |        |
|-------------------------|--------|----|----------------------------|---------------------------------|-------------|--------|
| n                       | 708.00 | m2 |                            |                                 |             |        |
|                         |        |    | 5.1 Roof insulation        |                                 |             |        |
|                         |        |    | 5.1.1 Roof_ins             | sulation EXTRA BASIC MATERIAL   |             |        |
|                         |        |    |                            | Area (m2)                       | 718         | 718    |
|                         |        |    |                            | Thckness                        | 0.125       |        |
|                         |        |    |                            | thickness125=25x5 -<br>Area(m2) | 3590        |        |
|                         |        |    |                            | Live load (psf)                 | 1.3         |        |
|                         |        |    | 5.2 Cross laminated timber |                                 |             |        |
|                         |        |    | 5.2.1 Roof_Cro             | ossLaminatedTimber EXTRA BASIC  | MATERIAL    |        |
|                         |        |    |                            | Area (m2)                       | 708         |        |
|                         |        |    |                            | Thickness                       | 0.152       |        |
|                         |        |    |                            | Volume                          | 107.616     | 107.62 |
|                         |        |    |                            | Life load (kPa)                 | 1.3         |        |
|                         |        |    | 3.2 Wood Columns           |                                 |             |        |
|                         |        |    | 3.2.5 Column_              | _Wood_Level5                    |             |        |
|                         |        |    |                            | Number of Beams                 | 0           | 0      |
|                         |        |    |                            | Number of Columns               | 34          | 34     |
|                         |        |    |                            | Floor to floor height<br>(m)    | 4.2         | 4.2    |
|                         |        |    |                            | Bay sizes (m)                   | 7.23        | 7.23   |
|                         |        |    |                            | Supported span (m)              | 7.23        | 7.23   |
|                         |        |    |                            | Supported Area<br>(m2)          | 52.21       | 52.21  |
|                         |        |    |                            | Live load (kPa)                 | 3.6         | 3.6    |
|                         |        |    | 6.2 Wood                   |                                 |             |        |
|                         |        |    | 6.2.1 Columns              | s_GL_Wood(Total Sum) EXTRA BAS  | IC MATERIAL |        |
|                         |        |    |                            | Glulam Beams (m3)               | 17.03       | 17.03  |

| A31 Walls      |        |    |             |                      |                        |                                    |                    |
|----------------|--------|----|-------------|----------------------|------------------------|------------------------------------|--------------------|
| Below<br>Grade | 1953.7 | m2 |             |                      |                        |                                    |                    |
|                |        |    | 2.2 Concret | te Block Wall        |                        |                                    |                    |
|                |        |    |             | 2.2.1 Wall_E6.2_Con  | creteBlock_152mmSteel  | Stud                               |                    |
|                |        |    |             |                      | Length mm)             | 10760                              | 10760              |
|                |        |    |             |                      | Height (mm)            | 5000                               | 5000               |
|                |        |    |             |                      | Rebar                  | #15M                               | #15M               |
|                |        |    |             |                      | Sheathing Type         |                                    | -                  |
|                |        |    |             |                      | Stud Spacing           | -                                  | -                  |
|                |        |    |             |                      | Stud Weight            | -                                  | -                  |
|                |        |    |             |                      | Stud Thickness<br>(mm) | 39 x 152                           | 39 x 152           |
|                |        |    |             |                      | Category               | Insulation<br>Mineral Wool Blanket | Insulation         |
|                |        |    |             |                      | Material               | Insulation                         |                    |
|                |        |    |             |                      | Thickness              | 150mm                              |                    |
|                |        |    |             |                      | Category               | Vapour Barrier                     | Vapour Barrier     |
|                |        |    |             |                      | Material               | Vapour Retarder                    | Polyethylene 6 mil |
|                |        |    |             |                      | Thickness              | -                                  | -                  |
|                |        |    |             |                      | Category               | Gypsum Board                       | Gypsum Board       |
|                |        |    |             |                      | Material               | Gypsum Board, GWB                  |                    |
|                |        |    |             | Envelope             | Thickness              | 16mm                               |                    |
|                |        |    | 2.1 Cast In | Place                |                        |                                    |                    |
|                |        |    |             | 2.1.1 Wall_Cast-in-P | lace_W1_200mm          | -                                  |                    |
|                |        |    |             |                      | Length (mm)            | 10687                              | 10687              |
|                |        |    |             |                      | Height (mm)            | 4200                               | 4200               |
|                |        |    |             |                      | Thickness (mm)         | 200                                | 200                |
|                |        |    |             | Envelope             | Concrete (MPa)         | 25                                 | 30                 |

|                      | Concrete flyash % | 40                              | 35                   |
|----------------------|-------------------|---------------------------------|----------------------|
|                      | je i je je je     | #15M Vert, #15M                 |                      |
|                      | Rebar             | Horiz                           | #15M                 |
|                      | Category          | Insulation                      | Insulation           |
|                      | Material          | Rigid Board Insulation<br>(R20) | Polystyrene expanded |
|                      | Thickness (mm)    | 50                              | 50                   |
|                      | Category          | Vapour Barrier<br>Fluid Applied | Vapour Barrier       |
|                      | Material          | Waterproofing                   | Polyethylene 6 mil   |
|                      | Thickness         | -                               | -                    |
| 2.1.2 Wall_Cast-in-P | Place_W2_250mm    |                                 |                      |
|                      | Length (mm)       | 76980                           | 96225                |
|                      | Height (mm)       | 4200                            | 4200                 |
|                      | Thickness (mm)    | 250                             | 200                  |
|                      | Concrete (MPa)    | 25                              | 30                   |
|                      | Concrete flyash % | 40                              | 35                   |
|                      | Rebar             | #15M                            | #15M                 |
|                      | Category          | Insulation                      | Insulation           |
|                      | Material          | Rigid Board Insulation<br>(R20) | Polystyrene expanded |
|                      | Thickness (mm)    | 50                              | 50                   |
|                      | Category          | Vapour Barrier<br>Fluid Applied | Vapour Barrier       |
|                      | Material          | Waterproofing                   | Polyethylene 6 mil   |
| Envelope             | Thickness         | -                               | -                    |
| 2.1.3 Wall_Cast-in-P | Place_W3_300mm    | 1                               |                      |
|                      | Length (mm)       | 120247                          | 120247               |
|                      | Height (mm)       | 4200                            | 4200                 |
| Envelope             | Thickness (mm)    | 300                             | 300                  |

|  |                       | Concrete (MPa)    | 25                             | 30                   |
|--|-----------------------|-------------------|--------------------------------|----------------------|
|  |                       | Concrete (Mra)    | 40                             | 30                   |
|  |                       | Concrete nyash %  | 40<br>#25M Vort #15M           | 35                   |
|  |                       | Rebar             | Horiz                          | #20M                 |
|  |                       | Category          | Insulation                     | Insulation           |
|  |                       |                   | <b>Rigid Board Insulation</b>  |                      |
|  |                       | Material          | (R20)                          | Polystyrene expanded |
|  |                       | Thickness (mm)    | 50                             | 50                   |
|  |                       | Category          | Vapour Barrier                 | Vapour Barrier       |
|  |                       | Material          | Waterproofing                  | Polyethylene 6 mil   |
|  |                       | Thickness         | -                              | -                    |
|  | 2.1.4 Wall_Cast-in-Pl | lace_W5_300mm     |                                |                      |
|  |                       | Length (mm)       | 128089                         | 128089               |
|  |                       | Height (mm)       | 4200                           | 4200                 |
|  |                       | Thickness (mm)    | 300                            | 300                  |
|  |                       | Concrete (MPa)    | 25                             | 30                   |
|  |                       | Concrete flyash % | 40                             | 35                   |
|  |                       |                   | #15M Vert, #15M                |                      |
|  |                       | Rebar             | Horiz                          | #15M                 |
|  |                       | Category          | Insulation                     | Insulation           |
|  |                       | Material          | Rigid Board Insulation (R20)   | Polystyrene expanded |
|  |                       | Thickness (mm)    | 50                             | 50                   |
|  |                       | Category          | Vapour Barrier                 | Vapour Barrier       |
|  |                       | Material          | Fluid Applied<br>Waterproofing | Polyethylene 6 mil   |
|  | Envelope              | Thickness         | -                              | -                    |
|  | 2.1.5 Wall_Cast-in-P  | lace_W6_350mm     |                                |                      |
|  |                       | Length (mm)       | 16654                          | 19430                |
|  | Envelope              | Height (mm)       | 4200                           | 4200                 |

| 1                      |                   | -                                    |                      |
|------------------------|-------------------|--------------------------------------|----------------------|
|                        | Thickness (mm)    | 350                                  | 300                  |
|                        | Concrete (MPa)    | 25                                   | 30                   |
|                        | Concrete flyash % | 40                                   | 35                   |
|                        |                   | #30M/20M Vert, #15M                  |                      |
|                        | Rebar             | Horiz                                | #20M                 |
|                        | Category          | Insulation<br>Rigid Board Insulation | Insulation           |
|                        | Material          | (R20)                                | Polystyrene expanded |
|                        | Thickness (mm)    | 50                                   | 50                   |
|                        | Category          | Vapour Barrier<br>Fluid Applied      | Vapour Barrier       |
|                        | Material          | Waterproofing                        | Polyethylene 6 mil   |
|                        | Thickness         | -                                    | -                    |
| 2.1.6 Wall_Cast-in-Pla | ace_W7_300mm      |                                      |                      |
|                        | Length (mm)       | 23680                                | 23680                |
|                        | Height (mm)       | 4200                                 | 4200                 |
|                        | Thickness (mm)    | 300                                  | 300                  |
|                        | Concrete (MPa)    | 25                                   | 30                   |
|                        | Concrete flyash % | 40                                   | 35                   |
|                        | Rebar             | #25M Vert, #15M<br>Horiz             | #20M                 |
|                        | Category          | Insulation                           | Insulation           |
|                        | Material          | Rigid Board Insulation<br>(R20)      | Polystyrene expanded |
|                        | Thickness (mm)    | 50                                   | 50                   |
|                        | Category          | Vapour Barrier<br>Fluid Applied      | Vapour Barrier       |
|                        | Material          | Waterproofing                        | Polyethylene 6 mil   |
| Envelope               | Thickness         | -                                    | -                    |
| 2.1.7 Wall_Cast-in-Pla | ace_W8_300mm      |                                      |                      |
| Envelope               | Length (mm)       | 23100                                | 23100                |
|                        |                   |                                      |                      |

|                       | Height (mm)        | 4200                            | 4200                 |
|-----------------------|--------------------|---------------------------------|----------------------|
|                       | Thickness (mm)     | 300                             | 300                  |
|                       | Concrete (MPa)     | 25                              | 30                   |
|                       | Concrete flyash %  | 40                              | 35                   |
|                       | Rebar              | #15M Vert, #15M<br>Horiz        | #15M                 |
|                       | Category           | Insulation                      | Insulation           |
|                       | Material           | Rigid Board Insulation<br>(R20) | Polystyrene expanded |
|                       | Thickness (mm)     | 50                              | 50                   |
|                       | Category           | Vapour Barrier<br>Fluid Applied | Vapour Barrier       |
|                       | Material           | Waterproofing                   | Polyethylene 6 mil   |
|                       | Thickness          | -                               | -                    |
| 2.1.8 Wall_Cast-in-Pl | ace_W9_300mm_4200m | mHeight                         |                      |
|                       | Length (mm)        | 14190                           | 14190                |
|                       | Height (mm)        | 4200                            | 4200                 |
|                       | Thickness (mm)     | 300                             | 300                  |
|                       | Concrete (MPa)     | 25                              | 30                   |
|                       | Concrete flyash %  | 40                              | 35                   |
|                       | Rebar              | #15M                            | #15M                 |
|                       | Category           | Insulation                      | Insulation           |
|                       | Material           | (R20)                           | Polystyrene expanded |
|                       | Thickness (mm)     | 50                              | 50                   |
|                       | Category           | Vapour Barrier<br>Fluid Applied | Vapour Barrier       |
|                       | Material           | Waterproofing                   | Polyethylene 6 mil   |
| Envelope              | Thickness          | -                               | -                    |
| 2.1.9 Wall_Cast-in-Pl | ace_W9_300mm_5000m | mHeight                         |                      |

|           |        |    |             |                      | Length (mm)            | 14040                           | 14040                |
|-----------|--------|----|-------------|----------------------|------------------------|---------------------------------|----------------------|
|           |        |    |             |                      | Height (mm)            | 5000                            | 5000                 |
|           |        |    |             |                      | Thickness (mm)         | 300                             | 300                  |
|           |        |    |             |                      | Concrete (MPa)         | 25                              | 30                   |
|           |        |    |             |                      | Concrete flyash %      | 40                              | 35                   |
|           |        |    |             |                      | Rebar                  | #15M                            | #15M                 |
|           |        |    |             |                      | Category               | Insulation                      | Insulation           |
|           |        |    |             |                      | Material               | Rigid Board Insulation<br>(R20) | Polystyrene expanded |
|           |        |    |             |                      | Thickness (mm)         | 50                              | 50                   |
|           |        |    |             |                      | Category               | Vapour Barrier                  | Vapour Barrier       |
|           |        |    |             |                      | Material               | Fluid Applied<br>Waterproofing  | Polyethylene 6 mil   |
|           |        |    |             | Envelope             | Thickness              | -                               | -                    |
| A32 Walls |        |    |             |                      |                        |                                 |                      |
| Grade     | 6221.9 | m2 |             |                      |                        |                                 |                      |
|           |        |    | 2.3 Curtain | Wall                 |                        |                                 |                      |
|           |        |    |             | 2.3.1 Wall_CurtainWa | all_AllGlazing_12800mm | Height                          |                      |
|           |        |    |             |                      | Length (mm)            | 37560                           | 37560                |
|           |        |    |             |                      | Height (mm)            | 12800                           | 12800                |
|           |        |    |             |                      | Percent Viewable       | 100                             | 100                  |
|           |        |    |             |                      | Percent Spandrel       | 100                             | 100                  |
|           |        |    |             |                      | Panel                  | 0                               | 0                    |
|           |        |    |             |                      | Thickness of           | _                               | _                    |
|           |        |    |             |                      | Spandrel Type          |                                 |                      |
|           |        |    |             |                      | (Metal/Glass)          | Opaque Glass                    | Opaque Glass         |
|           |        |    |             |                      | Number of Windows      | 27                              | 24                   |
|           |        |    |             | Window Opening       | Total Window Area (m2) | 39                              | 39                   |

|  |                                                  | Frame Type                             | Aluminum Frame     | Aluminum Frame     |  |  |
|--|--------------------------------------------------|----------------------------------------|--------------------|--------------------|--|--|
|  |                                                  | Glazing Type                           | Low E Glazing 2SSG | Low E T in Glazing |  |  |
|  |                                                  | Operable/Fixed                         | Operable           | Operable           |  |  |
|  | 2.3.2 Wall_CurtainWall_AllGlazing_14400mm Height |                                        |                    |                    |  |  |
|  |                                                  | Length (mm)                            | 11540              | 11540              |  |  |
|  |                                                  | Height (mm)                            | 14400              | 14400              |  |  |
|  |                                                  | Percent Viewable<br>Glazing            | 100                | 100                |  |  |
|  |                                                  | Percent Spandrel<br>Panel              | 0                  | 0                  |  |  |
|  |                                                  | Thickness of<br>Insulation (mm)        | -                  | -                  |  |  |
|  |                                                  | Spandrel Type<br>(Metal/Glass)         | Opaque Glass       | Opaque Glass       |  |  |
|  |                                                  | Number of Windows<br>Total Window Area | 12                 | 12                 |  |  |
|  |                                                  | (m2)                                   | 17                 | 17                 |  |  |
|  |                                                  | Frame Type                             | Aluminum Frame     | Aluminum Frame     |  |  |
|  |                                                  | Glazing Type                           | Low E Glazing 2SSG | Low E T in Glazing |  |  |
|  | Window Opening                                   | Operable/Fixed                         | Operable           | Operable           |  |  |
|  | 2.3.3 Wall_CurtainWall_AllGlazing_17700mm Height |                                        |                    |                    |  |  |
|  |                                                  | Length (mm)                            | 5570               | 5570               |  |  |
|  |                                                  | Height (mm)                            | 17700              | 17700              |  |  |
|  |                                                  | Percent Viewable<br>Glazing            | 100                | 100                |  |  |
|  |                                                  | Percent Spandrel<br>Panel              | 0                  | 0                  |  |  |
|  |                                                  | Thickness of<br>Insulation (mm)        | -                  | <u> </u>           |  |  |
|  |                                                  | Spandrel Type<br>(Metal/Glass)         | Opaque Glass       | Opaque Glass       |  |  |
|  | 2.3.4 Wall_CurtainWa                             | all_Opaque Glass Spandre               | el_5090mm Height   |                    |  |  |

|  |                                                            | Length (mm)                     | 147630               | 147630                                 |  |  |
|--|------------------------------------------------------------|---------------------------------|----------------------|----------------------------------------|--|--|
|  |                                                            | Height (mm)                     | 5090                 | 5090                                   |  |  |
|  |                                                            | Percent Viewable<br>Glazing     | 79                   | 79                                     |  |  |
|  |                                                            | Percent Spandrel<br>Panel       | 21                   | 21                                     |  |  |
|  |                                                            | Thickness of<br>Insulation (mm) | 140                  | 140                                    |  |  |
|  |                                                            | Spandrel Type<br>(Metal/Glass)  | Opaque Glass         | Opaque Glass                           |  |  |
|  |                                                            | Number of Doors                 | 16                   | 16                                     |  |  |
|  | Door Opening                                               | Door Type                       | Aluminum Glazed Door | Aluminum Exterior<br>Door, 80% glazing |  |  |
|  | 2.3.5 Wall_CurtainWall_Opaque Glass Spandrel_4100mm Height |                                 |                      |                                        |  |  |
|  |                                                            | Length (mm)                     | 171510               | 171510                                 |  |  |
|  |                                                            | Height (mm)                     | 4100                 | 4100                                   |  |  |
|  |                                                            | Percent Viewable<br>Glazing     | 61                   | 61                                     |  |  |
|  |                                                            | Percent Spandrel<br>Panel       | 39                   | 39                                     |  |  |
|  |                                                            | Thickness of<br>Insulation (mm) | 140                  | 140                                    |  |  |
|  |                                                            | Spandrel Type<br>(Metal/Glass)  | Opaque Glass         | Opaque Glass                           |  |  |
|  |                                                            | Number of Doors                 | 15                   | 15<br>Aluminum Exterior                |  |  |
|  | Door Opening                                               | Door Type                       | Aluminum Glazed Door | Door, 80% glazing                      |  |  |
|  | 2.3.6 Wall_CurtainWall_Opaque Glass Spandrel_4410mm Height |                                 |                      |                                        |  |  |
|  |                                                            | Length (mm)                     | 191496               | 191496                                 |  |  |
|  |                                                            | Height (mm)                     | 4410                 | 4410                                   |  |  |
|  |                                                            | Percent Viewable<br>Glazing     | 54                   | 54                                     |  |  |
|  |                                                            | Percent Spandrel<br>Panel       | 46                   | 46                                     |  |  |
|                   |                         | Thickness of<br>Insulation (mm)                            | 140                  | 140                                    |  |  |  |  |
|-------------------|-------------------------|------------------------------------------------------------|----------------------|----------------------------------------|--|--|--|--|
|                   |                         | Spandrel Type<br>(Metal/Glass)                             | Opaque Glass         | Opaque Glass                           |  |  |  |  |
|                   | Window Opening          | Number of Windows<br>Total Window Area                     | 28                   | 28                                     |  |  |  |  |
|                   |                         | (m2)                                                       | 40                   | 40                                     |  |  |  |  |
|                   |                         | Frame Type                                                 | Aluminum Frame       | Aluminum Frame                         |  |  |  |  |
|                   |                         | Glazing Type                                               | Low E Glazing 2SSG   | Low E T in Glazing                     |  |  |  |  |
|                   |                         | Operable/Fixed                                             | Operable             | Operable                               |  |  |  |  |
|                   | Door Opening            | Number of Doors                                            | 7                    | 7                                      |  |  |  |  |
|                   |                         | Door Type                                                  | Aluminum Glazed Door | Aluminum Exterior<br>Door, 80% glazing |  |  |  |  |
|                   | 2.3.7 Wall_CurtainW     | 2.3.7 Wall_CurtainWall_Opaque Glass Spandrel_2390mm Height |                      |                                        |  |  |  |  |
|                   |                         | Length (mm)                                                | 647574               | 647574                                 |  |  |  |  |
|                   |                         | Height (mm)                                                | 2390                 | 2390                                   |  |  |  |  |
|                   |                         | Percent Viewable<br>Glazing                                | 73                   | 73                                     |  |  |  |  |
|                   |                         | Percent Spandrel<br>Panel                                  | 27                   | 27                                     |  |  |  |  |
|                   |                         | Thickness of<br>Insulation (mm)                            | 140                  | 140                                    |  |  |  |  |
|                   |                         | Spandrel Type<br>(Metal/Glass)                             | Opaque Glass         | Opaque Glass                           |  |  |  |  |
|                   |                         | Number of Windows<br>Total Window Area                     | 196                  | 196                                    |  |  |  |  |
|                   |                         | (m2)                                                       | 294                  | 294                                    |  |  |  |  |
|                   |                         | Frame Type                                                 | Aluminum Frame       | Aluminum Frame                         |  |  |  |  |
|                   | Window<br>Opening Strip | Glazing Type                                               | Low E Glazing 2SSG   | Low E T in Glazing                     |  |  |  |  |
|                   | window                  | Operable/Fixed                                             | Operable             | Operable                               |  |  |  |  |
| 2.4 Steel<br>Stud |                         |                                                            |                      |                                        |  |  |  |  |
|                   | 2.4.19 Wall E3_152m     | m_SteelStud_12600mm                                        | Height               |                                        |  |  |  |  |

|  |  |                     | Length (mm)            | 12830                                  | 12830                |
|--|--|---------------------|------------------------|----------------------------------------|----------------------|
|  |  |                     | Height (mm)            | 12600                                  | 12600                |
|  |  |                     | Sheathing Type         | Exterior Sheathing                     | OSB                  |
|  |  |                     | Stud Spacing           | -                                      | 400 o.c.             |
|  |  |                     | Stud Weight            | _                                      | 20Ga                 |
|  |  |                     | Stud Thickness<br>(mm) | 39 x 152                               | 39 x 152             |
|  |  |                     | Category               | Cladding                               | Cladding             |
|  |  |                     | Material               | Brick Veneer Masonry                   | Brick-               |
|  |  |                     | Thickness              | 90                                     | 25.381mm-507.614mm   |
|  |  |                     | Category               | Insulation                             | Insulation           |
|  |  |                     | Material               | Mineral Wool Board<br>Insulation (R20) | Rockwool Batt        |
|  |  |                     | Thickness              | 70.00                                  | 70.00                |
|  |  |                     | Category               | Vapour Barrier                         | Vapour Barrier       |
|  |  |                     | Material               | Air Vapour Moisture<br>Barrier         | Polyethylene 6mil    |
|  |  |                     | Thickness              | -                                      |                      |
|  |  |                     | Category               | Gypsum Board                           | Gypsum Board         |
|  |  |                     | Material               | Gypsum Board, GWB                      | Gypsum Regular 5/8'' |
|  |  | Envelope            | Thickness              | 16mm                                   | 25.381mm-507.614mm   |
|  |  | 2.4.20 Wall E3_152r | nm_SteelStud_1810mmF   | leight                                 |                      |
|  |  |                     | Length (mm)            | 393570                                 | 393570               |
|  |  |                     | Height (mm)            | 1810                                   | 1810                 |
|  |  |                     | Sheathing Type         | Exterior Sheathing                     | OSB                  |
|  |  |                     | Stud Spacing           |                                        | 400 o.c.             |
|  |  |                     | Stud Weight            | -                                      | 20Ga                 |
|  |  |                     | Stud Thickness<br>(mm) | 39 x 152                               | 39 x 92              |
|  |  | Envelope            | Category               | Cladding                               | Cladding             |

|  | -                   | -                      |                                        |                      |
|--|---------------------|------------------------|----------------------------------------|----------------------|
|  |                     | Material               | Brick Veneer Masonry                   | Brick-               |
|  |                     | Thickness (mm)         | 90                                     | 25.381mm-507.614mm   |
|  |                     | Category               | Insulation                             | Insulation           |
|  |                     | Material               | Mineral Wool Board<br>Insulation (R20) | Rockwool Batt        |
|  |                     | Thickness              | 70.00                                  | 70.00                |
|  |                     | Category               | Vapour Barrier                         | Vapour Barrier       |
|  |                     | Material               | Barrier                                | Polyethylene 6mil    |
|  |                     | Thickness              | -                                      |                      |
|  |                     | Category               | Gypsum Board                           | Gypsum Board         |
|  |                     | Material               | Gypsum Board, GWB                      | Gypsum Regular 5/8'' |
|  |                     | Thickness              | 16mm                                   | 25.381mm-507.614mm   |
|  | 2.4.21 Wall E3_152m | m_SteelStud_910mmHe    | ight                                   |                      |
|  |                     | Length (mm)            | 11352                                  | 11352                |
|  |                     | Height (mm)            | 910                                    | 910                  |
|  |                     | Sheathing Type         | Exterior Sheathing                     | OSB                  |
|  |                     | Stud Spacing           | -                                      | 400 o.c.             |
|  |                     | Stud Weight            | -                                      | 20Ga                 |
|  |                     | Stud Thickness<br>(mm) | 39 x 152                               | 39 x 92              |
|  |                     | Category               | Cladding                               | Cladding             |
|  |                     | Material               | Brick Veneer Masonry                   | Brick-               |
|  |                     | Thickness (mm)         | 90                                     | 25.381mm-507.614mm   |
|  |                     | Category               | Insulation                             | Insulation           |
|  |                     | Material               | Mineral Wool Board<br>Insulation (R20) | Rockwool Batt        |
|  |                     | Thickness              | 70.00                                  | 70.00                |
|  |                     | Category               | Vapour Barrier                         | Vapour Barrier       |
|  | Envelope            | Material               | Air Vapour Moisture                    | Polyethylene 6mil    |

|  |                     |                     | Barrier             |                      |
|--|---------------------|---------------------|---------------------|----------------------|
|  |                     | Thickness           | -                   |                      |
|  |                     | Category            | Gypsum Board        | Gypsum Board         |
|  |                     | Material            | Gypsum Board, GWB   | Gypsum Regular 5/8"  |
|  |                     | Thickness           | 16mm                | 25.381mm-507.614mm   |
|  | 2.4.22 Wall E4_152m | m_SteelStud_12600mm | Height              |                      |
|  |                     | Length (mm)         | 3606                | 3606                 |
|  |                     | Height (mm)         | 12600               | 12600                |
|  |                     | Sheathing Type      | Exterior Sheathing  | OSB                  |
|  |                     | Stud Spacing        | -                   | 400 o.c.             |
|  |                     | Stud Weight         |                     | 20Ga                 |
|  |                     | Stud Thickness      | 20 y 152            | 20 v 02              |
|  |                     | (IIIII)             | Cladding            | Cladding             |
|  |                     | Category            | Composite Cement    | Clauding             |
|  |                     | Material            | Panels              | Fiber Cement Siding  |
|  |                     | Thickness (mm)      | 25                  | 25.381mm-507.614mm   |
|  |                     | Category            | Insulation          | Insulation           |
|  |                     | Material            | Mineral Wool Board  | Rockwool Batt        |
|  |                     | Thickness           | 70.00               | 70.00                |
|  |                     | Category            | Vanour Barrier      | Vanour Barrier       |
|  |                     | Category            | Air Vapour Moisture | vapour barrier       |
|  |                     | Material            | Barrier             | Polyethylene 6mil    |
|  |                     | Thickness           | -                   |                      |
|  |                     | Category            | Gypsum Board        | Gypsum Board         |
|  |                     | Material            | Gypsum Board, GWB   | Gypsum Regular 5/8'' |
|  | Envelope            | Thickness           | 16mm                | 25.381mm-507.614mm   |
|  | 2.4.23 Wall E4_152m | m_SteelStud_1810mmH | eight               |                      |
|  | Envelope            | Length (mm)         | 386616              | 386616               |

|                   |        |    |                        |                      | Height (mm)           | 1810                                   | 1810                 |
|-------------------|--------|----|------------------------|----------------------|-----------------------|----------------------------------------|----------------------|
|                   |        |    |                        |                      | Sheathing Type        | Exterior Sheathing                     | OSB                  |
|                   |        |    |                        |                      | Stud Spacing          | -                                      | 400 o.c.             |
|                   |        |    |                        |                      | Stud Weight           | _                                      | 20Ga                 |
|                   |        |    |                        |                      | Stud Thickness        |                                        |                      |
|                   |        |    |                        |                      | (mm)                  | 39 x 152                               | 39 x 92              |
|                   |        |    |                        |                      | Category              | Cladding<br>Composite Cement           | Cladding             |
|                   |        |    |                        |                      | Material              | Panels                                 | Fiber Cement Siding  |
|                   |        |    |                        |                      | Thickness (mm)        | 25                                     | 25.381mm-507.614mm   |
|                   |        |    |                        |                      | Category              | Insulation                             | Insulation           |
|                   |        |    |                        |                      | Material              | Mineral Wool Board<br>Insulation (R20) | Rockwool Batt        |
|                   |        |    |                        |                      | Thickness (mm)        | 70.00                                  | 70.00                |
|                   |        |    |                        |                      | Category              | Vapour Barrier                         | Vapour Barrier       |
|                   |        |    |                        |                      |                       | Air Vapour Moisture                    |                      |
|                   |        |    |                        |                      | Material              | Barrier                                | Polyethylene 6mil    |
|                   |        |    |                        |                      | Thickness             | -                                      |                      |
|                   |        |    |                        |                      | Category              | Gypsum Board                           | Gypsum Board         |
|                   |        |    |                        |                      | Material              | Gypsum Board, GWB                      | Gypsum Regular 5/8'' |
|                   |        |    |                        |                      | Thickness             | 16mm                                   | 25.381mm-507.614mm   |
| B11<br>Partitions | 9863.1 | m2 |                        |                      |                       |                                        |                      |
|                   |        |    | 2.3<br>Curtain<br>Wall |                      |                       |                                        |                      |
|                   |        |    |                        | 2.3.8 Curtain_Wall_I | nterior_4786mm_Height | t                                      |                      |
|                   |        |    |                        |                      | Length (mm)           | 27920                                  | 27920                |
|                   |        |    |                        |                      | Height (mm)           | 4786                                   | 4786                 |
|                   |        |    |                        |                      | Percent Viewable      | 100                                    | 100                  |
|                   |        |    |                        |                      | Giazing               | 100                                    | 100                  |
| 1                 |        | 1  | 1                      | Door Upening         | Percent Spandrel      | 0                                      | 0                    |

|  |              |                      | Panel                           |                      |                                        |
|--|--------------|----------------------|---------------------------------|----------------------|----------------------------------------|
|  |              |                      | Thickness of                    |                      |                                        |
|  |              |                      | Insulation (mm)                 | -                    | -                                      |
|  |              |                      | (Metal/Glass)                   | -                    | -                                      |
|  |              |                      | Number of Doors                 | 7                    | 7                                      |
|  |              |                      | Door Type                       | Aluminum Glazed Door | Aluminum Exterior<br>Door, 80% glazing |
|  |              | 2.3.9 Curtain Wall I | nterior 2700mm Height           |                      | ,,                                     |
|  |              |                      | Length (mm)                     | 223330               | 223330                                 |
|  |              |                      | Height (mm)                     | 2700                 | 2700                                   |
|  |              |                      | Percent Viewable<br>Glazing     | 100                  | 100                                    |
|  |              |                      | Percent Spandrel<br>Panel       | 0                    | 0                                      |
|  |              |                      | Thickness of<br>Insulation (mm) |                      | -                                      |
|  |              |                      | Spandrel Type<br>(Metal/Glass)  |                      | -                                      |
|  |              |                      | Number of Doors                 | 35                   | 35                                     |
|  |              | Door Opening         | Door Type                       | Solid Core Wood Door | Solid Wood Door                        |
|  | 2.4 Steel St | ud                   |                                 |                      |                                        |
|  |              | 2.4.1 Wall 1.1_92mm  | n_SteelStud                     |                      |                                        |
|  |              |                      | Length (mm)                     | 360100               | 360100                                 |
|  |              |                      | Height (mm)                     | 2700                 | 2700                                   |
|  |              |                      | Sheathing Type                  | None                 | None                                   |
|  |              |                      | Stud Spacing                    | -                    | 400 o.c.                               |
|  |              |                      | Stud Weight                     | -                    | 25Ga                                   |
|  |              |                      | Stud Thickness<br>(mm)          | 39 x 92              | 39 x 92                                |
|  |              | Envelope             | Category                        | Gypsum Board         | Gypsum Board<br>Gypsum Fire Rated Type |
|  |              |                      | Material                        | Type X Gypsum Board  | X 5/8"                                 |

| <br>- |  |                             |                        |                     |                                        |
|-------|--|-----------------------------|------------------------|---------------------|----------------------------------------|
|       |  |                             | Thickness              | 16mm                | 25.381mm-507.614mm                     |
|       |  |                             | Category               | Insulation          | Insulation                             |
|       |  |                             | Material               | Acustic Insulation  | Fiberglass Balt                        |
|       |  |                             | Thickness              | 89mm                | 89mm                                   |
|       |  |                             | Category               | Gypsum Board        | Gypsum Board                           |
|       |  |                             | Material               | Type X Gypsum Board | X 5/8                                  |
|       |  |                             | Thickness              | 16mm                | 25.381mm-507.614mm                     |
|       |  |                             | Category               | Paint               | Paint                                  |
|       |  |                             | Material               | -                   | Latex Water Based                      |
|       |  | Door Opening_Metal<br>Doors | Number of Doors        | 87                  | 87                                     |
|       |  |                             | Door Type              | Hollow Metal Door   | Steel Interior Door                    |
|       |  | 2.4.2 Wall 1.1_92mm         | SteelStud2             |                     |                                        |
|       |  |                             | Length (mm)            | 771481              | 771481                                 |
|       |  |                             | Height (mm)            | 2700                | 2700                                   |
|       |  |                             | Sheathing Type         | None                | None                                   |
|       |  |                             | Stud Spacing           |                     | 400 o.c.                               |
|       |  |                             | Stud Weight            |                     | 25Ga                                   |
|       |  |                             | Stud Thickness<br>(mm) | 39 x 92             | 39 x 92                                |
|       |  | Envelope                    | Category               | Gypsum Board        | Gypsum Board                           |
|       |  |                             | Material               | Type X Gypsum Board | Gypsum Fire Rated Type<br>X 5/8"       |
|       |  |                             | Thickness              | 16mm                | 25.381mm-507.614mm                     |
|       |  |                             | Category               | Insulation          | Insulation                             |
|       |  |                             | Material               | Acustic Insulation  | Fiberglass Balt                        |
|       |  |                             | Thickness              | 89mm                | 89mm                                   |
|       |  |                             | Category               | Gypsum Board        | Gypsum Board<br>Gypsum Fire Rated Type |
|       |  |                             | Material               | Type X Gypsum Board | X 5/8"                                 |

| ] |                     | Thickness              | 16mm                 | 25 381mm-507 614mm                |
|---|---------------------|------------------------|----------------------|-----------------------------------|
|   |                     |                        | Paint                | Paint                             |
|   |                     | Material               | -                    | Latex Water Based                 |
|   | Door                |                        |                      |                                   |
|   | Opening_Wood        |                        |                      |                                   |
|   | Doors               | Number of Doors        | 220                  | 220                               |
|   |                     | Door Type              | Solid Core Wood Door | Solid Wood Door                   |
|   | 2.4.3 Wall 1.1_152m | m_SteelStud            | 1                    | Γ                                 |
|   |                     | Length (mm)            | 97289                | 97289                             |
|   |                     | Height (mm)            | 2700                 | 2700                              |
|   |                     | Sheathing Type         | None                 | None                              |
|   |                     | Stud Spacing           | -                    | 400 o.c.                          |
|   |                     | Stud Weight            | -                    | 25Ga                              |
|   |                     | Stud Thickness<br>(mm) | 39 x 152             | 39 x 152                          |
|   | Envelope            | Category               | Gypsum Board         | Gypsum Board                      |
|   |                     |                        |                      | Gypsum Fire Rated Type            |
|   |                     | Material               | Type X Gypsum Board  | X 5/8''                           |
|   |                     | Thickness              | 16mm                 | 25.381mm-507.614mm                |
|   |                     | Category               | Insulation           | Insulation                        |
|   |                     | Material               | Acustic Insulation   | Fiberglass Balt                   |
|   |                     | Thickness              | 89mm                 | 89mm                              |
|   |                     | Category               | Gypsum Board         | Gypsum Board                      |
|   |                     | Material               | Type X Gypsum Board  | Gypsum Fire Rated Type<br>X 5/8'' |
|   |                     | Thickness              | 16mm                 | 25 381mm-507 614mm                |
|   |                     | Catagory               | Daint                | Doint                             |
|   |                     | Matarial               | r dilit              | Faint<br>Latay Watay Bagad        |
|   |                     | Material               | -                    | Latex water based                 |
|   | Door Opening        | Number of Doors        | 20                   | 20                                |
|   |                     | Door Type              | Solid Core Wood Door | Solid Wood Door                   |
|   | 2.4.4 Wall 2_152mm  | _SteelStud_ At Washroo | ms                   |                                   |

| <br> |                 |                        | 1                                     |                                   |
|------|-----------------|------------------------|---------------------------------------|-----------------------------------|
|      |                 | Length (mm)            | 39142                                 | 39142                             |
|      |                 | Height (mm)            | 2700                                  | 2700                              |
|      |                 | Sheathing Type         | None                                  | None                              |
|      |                 | Stud Spacing           | -                                     | 400 o.c.                          |
|      |                 | Stud Weight            | _                                     | 25Ga                              |
|      |                 | Stud Thickness         |                                       |                                   |
|      |                 | (mm)                   | 39 x 152                              | 39 x 152                          |
|      | Envelope        | Category               | Gypsum Board                          | Gypsum Board                      |
|      |                 | Material               | Glass Mat Gypsum Tile<br>Backer Board | Gypsum Moisture<br>Resistant 5/8" |
|      |                 | Thickness              | 16mm                                  | 25 381mm-507 614mm                |
|      |                 | Category               | Insulation                            | Insulation                        |
|      |                 | Material               | Acustic Insulation                    | Fiberglass Balt                   |
|      |                 | Thickness              | 150mm                                 | 150mm                             |
|      |                 | Category               | Gypsum Board                          | Gypsum Board                      |
|      |                 | subgory                | dy poulli Dour a                      | Gypsum Moisture                   |
|      |                 | Material               | Type X Gypsum Board                   | Resistant 5/8"                    |
|      |                 | Thickness              | 16mm                                  | 25.381mm-507.614mm                |
|      |                 | Category               | Paint                                 | Paint                             |
|      |                 | Material               | -                                     | Latex Water Based                 |
|      | Door Openir     | ng Number of Doors     | 1                                     | 1                                 |
|      |                 | Door Type              | Solid Core Wood Door                  | Solid Wood Door                   |
|      | 2.4.5 Wall 3_92 | mm_SteelStud           |                                       |                                   |
|      |                 | Length (mm)            | 145114                                | 145114                            |
|      |                 | Height (mm)            | 2700                                  | 2700                              |
|      |                 | Sheathing Type         | None                                  | None                              |
|      |                 | Stud Spacing           | -                                     | 600 o.c.                          |
|      |                 | Stud Weight            | -                                     | 25Ga                              |
|      |                 | Stud Thickness<br>(mm) | 39 x 92                               | 39 x 92                           |

| <br>              |                        |                      |                      |
|-------------------|------------------------|----------------------|----------------------|
|                   | Sheathing Type         | None                 | None                 |
|                   | Stud Spacing           | -                    | 400 o.c.             |
|                   | Stud Weight            | -                    | 25Ga                 |
|                   | Stud Thickness<br>(mm) | Furring Channel      | 39 x 92              |
| Envelope          | Category               | Gypsum Board         | Gypsum Board         |
|                   | Material               | Gypsum Board, GWS    | Gypsum Regular 5/8'' |
|                   | Thickness              | 16mm                 | 25.381mm-507.614mm   |
|                   | Category               | Gypsum Board         | Gypsum Board         |
|                   | Material               | Gypsum Board, GWS    | Gypsum Regular 5/8"  |
|                   | Thickness              | 16mm                 | 25.381mm-507.614mm   |
|                   | Category               | Insulation           | Insulation           |
|                   | Material               | Acustic Insulation   | Fiberglass Balt      |
|                   | Thickness              | 89mm                 | 89mm                 |
|                   | Category               | Gypsum Board         | Gypsum Board         |
|                   | Material               | Gypsum Board, GWS    | Gypsum Regular 5/8"  |
|                   | Thickness              | 16mm                 | 25.381mm-507.614mm   |
|                   | Category               | Paint                | Paint                |
|                   | Material               | _                    | Latex Water Based    |
| Door Opening      | Number of Doors        | 23                   | 23                   |
|                   | Door Type              | Solid Core Wood Door | Solid Wood Door      |
| 2.4.6 Wall 4 92mm | SteelStud              |                      |                      |
|                   | Length (mm)            | 24888                | 24888                |
|                   | Height (mm)            | 2700                 | 2700                 |
|                   | Sheathing Type         | None                 | None                 |
|                   | Stud Spacing           | _                    | 400 o.c.             |
|                   | Stud Weight            | -                    | 25Ga                 |
|                   | Stud Thickness<br>(mm) | 39 x 92              | 39 x 92              |

| <br>- | 1 | 1                           | i                      |                    |                      |  |  |  |
|-------|---|-----------------------------|------------------------|--------------------|----------------------|--|--|--|
|       |   | Envelope                    | Category               | Gypsum Board       | Gypsum Board         |  |  |  |
|       |   |                             | Material               | Gypsum Board, GWS  | Gypsum Regular 5/8'' |  |  |  |
|       |   |                             | Thickness              | 16mm               | 25.381mm-507.614mm   |  |  |  |
|       |   |                             | Category               | Gypsum Board       | Gypsum Board         |  |  |  |
|       |   |                             | Material               | Gypsum Board, GWS  | Gypsum Regular 5/8'' |  |  |  |
|       |   |                             | Thickness              | 16mm               | 25.381mm-507.614mm   |  |  |  |
|       |   |                             | Category               | Insulation         | Insulation           |  |  |  |
|       |   |                             | Material               | Acustic Insulation | Fiberglass Balt      |  |  |  |
|       |   |                             | Thickness              | 89mm               | 89mm                 |  |  |  |
|       |   |                             | Category               | Gypsum Board       | Gypsum Board         |  |  |  |
|       |   |                             | Material               | Gypsum Board, GWS  | Gypsum Regular 5/8'' |  |  |  |
|       |   |                             | Thickness              | 16mm               | 25.381mm-507.614mm   |  |  |  |
|       |   |                             | Category               | Paint              | Paint                |  |  |  |
|       |   |                             | Material               | -                  | Latex Water Based    |  |  |  |
|       |   | Door Opening_Metal<br>Doors | Number of Doors        | 6                  | 6                    |  |  |  |
|       |   |                             | Door Type              | Hollow Metal Door  | Steel Interior Door  |  |  |  |
|       |   | 2.4.7 Wall 4_92mm_S         | teelStud2              |                    | Steel Interior Door  |  |  |  |
|       |   |                             | Length (mm)            | 586627             | 586627               |  |  |  |
|       |   |                             | Height (mm)            | 2700               | 2700                 |  |  |  |
|       |   |                             | Sheathing Type         | None               | None                 |  |  |  |
|       |   |                             | Stud Spacing           | -                  | 400 o.c.             |  |  |  |
|       |   |                             | Stud Weight            | -                  | 25Ga                 |  |  |  |
|       |   |                             | Stud Thickness<br>(mm) | 39 x 92            | 39 x 92              |  |  |  |
|       |   | Envelope                    | Category               | Gypsum Board       | Gypsum Board         |  |  |  |
|       |   |                             | Material               | Gypsum Board, GWS  | Gypsum Regular 5/8'' |  |  |  |
|       |   |                             | Thickness              | 16mm               | 25.381mm-507.614mm   |  |  |  |
|       |   |                             | Category               | Gypsum Board       | Gypsum Board         |  |  |  |

|                    |                 | -                    |                      |
|--------------------|-----------------|----------------------|----------------------|
|                    | Material        | Gypsum Board, GWS    | Gypsum Regular 5/8'' |
|                    | Thickness       | 16mm                 | 25.381mm-507.614mm   |
|                    | Category        | Insulation           | Insulation           |
|                    | Material        | Acustic Insulation   | Fiberglass Balt      |
|                    | Thickness       | 89mm                 | 89mm                 |
|                    | Category        | Gypsum Board         | Gypsum Board         |
|                    | Material        | Gypsum Board, GWS    | Gypsum Regular 5/8'' |
|                    | Thickness       | 16mm                 | 25.381mm-507.614mm   |
|                    | Category        | Paint                | Paint                |
|                    | Material        | -                    | Latex Water Based    |
| Door               |                 |                      |                      |
| Doors              | Number of Doors | 7                    | 7                    |
|                    | Door Type       | Solid Core Wood Door | Solid Wood Door      |
| 2.4.8 Wall 5 152mm | n SteelStud     |                      |                      |
|                    | Length (mm)     | 94592                | 94592                |
|                    | Height (mm)     | 3986                 | 3986                 |
|                    | Sheathing Type  | None                 | None                 |
|                    | Stud Spacing    | -                    | 400 o.c.             |
|                    | Stud Weight     | -                    | 25Ga                 |
|                    | Stud Thickness  | 20.452               | 00 450               |
|                    | (mm)            | 39 x 152             | 39 x 152             |
| Envelope           | Category        | Gypsum Board         | Gypsum Board         |
|                    | Material        | Gypsum Board, GWS    | Gypsum Regular 5/8"  |
|                    | Thickness       | 16mm                 | 25.381mm-507.614mm   |
|                    | Category        | Gypsum Board         | Gypsum Board         |
|                    | Material        | Gypsum Board, GWS    | Gypsum Regular 5/8"  |
|                    | Thickness       | 16mm                 | 25.381mm-507.614mm   |
|                    | Category        | Insulation           | Insulation           |
|                    | Material        | Acustic Insulation   | Fiberglass Balt      |

|                      | Thickness                     | 89mm                  | 89mm                |
|----------------------|-------------------------------|-----------------------|---------------------|
|                      | Category                      | Gypsum Board          | Gypsum Board        |
|                      | Material                      | Gypsum Board GWS      | Gypsum Regular 5/8" |
|                      | Thickness                     | 16mm                  | 25 381mm-507 614mm  |
|                      | Category                      | Paint                 | Paint               |
|                      | Material                      | -                     | Latex Water Based   |
| Door Opening         | Number of Doors               | Δ                     | Latex Water Dased   |
| Door opening         | Door Type                     | Solid Core Wood Door  | Solid Wood Door     |
| 249 Wall 7 152mm     | n SteelStud At Washroo        | ms                    | 50110 W000 D001     |
| 2.4.9 Wall /_152lill | Length (mm)                   | 54365                 | 54365               |
|                      | Height (mm)                   | 2700                  | 2700                |
|                      | Sheathing Type                | None                  | None                |
|                      | Stud Spacing                  | None                  | 400 o c             |
|                      | Stud Maight                   | -                     | 400 0.0.            |
|                      | Stud Weight<br>Stud Thickness | -                     | 2568                |
|                      | (mm)                          | 39 x 152              | 39 x 152            |
| Envelope             | Category                      | Gypsum Board          | Gypsum Board        |
|                      |                               | Glass Mat Gypsum Tile | Gypsum Moisture     |
|                      | Material                      | Backer Board          | Resistant 5/8       |
|                      | Thickness                     | 16mm                  | 25.381mm-507.614mm  |
|                      | Category                      | Insulation            | Insulation          |
|                      | Material                      | Acustic Insulation    | Fiberglass Balt     |
|                      | Thickness                     | 89mm                  | 89mm                |
|                      | Category                      | Gypsum Board          | Gypsum Board        |
|                      |                               | Glass Mat Gypsum Tile | Gypsum Moisture     |
|                      | Material                      | Backer Board          | Resistant 5/8"      |
|                      | Thickness                     | 16mm                  | 25.381mm-507.614mm  |
|                      | Category                      | Paint                 | Paint               |
|                      | Material                      | -                     | Latex Water Based   |
| 2.4.10 Wall 8_203m   | m_SteelStud_ Plumbing         | Chase                 |                     |

|  |  |          |                        |                                       | - · · · · · · · · · · · · · · · · · · · |
|--|--|----------|------------------------|---------------------------------------|-----------------------------------------|
|  |  |          | Length (mm)            | 25123                                 | 25123                                   |
|  |  |          | Height (mm)            | 2700                                  | 2700                                    |
|  |  |          | Sheathing Type         | None                                  | None                                    |
|  |  |          | Stud Spacing           | -                                     | 400 o.c.                                |
|  |  |          | Stud Weight            | -                                     | 25Ga                                    |
|  |  |          | Stud Thickness<br>(mm) | 39 x 92                               | 39 x 92                                 |
|  |  |          | Sheathing Type         | None                                  | None                                    |
|  |  |          | Stud Spacing           | -                                     | 400 o.c.                                |
|  |  |          | Stud Weight            | -                                     | 25Ga                                    |
|  |  |          | Stud Thickness<br>(mm) | 39 x 92                               | 39 x 92                                 |
|  |  | Envelope | Category               | Gypsum Board                          | Gypsum Board                            |
|  |  |          | Material               | Gypsum Board, GWS                     | Gypsum Regular 5/8''                    |
|  |  |          | Thickness              | 16mm                                  | 25.381mm-507.614mm                      |
|  |  |          | Category               | Gypsum Board<br>Glass Mat Gypsum Tile | Gypsum Board                            |
|  |  |          | Material               | Backer Board                          | Gypsum Regular 5/8''                    |
|  |  |          | Thickness              | 16mm                                  | 25.381mm-507.614mm                      |
|  |  |          | Category               | Insulation                            | Insulation                              |
|  |  |          | Material               | Acustic Insulation                    | Fiberglass Balt                         |
|  |  |          | Thickness              | 89mm                                  | 89mm                                    |
|  |  |          | Category               | Insulation                            | Insulation                              |
|  |  |          | Material               | Acustic Insulation                    | Fiberglass Balt                         |
|  |  |          | Thickness              | 89mm                                  | 89mm                                    |
|  |  |          | Category               | Gypsum Board                          | Gypsum Board                            |
|  |  |          | Material               | Gypsum Board, GWS                     | Gypsum Regular 5/8''                    |
|  |  |          | Thickness              | 16mm                                  | 25.381mm-507.614mm                      |
|  |  |          | Category               | Paint                                 | Paint                                   |
|  |  |          | Material               | -                                     | Latex Water Based                       |

| 2.4.11 Wall 9_152mm  | 2.4.11 Wall 9_152mm_SteelStud_BrickCladding |                      |                      |  |
|----------------------|---------------------------------------------|----------------------|----------------------|--|
|                      | Length (mm)                                 | 69307                | 69307                |  |
|                      | Height (mm)                                 | 3986                 | 3986                 |  |
|                      | Sheathing Type                              | MDF Paneling         | OSB                  |  |
|                      | Stud Spacing                                | -                    | 400 o.c.             |  |
|                      | Stud Weight                                 | -                    | 25Ga                 |  |
|                      | Stud Thickness<br>(mm)                      | 39 x 152             | 39 x 152             |  |
| Envelope             | Category                                    | Cladding             | Cladding             |  |
|                      | Material                                    | Brick Veneer Masonry | Brick-               |  |
|                      | Thickness (mm)                              | 90                   | 90                   |  |
|                      | Category                                    | Insulation           | Insulation           |  |
|                      | Material                                    | Acustic Insulation   | Fiberglass Balt      |  |
|                      | Thickness                                   | 150mm                | 150mm                |  |
|                      | Category                                    | Gypsum Board         | Gypsum Board         |  |
|                      | Material                                    | Gypsum Board, GWS    | Gypsum Regular 5/8'' |  |
|                      | Thickness                                   | 16mm                 | 25.381mm-507.614mm   |  |
|                      | Category                                    | Paint                | Paint                |  |
|                      | Material                                    | -                    | Latex Water Based    |  |
| Door Opening         | Number of Doors                             | 2                    | 2                    |  |
|                      | Door Type                                   | Solid Core Wood Door | Solid Wood Door      |  |
| 2.4.12 Wall 9.1_152m | m_SteelStud_BrickClade                      | ling                 |                      |  |
|                      | Length (mm)                                 | 29357                | 29357                |  |
|                      | Height (mm)                                 | 3986                 | 3986                 |  |
|                      | Sheathing Type                              | MDF Paneling         | OSB                  |  |
|                      | Stud Spacing                                | -                    | 400 o.c.             |  |
|                      | Stud Weight                                 | -                    | 25Ga                 |  |
|                      | Stud Thickness<br>(mm)                      | 39 x 152             | 39 x 152             |  |

| Er     | nvelope       | Category                | Cladding             | Cladding             |
|--------|---------------|-------------------------|----------------------|----------------------|
|        |               | Material                | Brick Veneer Masonry | Brick-               |
|        |               | Thickness (mm)          | 90                   | 90                   |
|        |               | Category                | Gypsum Board         | Gypsum Board         |
|        |               | Material                | Gypsum Board, GWS    | Gypsum Regular 5/8'' |
|        |               | Thickness               | 16mm                 | 25.381mm-507.614mm   |
|        |               | Category                | Insulation           | Insulation           |
|        |               | Material                | Acustic Insulation   | Fiberglass Balt      |
|        |               | Thickness               | 150mm                | 150mm                |
|        |               | Category                | Gypsum Board         | Gypsum Board         |
|        |               | Material                | Gypsum Board, GWS    | Gypsum Regular 5/8'' |
|        |               | Thickness               | 16mm                 | 25.381mm-507.614mm   |
|        |               | Category                | Paint                | Paint                |
|        |               | Material                | -                    | Latex Water Based    |
| Door   | r Opening     | Number of Doors         | 3                    | 3                    |
|        |               | Door Type               | Solid Core Wood Door | Solid Wood Door      |
| 2.4.13 | Wall 9.4_92mn | n_SteelStud_BrickCladdi | ng                   |                      |
|        |               | Length (mm)             | 8804                 | 8804                 |
|        |               | Height (mm)             | 3986                 | 3986                 |
|        |               | Sheathing Type          | MDF Paneling         | OSB                  |
|        |               | Stud Spacing            | -                    | 400 o.c.             |
|        |               | Stud Weight             | -                    | 25Ga                 |
|        |               | Stud Thickness          | 20 - 02              | 20                   |
| г.     |               | (IIIII)<br>Catagoriu    | 39 X 92              | 39 X 92              |
| Er     | ivelope       | Category                |                      |                      |
|        |               | Material                | Brick veneer Masonry | Brick-               |
|        |               |                         | 90                   | 90                   |
|        |               | Category                | Insulation           | Insulation           |
| 1 1    | I             | Material                | Acustic Insulation   | Fiberglass Balt      |

|  |  |                      | Thickness       | 150mm                       | 150mm                   |
|--|--|----------------------|-----------------|-----------------------------|-------------------------|
|  |  |                      | Category        | Gypsum Board                | Gypsum Board            |
|  |  |                      | Material        | Gypsum Board, GWS           | Gypsum Regular 5/8''    |
|  |  |                      | Thickness       | 16mm                        | 25.381mm-507.614mm      |
|  |  | 2.4.14 Wall 10_64mr  | n_SteelStud     |                             |                         |
|  |  |                      | Length (mm)     | 272373                      | 272373                  |
|  |  |                      | Height (mm)     | 2700                        | 2700                    |
|  |  |                      | Sheathing Type  | None                        | None                    |
|  |  |                      | Stud Spacing    | -                           | 600 o.c.                |
|  |  |                      | Stud Weight     | -                           | 25Ga                    |
|  |  |                      | Stud Thickness  | 20 ( 4                      | 20 02                   |
|  |  |                      | (mm)            | 39 X 64                     | 39 X 92                 |
|  |  | Envelope             | Category        | Gypsum Board                | Gypsum Board            |
|  |  |                      | Material        | 25mm Type X Gypsum<br>Board | X 5/8"                  |
|  |  |                      | Thickness       | 25mm                        | ,<br>25.381mm-507.614mm |
|  |  |                      | Category        | Gypsum Board                | Gypsum Board            |
|  |  |                      | Material        | Gypsum Board, GWB           | Gypsum Regular 5/8''    |
|  |  |                      | Thickness       | 16mm                        | 25.381mm-507.614mm      |
|  |  |                      | Category        | Paint                       | Paint                   |
|  |  |                      | Material        | -                           | Latex Water Based       |
|  |  | Door Opening         | Number of Doors | 54                          | 54                      |
|  |  | 2 cor opening        | Door Type       | Hollow Metal Door           | Steel Interior Door     |
|  |  | 2 4 15 Wall 11 1 92r | nm SteelStud    |                             |                         |
|  |  |                      | Length (mm)     | 126760                      | 126760                  |
|  |  |                      | Height (mm)     | 2700                        | 2700                    |
|  |  |                      | Sheathing Type  | None                        | None                    |
|  |  |                      | Stud Snacing    |                             | 400.00                  |
|  |  |                      | Stud Spacing    |                             | 256-2                   |
|  |  |                      | Juu weight      | -                           | 230a                    |

| · · · · · · · · · · · · · · · · · · · | 1 | 1 | 1                   | 1                      | 1                    | I                    |
|---------------------------------------|---|---|---------------------|------------------------|----------------------|----------------------|
|                                       |   |   |                     | Stud Thickness<br>(mm) | 39 x 92              | 39 x 92              |
|                                       |   |   | Envelope            | Category               | Gypsum Board         | Gypsum Board         |
|                                       |   |   |                     | Material               | Gypsum Board, GWB    | Gypsum Regular 5/8'' |
|                                       |   |   |                     | Thickness              | 16mm                 | 25.381mm-507.614mm   |
|                                       |   |   |                     | Category               | Paint                | Paint                |
|                                       |   |   |                     | Material               | -                    | Latex Water Based    |
|                                       |   |   | Door Opening        | Number of Doors        | 2                    | 2                    |
|                                       |   |   |                     | Door Type              | Solid Core Wood Door | Solid Wood Door      |
|                                       |   |   | 2.4.16 Wall 11.2_15 | 2mm_SteelStud          |                      |                      |
|                                       |   |   |                     | Length (mm)            | 139379               | 139379               |
|                                       |   |   |                     | Height (mm)            | 2700                 | 2700                 |
|                                       |   |   |                     | Sheathing Type         | None                 | None                 |
|                                       |   |   |                     | Stud Spacing           | -                    | 400 o.c.             |
|                                       |   |   |                     | Stud Weight            | -                    | 25Ga                 |
|                                       |   |   |                     | Stud Thickness<br>(mm) | 39 x 152             | 39 x 152             |
|                                       |   |   | Envelope            | Category               | Gypsum Board         | Gypsum Board         |
|                                       |   |   |                     | Material               | Gypsum Board, GWB    | Gypsum Regular 5/8'' |
|                                       |   |   |                     | Thickness              | 16mm                 | 25.381mm-507.614mm   |
|                                       |   |   |                     | Category               | Paint                | Paint                |
|                                       |   |   |                     | Material               | -                    | Latex Water Based    |
|                                       |   |   | 2.4.17 Wall 12.1_22 | mm_FurringChannel      |                      | r                    |
|                                       |   |   |                     | Length (mm)            | 58685                | 58685                |
|                                       |   |   |                     | Height (mm)            | 4200                 | 4200                 |
|                                       |   |   |                     | Sheathing Type         | None                 | None                 |
|                                       |   |   |                     | Stud Spacing           | -                    | 600 o.c.             |
|                                       |   |   |                     | Stud Weight            | -                    | 25Ga                 |
|                                       |   |   |                     | Stud Thickness<br>(mm) | 22mm Furring Channel | 39 x 92              |

| <br>7 | 1 | 1             | 1                    | 1                 | 1                    |                      |
|-------|---|---------------|----------------------|-------------------|----------------------|----------------------|
|       |   |               | Envelope             | Category          | Gypsum Board         | Gypsum Board         |
|       |   |               |                      | Material          | Gypsum Board, GWB    | Gypsum Regular 5/8'' |
|       |   |               |                      | Thickness         | 16mm                 | 25.381mm-507.614mm   |
|       |   |               | Door Opening         | Number of Doors   | 6                    | 6                    |
|       |   |               |                      | Door Type         | Solid Core Wood Door | Solid Wood Door      |
|       |   |               | 2.4.18 Wall 12.2_381 | nm_FurringChannel |                      |                      |
|       |   |               |                      | Length (mm)       | 133371               | 133371               |
|       |   |               |                      | Height (mm)       | 4200                 | 4200                 |
|       |   |               |                      | Sheathing Type    | None                 | None                 |
|       |   |               |                      | Stud Spacing      |                      | 600 o.c.             |
|       |   |               |                      | Stud Weight       | -                    | 25Ga                 |
|       |   |               |                      | Stud Thickness    |                      | 00.00                |
|       |   |               |                      | (mm)              | 38mm Furring Channel | 39 x 92              |
|       |   |               | Envelope             | Category          | Gypsum Board         | Gypsum Board         |
|       |   |               |                      | Material          | Gypsum Board, GWB    | Gypsum Regular 5/8'' |
|       |   |               |                      | Thickness         | 16mm                 | 25.381mm-507.614mm   |
|       |   |               | Door Opening         | Number of Doors   | 4                    | 4                    |
|       |   | 2.1 Cast In F | Place                |                   |                      |                      |
|       |   |               | 2.1.10 SW1_350m_4    | 200mmHeight       | 1                    |                      |
|       |   |               |                      | Length (mm)       | 37119                | 43306                |
|       |   |               |                      | Height (mm)       | 4200                 | 4200                 |
|       |   |               |                      | Thickness (mm)    | 350                  | 300                  |
|       |   |               |                      | Concrete (MPa)    | 35                   | 30                   |
|       |   |               |                      | Concrete flyash % | 35                   | 35                   |
|       |   |               |                      |                   | #15M Vert, #15M      |                      |
|       |   |               |                      | Rebar             | Horiz                | #15M                 |
|       |   |               | 2.1.11 SW1_350mm     | _5000mmHeight     | I                    |                      |
|       |   |               |                      | Length (mm)       | 1020                 | 1190                 |
|       |   |               |                      | Height (mm)       | 5000                 | 5000                 |

|                               | 1               | I     |
|-------------------------------|-----------------|-------|
| Thickness (mm)                | 350             | 300   |
| Concrete (MPa)                | 35              | 30    |
| Concrete flyash %             | 35              | 35    |
|                               | #15M Vert, #15M |       |
| Rebar                         | Horiz           | #15M  |
| 2.1.12 SW5_430mm_4200mmHeight |                 |       |
| Length (mm)                   | 25345           | 36328 |
| Height (mm)                   | 4200            | 4200  |
| Thickness (mm)                | 430             | 300   |
| Concrete (Mpa)                | 35              | 30    |
| Concrete flyash %             | 35              | 35    |
|                               | #15M Vert, #15M |       |
| Rebar                         | Horiz           | #15M  |
| 2.1.13 SW5_430mm_5000mmHeight |                 |       |
| Length (mm)                   | 5420            | 7769  |
| Height (mm)                   | 5000            | 5000  |
| Thickness (mm)                | 430             | 300   |
| Concrete (MPa)                | 35              | 30    |
| Concrete flyash %             | 35              | 35    |
|                               | #15M Vert, #15M |       |
| Rebar                         | Horiz           | #15M  |

## Impact Estimator Assumptions

## Table 20: IE Assumptions

| Assembly Type                  | Assembly Name     | Specific Assumptions                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                   |                                                                                                                                                                                                                                                                                                                                                                              |
| 1.1 Concrete Slab-on-<br>Grade |                   |                                                                                                                                                                                                                                                                                                                                                                              |
|                                | 1.1.1 SOG_125mm   |                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                   | Input for slab thickness is 100mm<br>instead of 125mm due to limited<br>options in Impact Estimator. The size<br>of the slab is adjusted to be the same<br>volume as the volume from real take-<br>off measurements.<br>Flyash% and Concrete strength<br>inputted differ from the actual<br>because of limited options in IE.<br>Closest number was chosen for the<br>study. |
|                                | 1.1.2 SOG_200mm   |                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                   | Flyash% and Concrete strength<br>inputted differ from the actual<br>because of limited options in IE.<br>Closest number was chosen for the<br>study.                                                                                                                                                                                                                         |
| 1.2 Concrete Footing           |                   |                                                                                                                                                                                                                                                                                                                                                                              |
|                                | 1.2.1 Footing_PF1 |                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                   | The length has been adjusted to<br>account for the number of this type<br>of footing in the building (ie: Length<br>= # of footings x length of 1 footing)<br>Impact Estimator has limited<br>numbers to choose from for Flyash<br>%, Concrete Strength, and Rebar.<br>The numbers put into IE are<br>therefore the closest available ones                                   |

|                    | to the measured values.                                                                                                                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                          |
| 1.2.2 Footing_PF2  |                                                                                                                                                                                                                          |
|                    | Same assumption as 1.2.1<br>Footing_PF1.                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                          |
| 1.2.3. Footing_PF3 |                                                                                                                                                                                                                          |
|                    | Same assumption as 1.2.1<br>Footing_PF1.<br>Input values are adjusted to account<br>for the upper limit of 500mm<br>thickness allowed by IE, so that the<br>input values have the same volume<br>as the measured values. |
| 1.2.4 Footing_PF4  |                                                                                                                                                                                                                          |
|                    | Same assumption as 1.2.3<br>Footing_PF3.                                                                                                                                                                                 |
| 1.2.5 Footing_PF5  |                                                                                                                                                                                                                          |
|                    | Same assumption as 1.2.3<br>Footing_PF3.                                                                                                                                                                                 |
| 1.2.6 Footing_PF6  |                                                                                                                                                                                                                          |

|                                                      |                                                                                | Same assumption as 1.2.1                                                                                                           |
|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | 1.2.7 Footing SF1                                                              | 1000115_111                                                                                                                        |
|                                                      | 1.2.7 T OOUII <u>5_</u> 07 T                                                   | Length of footing determined using<br>total area of all footings of this type<br>divided by the width of one of these<br>footings. |
|                                                      | 1.2.8 Footing_SF2                                                              |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.7<br>Footing_SF1                                                                                            |
|                                                      | 1.2.9 Footing_SF3                                                              |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.7<br>Footing_SF1                                                                                            |
|                                                      | 1.2.10 Footing_SF4                                                             |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.7<br>Footing_SF1                                                                                            |
|                                                      | 1.2.11 Footing_SF5                                                             |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.7<br>Footing_SF1                                                                                            |
|                                                      |                                                                                | Only one type of rebar is allowed for<br>Impact Estimator, hence only 15M<br>was chosen.                                           |
|                                                      | 1.2.12 Footing_SF7                                                             |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.11<br>Footing_SF5                                                                                           |
|                                                      | 1.2.13 Footing_SF8                                                             |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.11<br>Footing_SF5                                                                                           |
|                                                      | 1.2.14 Footing_SF9                                                             |                                                                                                                                    |
|                                                      |                                                                                | Same assumption as 1.2.11<br>Footing_SF5                                                                                           |
| The length of the concre<br>in the Impact Estimator. | ete cast-in-place walls needed adjust<br>It was assumed that interior steel st | ing to accommodate the wall thickness limitation<br>ud walls were light gauge (25Ga) and exterior                                  |
| steel stud walls were he                             | avy gauge (20Ga). According to the g                                           | eneral notes in the structural plans, normal                                                                                       |
| weight concrete for retain                           | ining walls is 25MPa and for shear w                                           | valls 35Mpa. The IE allowed for 20, 30 or 60MPa,                                                                                   |
| so 30MPa was used to m                               | odel concrete walls. In the other har                                          | nd, fly ash content for retaining walls was                                                                                        |
| 11100elea as 40%, Which                              | was the closest value for the actual o                                         | content of 35%.                                                                                                                    |
| 2.1 Cast III Place                                   |                                                                                |                                                                                                                                    |

| 2.1.6 Wall_Cast-in-Place_W2_250mm                   | This wall was increased by a factor<br>in order to fit the 300mm thickness<br>limitation of the Impact Estimator.<br>This was done by increasing the<br>length of the wall using the following<br>equation; |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | = (Measured Length) * [(Cited<br>Thickness)/200mm]                                                                                                                                                          |
|                                                     | = (76980) * [(250)/200]                                                                                                                                                                                     |
|                                                     | = 96225 mm                                                                                                                                                                                                  |
| 2.1.7 Wall_Cast-in-Place_W6_350mm                   | This wall was increased by a factor<br>in order to fit the 300mm thickness<br>limitation of the Impact Estimator.<br>This was done by increasing the<br>length of the wall using the following<br>equation; |
|                                                     | = (Measured Length) * [(Cited<br>Thickness)/300mm]                                                                                                                                                          |
|                                                     | = (16654) * [(350)/300]                                                                                                                                                                                     |
|                                                     | = 19430 mm                                                                                                                                                                                                  |
| 2.1.8 Wall_Cast-in-<br>Place_SW1_350mm_4200mmHeight | This wall was increased by a factor<br>in order to fit the 300mm thickness<br>limitation of the Impact Estimator.<br>This was done by increasing the<br>length of the wall using the following<br>equation; |
|                                                     | = (Measured Length) * [(Cited<br>Thickness)/300mm]                                                                                                                                                          |
|                                                     | = (37119) * [(350)/300]                                                                                                                                                                                     |
|                                                     | = 43306 mm                                                                                                                                                                                                  |

| 2.1.8 Wall_Cast-in-<br>Place_SW1_350mm_5000mmHeight | This wall was increased by a factor<br>in order to fit the 300mm thickness<br>limitation of the Impact Estimator.<br>This was done by increasing the<br>length of the wall using the following<br>equation;<br>= (Measured Length) * [(Cited<br>Thickness)/300mm] |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | = (1020) * [(350)/300]                                                                                                                                                                                                                                            |
|                                                     | = 1190 mm                                                                                                                                                                                                                                                         |
| 2.1.8 Wall_Cast-in-<br>Place_SW5_430mm_4200mmHeight | This wall was increased by a factor<br>in order to fit the 300mm thickness<br>limitation of the Impact Estimator.<br>This was done by increasing the<br>length of the wall using the following<br>equation;                                                       |
|                                                     | = (Measured Length) * [(Cited<br>Thickness)/300mm]                                                                                                                                                                                                                |
|                                                     | = (5420) * [(430)/300]                                                                                                                                                                                                                                            |
|                                                     | = 7769 mm                                                                                                                                                                                                                                                         |
| 2.1.8 Wall_Cast-in-<br>Place_SW5_430mm_5000mmHeight | This wall was increased by a factor<br>in order to fit the 300mm thickness<br>limitation of the Impact Estimator.<br>This was done by increasing the<br>length of the wall using the following<br>equation;                                                       |
|                                                     | = (Measured Length) * [(Cited<br>Thickness)/300mm]                                                                                                                                                                                                                |
|                                                     | = (25345) * [(430)/300]                                                                                                                                                                                                                                           |
|                                                     | = 36328 mm                                                                                                                                                                                                                                                        |

| 2.2 Concrete Block Wall | ]                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | 2.2.1<br>Wall_E6.2_ConcreteBlock_152mmSteelSt<br>ud           | Polyethylene was assumed to be<br>6mil because the this is a below<br>ground wall.                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 2.2.2 Wall_16_2H_CMU_Wall                                     | Steel Interior Door was the closest<br>estimation to the observed doors in<br>this wall. Latex Water Based was the<br>painting assumed to be used as<br>finishing material.                                                                                                                                                                                                                                                                                                             |
| 2.3 Curtain Wall        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 2.3.4 Wall_CurtainWall_Opaque Glass<br>Spandrel_5090mm Height | Aluminum Door with 80% glazing<br>was the closest estimtation to the<br>observed doors in this wall.                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 2.3.5 Wall_CurtainWall_Opaque Glass<br>Spandrel_4100mm Height | Aluminum Door with 80% glazing<br>was the closest estimation to the<br>observed doors in this wall.                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 2.3.6 Wall_CurtainWall_Opaque Glass<br>Spandrel_4410mm Height | Aluminum Door with 80% glazing<br>was the closest estimtation to the<br>observed doors in this wall.                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 2.3.8<br>Wall_Curtain_Wall_Interior_4786mm_Hei<br>ght         | Aluminum Door with 80% glazing<br>was the closest estimation to the<br>observed doors in this wall.                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.4 Steel Stud          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 2.4.1 Wall 1.1_92mm_SteelStud                                 | Since this was an interior wall, no<br>sheathing was considered. Gypsum<br>Fire Rated Type X 5/8'' was the<br>gypsum type used in the IE to model<br>this wall. This<br>type of wall had 87 hollow metal<br>doors and 220 solid wood doors, so<br>the total length of this wall was<br>divided proporcionally to account<br>for the two different type of doors.<br>Acoustic insulation was modeled as<br>fiberglass batt, as it was the closest<br>surrogate to this kind of material. |

|                                               | Latex Water Based was the painting<br>assumed to be used as finishing<br>material.                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4.4 Wall 2_152mm_SteelStud_ At<br>Washrooms | Since this was an interior wall, no<br>sheathing was considered. Gypsum<br>Moisture Resistant 5/8''' was the<br>closest element found in the IE to<br>model this wall.<br>Acoustic insulation was modeled as<br>fiberglass batt, as it was the closest<br>surrogate to this kind of material.                                                                                    |
| 2.4.5 Wall 3_92mm_SteelStud                   | Since this was an interior wall, no<br>sheathing was considered.<br>Acoustic insulation was modeled as<br>fiberglass batt, as it was the closest<br>surrogate to this kind of material.<br>Latex Water Based was the painting<br>assumed to be used as finishing<br>material. Furring channel was<br>replaced by a 92mm stud, as this is<br>theclosest thickness provided by IE. |
| 2.4.6 Wall 4_92mm_SteelStud                   | Since this was an interior wall, no<br>sheathing was considered.<br>Acoustic insulation was modeled as<br>fiberglass batt, as it was the closest<br>surrogate to this kind of material.<br>Latex Water Based was the painting<br>assumed to be used as finishing<br>material.                                                                                                    |
| 2.4.7 Wall 4_92mm_SteelStud                   | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.<br>Since this was an interior wall, no<br>sheathing was considered.                                                                                                                                                                        |

|                                                  | No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans.                                                                     |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4.8 Wall 5_152mm_SteelStud                     | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.                                                                                                          |
|                                                  | Since this was an interior wall, no<br>sheathing was considered.<br>Latex Water Based was the painting<br>assumed to be used as finishing<br>material.                                                                                         |
| 2.4.9 Wall 7_152mm_SteelStud_ At<br>Washrooms    | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.                                                                                                          |
|                                                  | Since this was an interior wall, no<br>sheathing was considered.<br>No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans. |
| 2.4.10 Wall 8_203mm_SteelStud_<br>Plumbing Chase | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.                                                                                                          |
|                                                  | Since this was an interior wall, no<br>sheathing was considered.<br>Latex Water Based was the painting<br>assumed to be used as finishing<br>material.                                                                                         |

| 2.4.11 Wall<br>9_152mm_SteelStud_BrickCladding   | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | MDF Panelling sheathing was<br>replaced by OSB sheating type in the<br>IE. No<br>information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans. |
| 2.4.12 Wall<br>9.1_152mm_SteelStud_BrickCladding | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.                                                                                                                    |
|                                                  | MDF Panelling sheathing was<br>replaced by OSB sheating type in the<br>IE. No<br>information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans. |
| 2.4.13 Wall<br>9.4_92mm_SteelStud_BrickCladding  | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.                                                                                                                    |
|                                                  | MDF Panelling sheathing was<br>replaced by OSB sheating type in the<br>IE. No<br>information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans. |

| 2.4.14 Wall 10_64mm_SteelStud   | 64mm steel stud was replaced by a<br>92mm stud, as this is the closest<br>thickness provided by IE. Acoustic<br>Batt insulation was not available in<br>the Impact Estimator so Fiberglass<br>Batt was selected as the closest<br>surrogate.<br>Gypsum Fire Rated Type X 5/8'' was<br>the gypsum type used in the IE to<br>model this wall.<br>No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting finishing was indicated in<br>the architectural plans. |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4.15 Wall 11.1_92mm_SteelStud | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.<br>Since this was an interior wall, no<br>sheathing was considered.<br>No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans                                                                                                                                              |
| 2.4.16 Wall 11.1_92mm_SteelStud | Acoustic Batt insulation was not<br>available in the Impact Estimator so<br>Fiberglass Batt was selected as the<br>closest surrogate.<br>Since this was an interior wall, no<br>sheathing was considered.<br>No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans.                                                                                                                                             |

| 2.4.17 Wall 12.1_22mm_FurringChannel            | 22mm Furring channel was replaced<br>by a 92mm stud, as this is the closest<br>thickness provided by IE.<br>Since this was an interior wall, no<br>sheathing was considered.<br>No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans. |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.4.18 Wall 12.2_38mm_FurringChannel            | 38mm Furring channel was replaced<br>by a 92mm stud, as this is the closest<br>thickness provided by IE.<br>Since this was an interior wall, no<br>sheathing was considered.<br>No information was provided for the<br>type of painting used, so Latex Water<br>Based was assumed to be used when<br>painting was indicated in the<br>architectural plans. |
| 2.4.19 Wall<br>E3_152mm_SteelStud_12600mmHeight | Mineral Wool Board Insulation (R20)<br>was not available in the Impact<br>Estimator so Rockwool Batt was<br>selected as the closest surrogate.<br>Exterior sheating indicated in the<br>plans was assumed to be OSB. Air<br>Vapour Moisture Barrier was<br>assumed to be Polyethylene 6mil.                                                                |
| 2.4.20 Wall<br>E3_152mm_SteelStud_1810mmHeight  | Mineral Wool Board Insulation (R20)<br>was not available in the Impact<br>Estimator so Rockwool Batt was<br>selected as the closest surrogate.<br>Exterior sheating indicated in the<br>plans was assumed to be OSB. Air<br>Vapour Moisture Barrier was<br>assumed to be Polyethylene 6mil.                                                                |

|                      | 2.4.21 Wall<br>E3_152mm_SteelStud_910mmHeight   | Mineral Wool Board Insulation (R20)<br>was not available in the Impact<br>Estimator so Rockwool Batt was<br>selected as the closest surrogate.<br>Exterior sheating indicated in the<br>plans was assumed to be OSB. Air<br>Vapour Moisture Barrier was<br>assumed to be Polyethylene 6mil.                                                                                                                                                          |
|----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 2.4.22 Wall<br>E4_152mm_SteelStud_12600mmHeight | In the cladding category Composite<br>Cement Panels were not available in<br>the IE so Fiber Cement Siding were<br>selected as the closest surrogate.<br>Mineral Wool Board Insulation (R20)<br>was not available in the Impact<br>Estimator so Rockwool Batt was<br>selected as the closest surrogate.<br>Exterior sheating indicated in the<br>plans was assumed to be OSB. Air<br>Vapour Moisture Barrier was<br>assumed to be Polyethylene 6mil. |
|                      | 2.4.23 Wall<br>E4_152mm_SteelStud_1810mmHeight  | In the cladding category Composite<br>Cement Panels were not available in<br>the IE so Fiber Cement Siding were<br>selected as the closest surrogate.<br>Mineral Wool Board Insulation (R20)<br>was not available in the Impact<br>Estimator so Rockwool Batt was<br>selected as the closest surrogate.<br>Exterior sheating indicated in the<br>plans was assumed to be OSB. Air<br>Vapour Moisture Barrier was<br>assumed to be Polyethylene 6mil. |
| 3.1 Concrete Columns | 311 Column Concrete Ream N/A Rasem              | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | 5.1.1 Column_Concrete_Deam_N/A_DaSem            | Bay size & supported span are found<br>using the square root of the total<br>floor area divided by the number of                                                                                                                                                                                                                                                                                                                                     |

|                                       | columns. ie: Square root(Total floor<br>area/number of coloumns).                                                                                                                                       |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                                                                                         |
| 3.1.2 Column_Concrete_Beam_Level1     |                                                                                                                                                                                                         |
|                                       | Same assumption as 3.1.1.                                                                                                                                                                               |
|                                       | rioor is supported by two types of<br>columns, so the supported span and<br>bay size are adjusted to be<br>proportional to fraction of total<br>amount of columns that this type of<br>column makes up. |
| 3.1.3                                 |                                                                                                                                                                                                         |
| Column_Concrete_Beam_N/A_Level2       |                                                                                                                                                                                                         |
|                                       | Same assumption as 3.1.2.                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                         |
| 3.1.4 Column_Concrete_Beam_N/A_Level3 |                                                                                                                                                                                                         |
|                                       | Same assumption as 3.1.2.                                                                                                                                                                               |
| 3.1.5 Column_Concrete_Beam_N/A_Level4 |                                                                                                                                                                                                         |
|                                       | Same assumption as 3.1.2.                                                                                                                                                                               |

|                  |                             | 1                         |
|------------------|-----------------------------|---------------------------|
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
| 3.2 Wood Columns |                             |                           |
|                  | 3.2.1 Column_GL_Wood_Level1 |                           |
|                  |                             | Same assumption as 3.1.2. |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  | 3.2.2 Column_GL_Wood_Level2 |                           |
|                  |                             | Same assumption as 3.1.2. |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  | 3.2.3 Column_GL_Wood_Level3 |                           |
|                  |                             | Same assumption as 3.1.2. |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  | 3.2.4 Column_Wood_Level4    |                           |
|                  |                             | Same assumption as 3.1.2. |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  |                             |                           |
|                  | 3.2.5 Column_Wood_Level5    |                           |
|                  |                             | Same assumption as 3.1.1. |
|                  |                             |                           |

| 4.1 Insulated Suspended Sl | ab                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       |                    |
|----------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------------|
|                            | 4.1.1 Floor_Concrete_Suspendedslab_193m | im                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                    |
|                            |                                         | Weighted average thickness calculation                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Lengt |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Thick    | h     |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       | down to<br>basemen |
|                            |                                         | south                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300      | 48    | t                  |
|                            |                                         | north                                                                                                                                                                                                                                                                                                                                                                                                                                             | 365      | 21    |                    |
|                            |                                         | north                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250      | 15    |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 84    |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 2.3   | 685.7              |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1.0   | 365.0              |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.7   | 1/8.6              |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weighted |       |                    |
|                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average  |       | 307.3              |
|                            |                                         | Different thickness in same floor.<br>Floors overlap for 6 meters.<br>Weighted average thickness taken<br>depending on length of thickness on<br>level<br>Wood - Composite shear connector<br>not taken into account (pg 73 struc)<br>Area is taken from multipliers of<br>length and width<br>Shear connector not accounted in<br>between floors because the overall<br>volume of the materials are the same<br>for concrete and wood. Composite |          |       |                    |

| not measured because unsure of its components.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rigid insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laminated stramb lumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Weighted average floor thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Extra thickness completed with concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rigid insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laminated stramb lumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Weighted average floor thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Different thickness in same floor.<br>Floors overlap for 6 meters.<br>Weighted average thickness taken<br>depending on length of thickness on<br>level<br>Wood - Composite shear connector<br>not taken into account (pg 73 struc)<br>Area is taken from multipliers of<br>length and width<br>Shear connector not accounted in<br>between floors because the overall<br>volume of the materials are the same<br>for concrete and wood. Composite<br>not measured because unsure of its<br>components. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | not measured because unsure of its components.   Composition   Concrete   Rigid insulation   Laminated stramb lumber   Weighted average floor thickness   Extra thickness completed with concrete   Dmm   Composition   Concrete   Rigid insulation   Laminated stramb lumber   Oncrete   Rigid insulation   Laminated stramb lumber   Weighted average floor thickness   Different thickness in same floor.   Floors overlap for 6 meters.   Weighted average thickness taken depending on length of thickness on level   Wood - Composite shear connector not taken into account (pg 73 struc)   Area is taken from multipliers of length and width   Shear connector not accounted in between floors because the overall volume of the materials are the same for concrete and wood. Composite not measured because unsure of its components. | not measured because unsure of its components.   Composition   Concrete 193   Rigid insulation 25   Laminated stramb lumber 89   Weighted average floor thickness 307   Extra thickness completed with concrete 307   9mm Composition   Concrete 193   Rigid insulation 25   Laminated stramb lumber 89   Weighted average floor thickness 307   Omm 25   Laminated stramb lumber 89   Weighted average floor thickness 307   Different thickness in same floor. Floors overlap for 6 meters.   Weighted average thickness taken depending on length of thickness on level   Wood - Composite shear connector not taken into account (pg 73 struc)   Area is taken from multipliers of length and width Shear connector not accounted in between floors because the overall volume of the materials are the same for concrete and wood. Composite not measured because unsure of its components. |
|                   | 4.1.3 Floor_Insulation_SuspendedSlab_25mm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |  |
|-------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|
|                   |                                           | Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |  |
|                   |                                           | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 193 |   |  |
|                   |                                           | Rigid insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25  |   |  |
|                   |                                           | Laminated stramb lumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89  |   |  |
|                   |                                           | Weighted average floor thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307 |   |  |
|                   |                                           | Different thickness in same floor.<br>Floors overlap for 6 meters.<br>Weighted average thickness taken<br>depending on length of thickness on<br>level<br>Wood - Composite shear connector<br>not taken into account (pg 73 struc)<br>Area is taken from multipliers of<br>length and width<br>Shear connector not accounted in<br>between floors because the overall<br>volume of the materials are the same<br>for concrete and wood. Composite<br>not measured because unsure of its<br>components. |     |   |  |
|                   |                                           | Rigid Board Insulation: Foam                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |  |
|                   | 4.1.4 Elear Congrete SuspendedSleb 100m   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |  |
|                   | 4.1.4 FIOOT_LONCRETE_SUSPENDEDSIAD_1UUMM  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |  |
|                   |                                           | not taken into account (ng 73 struc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |   |  |
|                   |                                           | Auditorium stairs accounted in concrete. Same conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |   |  |
|                   |                                           | Floor thickness 214mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |  |
|                   |                                           | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 |   |  |
|                   |                                           | Rigid insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25  |   |  |
|                   |                                           | Laminated stramb lumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89  |   |  |
| 4.2 Slab on grade | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - * | 1 |  |
| 0                 | 4.2.1 Concrete_SOB_200mm                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |  |
|                   |                                           | Span and width taken as total                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |  |

|                             |                                 | average due to several area             |  |  |
|-----------------------------|---------------------------------|-----------------------------------------|--|--|
|                             |                                 | segments                                |  |  |
|                             |                                 | Concrete in hasement is treated as      |  |  |
|                             |                                 | foundation concrete for Flyash          |  |  |
|                             |                                 | content and Strength                    |  |  |
|                             |                                 | Auditarium COB thi dm age 200mm         |  |  |
|                             |                                 | Auditorium SOB thickness 200mm          |  |  |
|                             |                                 | Stairs accunted together for the        |  |  |
|                             |                                 | whole building.                         |  |  |
|                             | 4.2.2 Concrete_SOB_125mm        |                                         |  |  |
|                             |                                 | Span and width taken as total           |  |  |
|                             |                                 | average due to several area             |  |  |
|                             |                                 | segments.                               |  |  |
|                             |                                 | Concrete in basement is treated as      |  |  |
|                             |                                 | foundation concrete for Flyash          |  |  |
|                             |                                 | content and Strength                    |  |  |
|                             |                                 | Auditorium SOB thickness 200mm          |  |  |
|                             |                                 | Stairs accunted together for the        |  |  |
|                             |                                 | whole building.                         |  |  |
|                             |                                 |                                         |  |  |
| 5.1 Roof insulation         |                                 |                                         |  |  |
|                             | 5.1.1 Roof insulation           |                                         |  |  |
|                             |                                 | Future green roof is same               |  |  |
|                             |                                 | composition as rest of roof but         |  |  |
|                             |                                 | covered with vegetation material not    |  |  |
|                             |                                 | taken into account                      |  |  |
|                             |                                 | Insulation material: Foam               |  |  |
|                             |                                 | Polvisocvanurate                        |  |  |
| 5.2 Croce laminated timber  |                                 |                                         |  |  |
| 5.2 Cross familiated timber | 5 2 1 Poof CrossLaminatedTimber |                                         |  |  |
|                             | 5.2.1 Root_crossLammated 1 mber | Cross laminated timber is used          |  |  |
|                             |                                 | throughout the roof. No concrete on     |  |  |
|                             |                                 | structural drawings                     |  |  |
|                             |                                 | Concrete was not used because           |  |  |
|                             |                                 | architectural and structural            |  |  |
|                             |                                 | drowings are incomplete                 |  |  |
|                             |                                 | Two trace of roofs were showned in      |  |  |
|                             |                                 | the deals of level E accounted as reaf  |  |  |
|                             |                                 | Life deck of level 5 accounted as roof. |  |  |
|                             |                                 | ruture green root type of roof was      |  |  |

|  | selected. |
|--|-----------|
|  |           |