UBC Social Ecological Economic Development Studies (SEEDS) Sustainability Program Student Research Report

# **UBC North Catchment Storm System Revitalization**

#### Team #20:

**Neil Courtney** 

**Jack Stuart Gilbert** 

**Riley Jang** 

Donghwan Kim

**Grant Matthews** 

**Kory Wealick** 

**University of British Columbia** 

Civil 445 – Engineering Design and Analysis I

April 7, 2017

Disclaimer: "UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project/report and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a project/report".

APRIL 7, 2017

# UBC NORTH CATCHMENT STORM SYSTEM REVITALIZATION

PREPARED FOR: DOUG DOYLE, UBC SEEDS SUSTAINABILITY PROGRAM CIVIL 446 CAPSTONE DESIGN PROJECT

# TEAM 20

Neil Courtney

Jack Stuart Gilbert

**Riley Jang** 

Ray Donghwan Kim

Grant Matthews

Kory Wealick

# Contents

| Executive Summary                                            | 4          |
|--------------------------------------------------------------|------------|
| 1.0 Introduction                                             | 5          |
| 2.0 Project Design Criteria                                  | 6          |
| 2.1 Design Requirements                                      | 6          |
| 2.2.1 Flood Volume Reduction                                 | 6          |
| 2.1.2 Water Quality Improvement                              | 6          |
| 2.1.3 Erosion Management                                     | 6          |
| 2.2 Technical Considerations                                 | 7          |
| 2.2.1 Geotechnical Consideration                             | 7          |
| 2.2.2 Structural Consideration                               | 7          |
| 2.2.3 Hydrological Consideration                             | 7          |
| 2.2.4 Environmental Consideration                            | 8          |
| 2.3 UBC Policies and Government Laws & Regulations           | 8          |
| 2.3.1 Government Laws & Regulations                          | 8          |
| 3 0 Design Description                                       | 9          |
| 3.1 Concrete Detention Chambers                              | 9          |
| 3.1.1 Background                                             | 9          |
| 3.1.2 Selected Locations                                     | <u>و</u>   |
| 3.2 Corrugated Metal Pine (CMP) Detention Chambers           | 10         |
| 3.2 Confugated Metal Tipe (CMT) Detention enamoers           | 10         |
| 3.2.2 Dackground                                             | 12         |
| A O Geotechnical Analysis                                    | 1/         |
| 4.0 Geotechnical Analysis                                    | . 14<br>1/ |
| 4.1 Site Overview                                            | . 14       |
| 4.2 Editeral Editif Pressules                                | 16         |
| 4.5 Dediling Capacity                                        | 10         |
| 4.4 Settlement & Liquetaction Assessment                     | .10        |
| 5.0 Structural Detention Chamber Design                      | . 17       |
| 5.1 Concrete Structure Details                               | .17        |
| 5.1.2 Slabs (top)                                            | .17        |
| 5.1.3 Slabs (bottom)                                         | .1/        |
| 5.1.4 Beams                                                  | .18        |
| 5.1.5 Columns                                                | .18        |
| 5.1.6 Walls                                                  | .18        |
| 5.1.7 Pad Footings                                           | .18        |
| 5.1.8 Strip Footings                                         | .18        |
| 6.0 Corrugated Metal Pipe Detention Chamber Design           | . 20       |
| 6.1 Location 1, Chancellor Blvd Inline CMP Detention Chamber | .20        |
| 6.2 Offline CMP Detention Chamber Designs                    | .22        |
| 6.2 1 Location 2 – NW Marine Dr                              | .22        |
| 6.2.2 Location 3 – Memorial Rd                               | .24        |
| 6.2.3 Location 4 – Student Union Blvd                        | .25        |
| Location 5 – School of Music Parking Lot                     | .25        |
| 7.0 Concrete Mix Design                                      | . 26       |
| 8.0 Hydro-technical Analysis and Modelling                   | . 28       |
| 8.1 Detention Tank 1 and Tank 2                              | .28        |
| 8.2 Detention Tank 3                                         | . 29       |
| 8.3 Storage Loop Piping                                      | .30        |
| 9.0 Stormwater Treatment                                     | . 32       |

| 10.0 Construction Work Plan                                              | 33 |
|--------------------------------------------------------------------------|----|
| 10.1 Construction Crews and Plan of Engagement                           | 34 |
| 10.1.1 Crew A                                                            | 34 |
| 10.1.2 Crew B                                                            | 35 |
| 10.1.3 Cecil Green Park                                                  | 36 |
| 10.2 Anticipated Construction Issues                                     | 37 |
| 10.2.1 Deep Excavation                                                   | 38 |
| 10.2.2 Museum Deliveries                                                 | 39 |
| 10.2.3 Temporary Parking                                                 | 39 |
| 11.0 Project Schedule                                                    | 41 |
| 11.1 Key Constraints and Considerations                                  | 41 |
| 11.2 Sub-Project Preliminary Order, Estimated Durations and Gantt Charts | 41 |
| 11.2.1 Overall Schedule and Sample Task List                             | 41 |
| 11.2.2 Individual Project Priority Justification                         | 43 |
| 12.0 Cost Estimate                                                       | 44 |
| 13.0 Future considerations and Conclusion                                | 46 |
| 13.1 Future Considerations                                               | 46 |
| 13.1.1 Future Land Use                                                   | 46 |
| 13.1.2 Projected Impact on Storm System                                  | 46 |
| 13.1.3 Expected Usable Life Span                                         | 47 |
| 13.2 Conclusion                                                          | 48 |
| Appendix A – Design Drawings                                             | 49 |
| Appendix B – Stormwater Modelling Data                                   | 54 |
| Appendix C – Cost Estimate Take-Offs                                     | 58 |
| Appendix D – Project Schedule                                            | 67 |
| Appendix E: Structural Analysis Calculations                             | 74 |
| Appendix F: Geotechnical Analysis Calculations                           | 80 |

# Figures

| Figure 1: Concrete Detention Chamber Locations                                                          | 10 |
|---------------------------------------------------------------------------------------------------------|----|
| Figure 2: Corrugated metal pipe                                                                         | 11 |
| Figure 3: Corrugated metal pipe detention facility locations                                            | 12 |
| Figure 4: Left: Geological profile of TH01-01. Right: Geological profile of TH01-02                     | 14 |
| Figure 5: Soil profile acting on 4.5m tanks                                                             | 16 |
| Figure 6: Concrete chamber section view                                                                 | 19 |
| Figure 7: Location 1, Chancellor Blvd inline corrugated metal pipe detention chamber                    | 20 |
| Figure 8: Isometric view of Location 1, Chancellor Blvd inline detention chamber                        | 21 |
| Figure 9: Isometric view of concrete 22° union located at mid-span of Chancellor Blvd detention chamber | 21 |
| Figure 10: Corrugated metal pipe with smooth steel liner with polymer coating                           | 22 |
| Figure 11: Location 2, NW Marine Dr offline corrugated metal pipe detention chamber                     | 23 |
| Figure 12: Isometric view of Location 2, NW Marine Dr offline detention chamber                         | 23 |
| Figure 13: Location 3, Memorial Rd offline corrugated metal pipe detention chamber                      | 24 |
| Figure 14: Isometric view of Location 2, NW Marine Dr offline detention chamber                         | 24 |
| Figure 15: Location 4, Student Union Blvd offline corrugated metal pipe detention chamber               | 25 |
| Figure 16: Location 5, School of Music Parking Lot corrugated metal pipe detention chamber              | 25 |
| Figure 17: Tank 1 and Tank 2 Weir Schematic                                                             | 28 |
| Figure 18: Water levels in tanks 1 and 2                                                                | 29 |
| Figure 19: Schematic of Tank 3                                                                          | 30 |
| Figure 20: Tank 3 water level                                                                           | 30 |
| Figure 21: Flooding of Chancellor Blvd                                                                  | 31 |
| Figure 22: Upgraded Pipe Profile and HGL of Chancellor BLVD                                             | 31 |
| Figure 23: Stormceptor System                                                                           | 32 |
| Figure 24: Construction Work Plan Overview                                                              | 33 |
| Figure 25: Storage Locations Projects 1-3 (Crew A)                                                      | 34 |
| Figure 26: Storage Location Project 4 (Chancellor Boulevard)                                            | 35 |
| Figure 27: Storage Location Projects 5 & 6 (Student Union Blvd and Student Union Building)              | 36 |
| Figure 28: Storage Location Project 7                                                                   | 37 |
| Figure 29: Sheet Pile Design                                                                            | 38 |
| Figure 30: Delivery Site and Work Area                                                                  | 39 |
| Figure 31: Temporary Parking Area                                                                       | 40 |
| Figure 32: North catchment redevelopment and sub-project order, durations, and start/finish             | 42 |
| Figure 33: North catchment redevelopment sub-project summary Gantt chart                                | 42 |
| Figure 34: NW Marine Drive Gantt chart schedule                                                         | 42 |

# Tables

| Table 1: Concrete detention chamber details              | 10 |
|----------------------------------------------------------|----|
| Table 2: Corrugated metal pipe detention chamber details | 13 |
| Table 3: Soil classification                             | 15 |
| Table 4: Estimated Soil Parameters by TROW Consulting    | 15 |
| Table 5: Element sizing and reinforcement details        | 19 |
| Table 6: Concrete aggregate details                      | 26 |
| Table 7: Concrete mix design details                     | 27 |
| Table 8: Weir heights                                    | 29 |
| Table 9: Construction cost breakdown                     | 44 |
| Table 10: Final cost estimate                            | 45 |

# **Executive Summary**

T20 Consultants have designed an optimized solution to improve and protect the UBC campus drainage system. UBC SEED's sustainability goals are major influences to the design process; by integrating the new drainage system with the existing infrastructure and mitigating the impact on the surrounding ecosystem, our design has met and exceeded SEED's goals. We have achieved the main objective of preventing overflow in the spiral drain while building on the current drainage system with a Low Impact Design approach. Utilizing sub-surface detention chambers we have kept construction and maintenance costs low while creating a functioning system that minimizes impact on surface functionality. To utilize the existing infrastructure and eliminate the environmental impact of infrastructure replacement, our design continues to divert storm runoff through the existing spiral drain; preserving the drain's historical and practical benefits. A complete schedule breakdown has been provided, estimating a construction time of the entire system to be just over 11 months, including all aspects and preparation. As well we have included a detailed C level cost estimate. The total estimated cost is \$3.3 million. In addition to the storm system design some future recommendations, including eventual upgrade of the spiral drain, are included.

# 1.0 Introduction

The stormwater system for the University of British Columbia Campus is divided into four major catchments. The North Catchment is the largest and most densely populated of the four catchments and flows out through the UBC Spiral drain located at the northern tip of campus. The UBC Spiral Drain, the last of its kind in North America, is 80 years old and has an expected remaining service life of 30-100 years. Storm sewer lines run into the 6m wide (2.5m inner diameter) Spiral Drain with water then dropping 60 vertical meters through a vortex shaft before it is cushioned at the bottom, transported and drained out into the ocean. Currently the Spiral Drain has an expected capacity of roughly a 70-year storm flood event. Given its capacity, the landscape close to the Spiral drain has been altered to retain large volumes of water in flood situations. Without these alterations, peak flows would have caused water to flow through the Pacific Spirit Park and over the cliffs surrounding campus. This would have caused significant erosion of the cliff edge and thus is extremely undesirable.

It is the goal of the University of British Columbia SEEDS (Social Ecological Economic Development Studies) Sustainability Program to research and design a replacement system for the North Catchment. The new system would be designed to perform in a 200-year (maximum) storm event and exceed stormwater quantity and quality standards. To undertake this process UBC SEEDS has contracted T20 Consulting to handle the full research and design process for this project. The Spiral Drain is in an environmentally sensitive area due to the surrounding cliffs and Pacific Spirit Park. Special care in the design process will be given to these areas to ensure the future system is non-intrusive while also adding an aesthetic element to the campus.

| Name                | Contributions                                                                          |
|---------------------|----------------------------------------------------------------------------------------|
| Neil Courtney       | Concrete chamber design, structural analysis, cost estimate, report: proof & submit    |
| Jack Stuart Gilbert | Hydro modelling and analysis, stormwater treatment, executive summary                  |
| Riley Jang          | Construction overview, updated schedule                                                |
| Donghwan Kim        | Project design criteria, concrete mix design                                           |
| Grant Matthews      | Geotechnical analysis, introduction                                                    |
| Kory Wealick        | CMP detention chambers, design description, initial schedule, report: compile & format |

The following outlines individual project contributions

# 2.0 Project Design Criteria

This section provides design requirements, technical considerations of the project as well as UBC policies and Federal & Provincial regulations.

# 2.1 Design Requirements

The primary goal of the project is to control the quality and quantity of the stormwater to meet the demands of a 1-in-200-year storm event. The specific detailed design includes flood volume reduction, water quality improvement and erosion management.

#### 2.2.1 Flood Volume Reduction

The main purpose of designing a storm water management system is to reduce the total runoff volume to meet the capacity during extreme rainfall. The design utilizes a combination of underground water detention chambers and storage loops to minimize the risk of overland flows.

#### 2.1.2 Water Quality Improvement

The stormwater runoff contains sediments, metals, oils and other pollutants that are potentially harmful to the surrounding ecosystem and threats the environments. The use of stormwater filtration system has been implemented in the design to improve water quality.

#### 2.1.3 Erosion Management

To minimize cliff erosion, the runoff flow rate must be controlled and limited. The flow rate of runoff depends on the design of pipe network system. The erosion due to a continuous flowing stormwater within detention chambers and storage loop must be minimized by controlling flows and selecting appropriate materials.

### 2.2 Technical Considerations

In a detailed design of storm water management system to mitigate flooding at North Catchment area in UBC, we have considered geotechnical, structural, hydrological and environmental aspects to approach our design practical, efficient and sustainable.

#### 2.2.1 Geotechnical Consideration

Soil profile is estimated with the data provided by PITEAU ASSOCIATES, "Hydrogeological and geotechnical Assessment of Northwest Area UBC Campus." The estimated soil profile is assumed to be consistent over North Catchment area and it is used to calculate the amount of settlement, bearing stresses and horizontal and vertical pressures on the storage tank below the ground. To ensure a compact and predictable soil base, various site remediation techniques are required depends on the soil conditions. During an excavation of ground, the sheet piling technique is recommended as it is readily available and economical. Considering approximately 5m excavation is required below the ground, one or two ground anchors are suggested as it provides extra strengths and improves a slope stability.

#### 2.2.2 Structural Consideration

The structural design of concrete storage is analyzed by following CSA standard A23.3-04 in "Design of Concrete Structures "and NBCC 2015 – National Building Codes of Canada. Based on NBCC requirements, the magnitude of the loads is determined. The designed dimensions of concrete storage are used to calculate reinforcement requirements for slabs and walls. The strip footings and walls are designed to resist both the gravity and lateral loads.

#### 2.2.3 Hydrological Consideration

The Storm Water Management Model (SWMM) is used to simulate both single-event and long-term(continues) to meet storm water capacity for large flood events for the North Catchment area.

#### 2.2.4 Environmental Consideration

To improve stormwater quality and to minimize pollution, Stormceptor, an oil grit separator system is used to remove pollutants such sediments or free oils. Stormceptor is preferred as it captures pollutants during all rainfall events including extreme storms. Furthermore, it can be redeveloped and constructed anywhere that stormwater quality treatment is needed.

# 2.3 UBC Policies and Government Laws & Regulations

The lands of UBC Vancouver campus, where the stormwater detention facility will be installed, is located in the unorganized territory of the Greater Vancouver Regional District; therefore, the project adheres to the requirements outlined in the UBC Vancouver Campus Plan and the UBC Land Use Plan. The project is designed to meet the requirements of Federal Government and Provincial Government.

### 2.3.1 Government Laws & Regulations

The design of stormwater management system complies with both Federal and Provincial regulations and has been designed to meet the requirements:

- Federal Government
- Canadian Environmental Protection Act: pollution prevention and the protection of the environment and human health
- Fisheries Act: serious harm to fish or any permanent alterations within all water in the fishing zones of Canada
- Provincial Government
- Water Sustainability Act: ensure a sustainable supply of fresh clean water to B.C. residents
- Environmental Management Act: a detrimental environmental impact occurs when a change in the quality of air, land and water

# 3.0 Design Description

# 3.1 Concrete Detention Chambers

This section provides an overview of the concrete detention chambers used in this project, a full structural detailing description can be found in Section 5 as well as final construction drawings in Appendix A, structural analysis calculations in Appendix E.

#### 3.1.1 Background

To meet the large flooding demands of our project area, large concrete retention chambers needed to be designed. These chambers are essentially 1-storey reinforced concrete apartment buildings consisting of slabs (upper/lower), beams, columns, exterior walls and footings. These features will be completely sub surface, thus minimizing impact on future and existing UBC infrastructure and can be constructed in a very efficient manner with the latest industry methods used in cast in place concrete construction today.

#### 3.1.2 Selected Locations

Concrete detention chambers were selected to be the preferred design in three of the eight locations, based off required storage volume and site constraints. Where sites had availability of square footprints these were the selected design, as opposed to the CMP chambers which utilized longer "channel" type footprints. The selected locations can be seen on the Figure 1 and Table 1 show the selected locations and outline their respective configurations.



**Figure 1: Concrete Detention Chamber Locations** 

|                          | Tank 1 | Tank 2 | Tank 3 |
|--------------------------|--------|--------|--------|
| Length (m)               | 36     | 30     | 30     |
| Width (m)                | 18     | 12     | 18     |
| Height (m)               | 4.9    | 4.9    | 2.4    |
| Volume (m <sup>3</sup> ) | 2900   | 1500   | 900    |

#### Table 1: Concrete detention chamber details

# 3.2 Corrugated Metal Pipe (CMP) Detention Chambers

### 3.2.1 Background

Wherever possible in the design, corrugated metal pipe was chosen as the primary material for detention chamber construction. For this purpose, CMP offered large cost savings over alternative concrete designs. CMP is a relatively inexpensive material, and its economic advantages are further compounded by requiring a very fast and simple installation process. Additionally, CMP has a much lower carbon footprint per volume of water stored, and a longer service life.



Figure 2: Corrugated metal pipe

The design uses CMP in numerous configurations to detain a large range of water volumes, from 30 m<sup>3</sup> to 1670 m<sup>3</sup>. Detention facilities were laid out with either a single containment pipe, or two to three twinned pipes. The pipes chosen ranged in diameter from 72" to 84". Offline configurations were used in all but one CMP detention facility design.

By utilizing an offline configuration, these detention chambers will only be filled during high intensity rain events and will not be subjected to long periods of water running through them, which can lead to scouring of the corrugated internal surface. The one facility in an inline configuration has been designed with a hydraulically smooth steel liner with polymer coating, to prevent wear from scouring. Small diameter outlets are used on each of the chambers to allow them to fill and slowly release stormwater during a high intensity rain event.

### 3.2.2 Selected Locations

CMP was determined to be the most suitable option in five of the eight locations requiring a detention chamber. The CMP detention facility locations were numbered from one to five for ease of reference. The governing factor allowing for choosing CMP for a facility was the availability of surface area. CMP chambers cannot be stacked, which makes them unsuitable for chambers requiring a high containment volume within a small surface area. Location numbers 1, 2, and 4 are situated under unused, grassed areas, while locations 3, and 5 are to be installed under paved roads.

Figure 3 and Table 2 show the selected locations and outline their respective configurations.



Figure 3: Corrugated metal pipe detention facility locations

|                    | Location | Total Volume | Length of | Number of | Pipe          | Config. |
|--------------------|----------|--------------|-----------|-----------|---------------|---------|
|                    | Number   | (m^3)        | Pipe (m)  | Pipes     | Diameter (in) |         |
| Chancellor<br>Blvd | 1        | 1670         | 213       | 3         | 72            | Inline  |
| NW Marine<br>Dr    | 2        | 200          | 37        | 3         | 72            | Offline |
| Memorial Rd        | 3        | 120          | 20        | 2         | 78            | Offline |
| Walter Gage        | 4        | 65           | 19        | 1         | 84            | Offline |
| School of<br>Music | 5        | 30           | 10        | 1         | 78            | Offline |

#### Table 2: Corrugated metal pipe detention chamber details

# 4.0 Geotechnical Analysis

T20 Consultants used borehole data from Piteau Associates and estimated soil properties used by Trow Consulting Engineers to estimate the corresponding loads acting on the underground detention tanks. It is recommended that during initial excavation that the soil be analyzed to confirm assumptions.

### 4.1 Site Overview

For the three tanks on site two different borehole logs were used in geotechnical calculations. The two tanks located on Cecil Green Parkway (CGP) used TH01-01 while the single tank near Student Union Boulevard (SUB) used TH01-02.



Figure 4: Left: Geological profile of TH01-01. Right: Geological profile of TH01-02

| Layer | Soil Classification       |
|-------|---------------------------|
| 1     | SAND - compact            |
| 2     | SAND - stiff to compact   |
| 3     | SAND - loose              |
| 4     | FILL - till & medium sand |
| 5     | SAND-SILT                 |
| 6     | SILT                      |
| 7     | SILT - sandy              |

#### Table 3: Soil classification

From the geological profile can see variations between both sites. For the CGP detention tanks the soil was all assumed to be Compact Sand. The SUB tank has many layers of fill, silt, & sand. It is recommended that excavated compact sand from CGP be moved to the SUB when backfilling around the tank.

Using compact sand around the tanks increases the bearing capacity and also simplifies all design. TROW Consulting estimated all sand to depth of 7m of having the same properties. Using this same estimation we are able to create a simplified homogenous geological profile surrounding both tanks.

| Soil Type         | ρ (kg/m3) | Y (kN/m3) | Ф' (°) | G (Mpa) | K (kPa)   | Cohesion (kPa) |
|-------------------|-----------|-----------|--------|---------|-----------|----------------|
| SAND              | 2000      | 19.6      | 38     | 200     | 2000      | N/A            |
| SAND - Very Dense | 2080      | 20.4      | 44     | 260     | 2600      | N/A            |
| SILT              | 1900      | 18.6      | N/A    | 100-300 | 1000-3000 | 200-600        |

#### Table 4: Estimated Soil Parameters by TROW Consulting

# 4.2 Lateral Earth Pressures

To prevent wall collapse the tanks are required to be designed for lateral earth pressures. When calculating the lateral loads the following assumptions were required:

- Groundwater assumed to be at 0m
- Hydrostatic stresses are present
- The detention tank is empty

It should be noted that groundwater was found to be at ~1m depths near the detention tanks, but due to the uncertainty the groundwater was said to be at ground level to maximize horizontal pressures.



Figure 5: Soil profile acting on 4.5m tanks

Using the soil profile above a lateral earth pressure of 58kN/m was calculated for CGP tanks & 14kN/m for the SUB tank. Calculations can be found in Appendix F.

#### 4.3 Bearing Capacity

Bearing capacity was calculated for the footings and for the global system. Due to the large tank area sand strength of soil the detention tanks are within tolerable limits meeting a factor of safety of 2.0+ for all bearing calculations. Sample calculations can be found in Appendix F.

### 4.4 Settlement & Liquefaction Assessment

Settlement was assessed below the column footings. Dense sand is located beneath the detention chambers and will undergo minimal settlement of less than 10mm over a 200-year life span. It is still recommended to densify the gravel below the base with a common compactor if feasible.

Liquefaction was not assessed for this project due to the location of the detention chambers. The strength of sand is sufficient for moderate seismic events however during a high seismic event the cliffs surrounding UBC may become unstable and the chambers will fail. For this reason it is not recommended to further densify the soils for liquefaction prevention.

# 5.0 Structural Detention Chamber Design

This section provides a detailed overview of the process associated with structural design of the concrete detention chambers. Based off of the loads determined in Section 4 as well as the concrete mix properties analyzed in Section 7 the concrete chambers were designed for the limiting case where the chambers are empty and there is no outward pressure on the walls only inward from the surrounding soil. Several references were used in the design of these structures and they included:

- CSA 23.3-4 Design of Concrete Structures
- NBCC 2015 National Building Code of Canada
- Reinforced Concrete Design (A practical approach) 2013 (Brze, Pao)

Full calculation sheets can be seen in Appendix F as well as detailed construction drawings in Appendix A

### 5.1 Concrete Structure Details

These structures were essentially designed as simple "1-storey" cast in place concrete buildings consisting of slabs (top/bottom), beams, walls, columns and footings. With the experience in the construction industry today to erect 40-storey concrete structures in this manner, a 1-storey building will be able to be built with sufficient ease and accuracy. The rest of this section will describe the sizing, reinforcement and purpose of each structural element.

#### 5.1.2 Slabs (top)

The top slab acts as the barrier between the soil above and the concrete structure below. It takes the weight of the soil and transfers it into the beams and perimeter walls. The top slabs have clear span lengths of 6m in both directions. They have been designed with a thickness of 300mm and 20M @ 200mm spacing (both directions) on the bottom to resist positive bending moments. It also contains 20M @ 500mm spacing (both directions) at the top for slab integrity and smaller negative bending moments.

#### 5.1.3 Slabs (bottom)

The bottom slab acts as a barrier between the water above and the soil below. It is fully supported underneath by the soil and footings and only requires concrete for minimal bending moments and shrinkage/temperature effects. It has been designed with a thickness of 150mm and 15M @ 1000mm spacing in both directions.

#### 5.1.4 Beams

The beams transfer the loads from the slabs to the columns and the perimeter walls. They have all been designed with clear span lengths of 6m from 1 support to the next. The beam dimensions are 800mm deep with a width of 400mm. They contain 6-25M reinforcement at the bottom, 3-25M at the top and 10M stirrups @ 300mm spacing for shear reinforcement.

#### 5.1.5 Columns

The columns transfer the loads from the beams to the pad footings below. Due to the relatively short column lengths, slenderness effects did not need to be considered. The columns are 400mm square with 4-20M reinforcement and 20M stirrups @ 300mm.

#### 5.1.6 Walls

The perimeter walls act as the exterior barrier between the surrounding soil and the contained water. They transfer vertical loads from the beams and upper slabs to the strip footings below. They are 200mm thick with 20M @ 200mm spacing running vertically and 15M @ 500mm running horizontally.

#### 5.1.7 Pad Footings

The pad footings take the full loads from the columns and distributed them evenly over the soil. They are 500mm thick and 2000mm square with 8-20M reinforcement in both horizontal directions.

#### 5.1.8 Strip Footings

The strip footings run around the full perimeter length and distribute the vertical loads transferred from the walls. They are 300mm thick and 750mm wide with 3-15M running longitudinally and 15M @ 300mm running transversely across the length of the strip.

Table 5 below provides a complete summary of each elements sizing and reinforcement details. Tank 2 has been selected to show an isometric cut view of what the tanks look like and can be seen below in Figure 6.

| Element        | Sizing                     | Reinforcement                     |  |
|----------------|----------------------------|-----------------------------------|--|
| Slabs (Top)    | Thickness = 300mm          | 20M @ 200mm (2-directions,        |  |
|                |                            | bottom), 20M @ 500 (2-directions, |  |
|                |                            | top)                              |  |
| Beams          | Depth = 800mm, Width =     | 6-25M (bottom), 3-25M (top) and   |  |
|                | 400mm                      | 10M stirrups @ 300mm              |  |
| Columns        | Width = 400mm (square)     | 4-20M (Longitudinal) and 10M      |  |
|                |                            | stirrups @ 300mm                  |  |
| Walls          | Thickness = 200mm          | 20M @ 200mm (Vertical), 15M @     |  |
|                |                            | 500mm (Horizontal)                |  |
| Slabs (bottom) | Thickness = 150mm          | 15M @ 1000mm (2-directions)       |  |
| Pad Footings   | Width = 2000mm (square),   | 8-20M (2-diirections)             |  |
|                | Thickness = 500mm          |                                   |  |
| Strip Footings | Width = 750mm, Thickness = | 3-15M (longitdinal) and 15M @     |  |
|                | 300mm                      | 300mm (Transverse)                |  |

#### Table 5: Element sizing and reinforcement details



#### Figure 6: Concrete chamber section view

# 6.0 Corrugated Metal Pipe Detention Chamber Design

This section outlines the locations and general configurations for the five CMP detention chambers throughout the project. Isometric drawings are provided to demonstrate the appearance of each chamber structure. Dimensioned technical drawings for each facility are located in Appendix A.

# 6.1 Location 1, Chancellor Blvd Inline CMP Detention Chamber

Location 1, along Chancellor Boulevard, is the only inline configuration CMP detention facility within this project. This facility has been designed to contain a volume of 1670 m<sup>3</sup>. An existing storm sewer trunk runs beneath the grassy median that separates the east and west lanes of Chancellor Blvd. This inline storage chamber will replace a portion of the sewer trunk and will be built in the existing sewer's location. Figure 7 outlines the area of Location 1.



Figure 7: Location 1, Chancellor Blvd inline corrugated metal pipe detention chamber

This chamber consists of three 72" diameter pipes running a length of 213 m. As the project area contains a slight bend, the CMP chamber has been designed with a concrete 22° union which will join two sections of

pipe at mid-span. Figure 8 displays an isometric view of the design and Figure 9 shows a more detailed view of the mid-span concrete union.



Figure 8: Isometric view of Location 1, Chancellor Blvd inline detention chamber



Figure 9: Isometric view of concrete 22° union located at mid-span of Chancellor Blvd detention chamber

Due to the inline configuration of this design, this detention chamber will be frequently be subjected to running water, so it was necessary to choose a CMP that can handle scouring. A CMP with a hydraulically smooth steel liner with polymer coating was chosen. Figure 10 shows a cutaway of the chosen CMP.



Figure 10: Corrugated metal pipe with smooth steel liner with polymer coating

# 6.2 Offline CMP Detention Chamber Designs

Locations 2, 3, 4, and 5 are all designed in an offline configuration. These offline tanks range in volume from 30 m<sup>3</sup> to 200 m<sup>3</sup>.

### 6.2 1 Location 2 – NW Marine Dr

A 200 m<sup>3</sup> detention chamber will be constructed at this location. The chamber will consist of three 37 m long, 72" diameter pipes. Figure 11 and Figure 12 outline the project location and provide an isometric view of the detention chamber.



Figure 11: Location 2, NW Marine Dr offline corrugated metal pipe detention chamber



Figure 12: Isometric view of Location 2, NW Marine Dr offline detention chamber

### 6.2.2 Location 3 – Memorial Rd

A 120 m<sup>3</sup> detention chamber will be constructed at this location. The chamber will consist of two 20 m long, 78" diameter pipes. Figure 13 and 14 outline the project location and provide an isometric view of the detention chamber.



Figure 13: Location 3, Memorial Rd offline corrugated metal pipe detention chamber



Figure 14: Isometric view of Location 2, NW Marine Dr offline detention chamber

### 6.2.3 Location 4 – Student Union Blvd

A 65 m<sup>3</sup> detention chamber will be constructed at this location. The chamber will consist of a single 19 m long, 84" diameter pipe. Figure 15 outlines the project location.



Figure 15: Location 4, Student Union Blvd offline corrugated metal pipe detention chamber

# Location 5 – School of Music Parking Lot

A 30 m<sup>3</sup> detention chamber will be constructed at this location. The chamber will consist of a single 10 m long, 78" diameter pipe. Figure 16 outlines the project location



Figure 16: Location 5, School of Music Parking Lot corrugated metal pipe detention chamber

# 7.0 Concrete Mix Design

It is critical to consider corrosion-control as to increase durability of concrete; it directly affects the environment, threatens public health and eventually lead to a structural failure. The deterioration of concreate and reinforcement steel is caused from a chemical or electrochemical reaction with its surrounding environment such as soil and water. To mitigate corrosion, an appropriate concrete mix design is required followed by CSA standard. The compressive strength of concrete is 30MPa, deliberated from the structural analysis.

According to ACI211.1-91(2002), Table 6.3.1 and CSA23.1-94, Table 6, the maximum slump of the concrete is 75mm.

The air-entrained concrete is required to avoid freezing thaw cycle. In the Table 6.3.3 of ACI 211.1-91(2002), the recommended average total air content is 4.5% with an approximate mixing water of 184 kg/m3.

The reinforced structure is exposed to chloride as well as freezing and thawing condition with a strength of 30MPa; therefore, it is designed with a maximum permissible water-cement ratio of 0.45.

The maximum size of aggregate is 19mm according to section 14.2.2.1 of CSA 23.1-94. The fineness modulus of coarse aggregated is assumed to be 2.8.

From Table 6.3.6 of ACI 211.1-91(2002), the volume of coarse aggregate per unit volume of concrete is found out to be 0.62.

|                     | Fine aggregate | Coarse aggregate |  |
|---------------------|----------------|------------------|--|
| Fineness Modulus    | 2.8            | 2.8              |  |
| Moisture Content(%) | 1.3            | 0                |  |
| Moisture Absorption | 2              | 0.2              |  |
| Capacity(%)         |                |                  |  |
| Specific Gravity    | 2.68           | 2.7              |  |

| Table | 6: | Concrete | aggregate | details |
|-------|----|----------|-----------|---------|
|-------|----|----------|-----------|---------|

Note: Dry rodded density of coarse aggregate: 1530 kg/m<sup>3</sup>

Applying an adjustment of aggregate moisture, the material proportioning in the 30MPa structural mix for 1m3 is as follows:

#### Table 7: Concrete mix design details

|                   | Water | Cement | Coarse aggregate | Fine aggregate | Air |
|-------------------|-------|--------|------------------|----------------|-----|
| (%)               | 20    | 14.1   | 31.2             | 30.2           | 4.5 |
| Kg/m <sup>3</sup> | 200   | 445    | 840              | 810            | -   |

Note: water-to-cement ratio is 0.45 as it is mentioned above.

The amount of cement can be adjusted or replaced with Supplementary Cementing Materials (SCMs). Adding Silica fume supports concrete to achieve higher strength and reduces amount of calcium hydroxide formed during Pozzolanic reaction. Reducing PH of concrete mitigates a corrosion such as sulfate attack, Alkali-Aggregation or Chloride Diffusion. In this case, Silica Fume is the most recommended SCMs to use as it lowers permeability and increases resistivity of chemical attacks or abrasions. Air Entraining Agent (AEA) is also recommend to use as it prevent freeze-thaw cycle form creating internal cracks and leading corrosions.

# 8.0 Hydro-technical Analysis and Modelling

To ensure proper functionality of our storm system design a hydro-technical analysis has been conducted using EPA SWMM. EPA SWMM is a common modeling program that is used quite frequently in the industry for projects such as this. The client provided an initial EPA SWMM file, which included 200 year rain event data and catchment areas, therefore, all that has been altered is the infrastructure handling the storm water runoff. The below sub-sections will provide hydro-technical data supporting the effectiveness of the new components of the system.

### 8.1 Detention Tank 1 and Tank 2

As previously stated, detention tanks 1 and 2 are located just north of the spiral drain. These tanks are designed to fill up only during significant rain events and to slowly drain at a low flow rate which will ease demands of the spiral drain.

A network of weirs has been designed to allow excess flows within the system to flow to the detention tanks. Two weirs will lead into the smaller upstream tank, tank 2, as well as one weir allowing flow out to avoid overflow. The large, downstream tank 1 has a total of four weirs allowing flow into the tank, including an overflow weir from tank 2. Finally both tanks have a 100mm DIA drainage pipe connected to the bottom. This small pipe is designed to slowly release the detained water at a rate significantly less than the 875mm DIA storm mains. The layout of the weirs can be seen in the below EPA SWMM schematic.



Figure 17: Tank 1 and Tank 2 Weir Schematic

The weirs labeled above have the following heights, respective from the invert of the connection point to the main storm system. Note, weir 4 acts as a precautionary overflow weir directing water from tank 2 to tank 1, when tank 2 reaches roughly 90% capacity (4.0m depth).

| Weir<br>Number | Weir Height<br>from Inlet Invert |
|----------------|----------------------------------|
| 1              | 2.00 m                           |
| 2              | 2.00 m                           |
| 3              | 2.00 m                           |
| 4              | 4.00 m                           |
| 5              | 1.00 m                           |
| 6              | 0.50 m                           |
| 7              | 2.20 m                           |

Table 8: Weir heights

During the 200 year rain event modeled, tank 1 fills to roughly 80% capacity while tank 2 fills to 85% capacity. However, this detention adequately prevents flooding within this area of the storm water system. A plot of the water levels within the two tanks during a 24 hour, 200 year rain event can be seen below.



Figure 18: Water levels in tanks 1 and 2

### 8.2 Detention Tank 3

Detention tank 3 is similar to detention tanks 1 and 2; however it is smaller and has a much simpler arrangement of piping. As the area faces much less excessive flow than where the other two tanks are located, tank 3 has only one inlet weir and has a slightly larger 150mm DIA drainage pipe. The below EPA SWMM schematic shows the arrangement of tank 3.





Although this tank fills to roughly 95% capacity during a 200 year rain event, the slightly larger drainage pipe paired with the smaller size of this tank make for a much shorter drainage time. This can be seen in the image below.





### 8.3 Storage Loop Piping

The final component to the UBC storm system upgrades are the "storage loops" that have been designed to handle smaller scale flooding in the system. These have been described in previous sections of the report,

see Section 6.0 for detailed design information. From a hydro-technical sense these storage loops can be treated as storage tanks like in the previous section. They have retention volume and an inlet weir and outlet orifice, allowing for them to slowly release excess flow to the system. However, the Chancellor Boulevard line required specific attention as it is an inline storage system.

Flow backups along Chancellor Boulevard occur as it runs west towards the spiral drain. Below is a profile of the pre-upgrades EPA SWMM model at the peak flow hour (8:30am). Circled in this profile is manhole B6D-N94 as the hydraulic grade line, shown in blue, has reached the top of the manhole, which results in flooding.



Figure 21: Flooding of Chancellor Blvd

Now with the addition of the three 72 inch retention pipes flooding has been eliminated from the system, as seen below.



Figure 22: Upgraded Pipe Profile and HGL of Chancellor BLVD

# 9.0 Stormwater Treatment

Stormwater from the Northern UBC catchment is directed through the storm system and down the spiral drain, after this it is discharged directly out into the ocean. UBC SEEDS prides itself on pushing sustainability and moving towards green projects and operations. Vancouver is an environmentally sensitive area that is home to various different ecosystems, the surrounding ocean being one of the most important ones. To go along with UBC SEEDS mission statement and move towards a sustainable future, discharge water quality is of the utmost importance.

T20 Consultants has chosen to use Stormceptor Oil and Grit separators throughout the system. Stormceptor is a well-respected company that has been creating stormwater treatment systems for many years, and has become common use in the industry. The Stormceptor system can easily be installed in a standard sized manhole and are affective at removing coarse sediment, as well as oil, from surface runoff. As the UBC area consists of many parking lots and vehicle traffic, the upgrades have been designed to incorporate a Stormceptor system at each new storage feature's location, however we do recommend more be installed into the UBC stormwater system. See the below image for a rough layout of the Stormceptor system, for more information on please visit www.imbriumsystems.com/Imbrium/Stormceptor.



Figure 23: Stormceptor System

# 10.0 Construction Work Plan

Construction has been split into 7 sub-project locations. The locations of the sub-projects are:

- 1. Northwest Marine Drive
- 2. Memorial Road
- 3. UBC School of Music
- 4. Chancellor Boulevard
- 5. Student Union Boulevard (Walter Gage Tower)
- 6. Student Union Building
- 7. Cecil Green Park



Figure 24: Construction Work Plan Overview

# 10.1 Construction Crews and Plan of Engagement

Construction operations will be conducted by two construction crews. The two crews will both begin work on May 1, 2017 (at separate locations) and on September 26, 2017 they are expected to commence work at Cecil Green Park together. Crew A will complete project 1 (NW Marine Dr), project 2 (Memorial Road), and project 3 (School of Music) before moving on to the final project, project 7 (Cecil Green Park). Crew B will first complete the installations for project 4 (Chancellor Boulevard), project 5 (Walter Gage), and project 6 (Student Union Boulevard) before moving on to project 7 (Cecil Green Park). Construction will wrap on April 10<sup>th</sup>, 2018. Installations of corrugated metal pipe will use the classic technique of trench and installation, and the concrete chambers will be cast-in-place.

#### 10.1.1 Crew A

Crew A will be assigned projects 1-3, and 6. Projects 1-3 only involve the installation of corrugated metal pipe storage loops, thus Crew A will consist of 9 members: two excavators and operators, one surveyor, two dump trucks and drivers, three laborers and one foreman. The locations of these projects all have adjacent fields which can be used for pipe and equipment storage without causing interference to neighbouring activities. Project 1 (NW Marine Drive) will use the grass area next to St. John's College Parking Lot. Projects 2 and 3 (Memorial Road and UBC School of Music) are located on opposing sides of the intersection of West Mall and Memorial road, and they will use the grassy area to the northwest of the intersection for storage (just east of UBC School of Music).



Figure 25: Storage Locations Projects 1-3 (Crew A)
During construction activities these areas will be closed to public access which will allow for excavated materials to be piled adjacent to the excavation location until they can be loaded into the dump trucks. One excavator will be digging the trenches for the storage loops while the second excavator loads the materials on to the trucks for hauling. Materials brought in for the pipe foundations and installation will share the same areas.

The installation of the pipe itself will require one or both excavators (depending on pipe segment lengths) to lift and place the pipe in the trenches as the pipe labourers aid in alignment and placement. After placement the labourers will follow standard compaction techniques to prepare the ground for repaving conditions. In areas affected that do not have pavement, crew A will restore the conditions to the pre-existing conditions they arrived to. Crew A will then move on to the next sub-project location and a paving crew will come in to finish of the restoration of roads and parking lot surfaces.

### 10.1.2 Crew B

Crew be will be assigned projects 4-6, two of which are corrugated metal pipe installations (projects 4 and 5) and the other being a concrete chamber (project 6 – Student Union Building). Crew B will be identical to Crew A: 9 members (two excavators and operators, one surveyor, two dump trucks and drivers, three laborers and one foreman). Project 4, Chancellor Boulevard, will use the same technique of trenching with materials being piled adjacent to the excavation; the installation is in the center median, and thus the road and road shoulder can be used for storage.



Figure 26: Storage Location Project 4 (Chancellor Boulevard)

This project is a standard pipe installation and the area will be fully restored to functioning state before Crew B will move on to projects 5 and 6.

Projects 5 and 6 are located in close proximity to one another, which is next to a large pedestrian only area. This area has plenty of room for the contractor to use for storage and set up, thus they will have some leeway deciding how they want to make use of the available area.



Figure 27: Storage Location Projects 5 & 6 (Student Union Blvd and Student Union Building)

Project 5 is another corrugated metal pipe installation, and it will use the same trenching technique as projects 1-4.

Project 6 is the first of the concrete chamber installations (3 total, 2 on project 7). Given that the crew has two excavators at its disposal, installation of project 6 will not require additional crew. The chamber here is 30m x 18m x 2.4m, meaning a hole of just over 540 square meters will be dug to a depth of about 2.7 meters. This excavation is significant but simple access from existing roads will allow dump truck drivers to efficiently move unwanted materials off site. Once excavation is complete the framework for the cast in place chamber will be built. The chamber construction will be similar to that of a single-storey apartment using slabs, beams, columns and walls. The details can be found in section 5 of this report. The concrete will need to sit for 28 days before inspection can occur, in which time the connections to the existing storm water system will be prepared and installed. Once inspected and approved the system will be completed and the site restoration will commence.

#### 10.1.3 Cecil Green Park

Project 7 will see both Crew A and Crew B in a joint effort for installation. There will be a 1500 cubic meter concrete chamber (chamber A) and a 2900 cubic meter concrete chamber (chamber B) installed at this location. Chamber A has storage space to the south while chamber B has storage space to the east; across

the parking lot to the east of chamber B is a large field which can be used for storage if the adjacent areas are insufficient.



Figure 28: Storage Location Project 7

Both chambers A and B will be cast in place operations (details can be found in section 5 of this report), with similar work procedures as project 6. The plan is to have Crew A work on chamber A, and Crew B work on chamber B. It is expected that chamber A will reach the cast in place stage before chamber B, thus during the 28 day curing period Crew A will join and aid Crew B. After the curing period is complete, and the chamber has passed inspection, the respective crew will connect it to the existing system and restore the area to the initial conditions.

## 10.2 Anticipated Construction Issues

Projects 1 through 5 all have similar site conditions with the regular expected construction issues. Some of the regular issues include traffic disturbances, weather delays, unknown locations for existing utilities, permitting, and site access. All of these issues are commonly encountered and the fact that the project is on UBC property actually eases the efforts to mitigate the issues; T20 Consultants has left the details of mitigation for the contractor to decipher. Project 6 has a few key interest construction issues which needed

to be addressed. The issues lie within the deep excavation, the site deliveries, and the temporary loss of parking for Cecil Green residents.

### 10.2.1 Deep Excavation

The deep excavation is going to be performed with limited working space. Due to the space limits and total depth of the excavation it will be necessary to use sheet piles and anchors to prevent collapse of the excavated walls. T20 Consultants designed sheet piles with a single supporting anchor for this project. Sheet piles were chosen as they are economical, and are standard practice for the sites geology. The sheet piles were designed for an excavation of 6m. The piles will be 10m in length and have a single steel bar anchor at a depth of 2m. The anchor will have an unbounded length of 3.26m, a bonded length of 0.6m, and be spaced at 1.2m intervals. Sample calculations can be found in Appendix F. Post-completion the sheet piles can be removed and salvaged, however the anchors will be left in place because it is cheaper to leave them installed and they will still provided some extra stability for the area.





### 10.2.2 Museum Deliveries

The Museum of Anthropology will be affected by the construction work for chamber B; the prescribed working area will make deliveries to the museum difficult. In order to manage the issue T20 Consultants has been in contact with the Museum of Anthropology and have discussed the means of coordination between the museum delivery schedule and contractor work schedule. The museum will notify the construction crew as early as possible of when deliveries are expected and approximately how long they will take, sharing as much knowledge as they can in order to allow the crew to adequately prepare.



Figure 30: Delivery Site and Work Area

### 10.2.3 Temporary Parking

The final major issue to address is the temporary loss of parking. The total amount of parking spaces that will be needed once construction begins is not known, however it is recommended that the contractor builds temporary parking spaces in the green space across from the UBC Rose Gardens. This area is suitable for temporary works since it will only require re-grading and a grass finish to remedy back to pre-construction conditions.



Figure 31: Temporary Parking Area

## 11.0 Project Schedule

The north catchment storm sewer redevelopment project is composed of storm water management installations at seven locations across the northern UBC Vancouver Campus. The different project components have been scheduled based on completion priority and convenience for efficiency. The work has been split by two crews who will work separately until reaching the final phase where they will work in tandem to wrap up the project. Additional crews could be employed to streamline the main schedule, though this scenario could limit the number of companies capable of bidding on and completing the project. With construction set to begin on May 1<sup>st</sup>, 2017, and completion scheduled for April 10<sup>th</sup>, 2018, we believe that the two crew schedule is sufficient for the size and scope of the project.

## 11.1 Key Constraints and Considerations

When developing the preliminary schedule, there were several key constraints that were considered. A major factor was disruption to roadways, and the significance of the affected areas. Main roads, arterial ways and isolated parking areas were considered a high priority for construction during the summer months, to minimize disruption to UBC's regular operation. The expected flow rates for sewer lines were also considered. Work that required disabling of sewer trunks for extended periods was also considered a high priority for summer months. The lowest priority projects were those which did not cause major disruptions and could be completed without severing sewer lines for more than one week.

## 11.2 Sub-Project Preliminary Order, Estimated Durations and Gantt Charts

This section will outline the preliminary order of sub-projects, list their expected durations, and display the outlined schedule in a summarized Gantt chart. A detailed Gantt chart for one sub-project is also provided as an example of common tasks and semi-scalable durations to be expected for each subproject. Justification of the ordering is also provided with an outline of the highest priority projects.

### 11.2.1 Overall Schedule and Sample Task List

This section provides figures outlining segments from the overall schedule Gantt chart. The complete task list and Gantt chart is available in Appendix D.

| Task Name                    | - Duration - | Start 👻     | Finish 🚽    |
|------------------------------|--------------|-------------|-------------|
| NW Marine Drive (CMP)        | 26 days      | Mon 5/1/17  | Mon 6/5/17  |
| Chancellor Blvd (CMP)        | 62 days      | Mon 5/1/17  | Tue 7/25/17 |
| Memorial Rd (CMP)            | 37 days      | Tue 6/6/17  | Wed 7/26/17 |
| School of Music (CMP)        | 43 days      | Thu 7/27/17 | Mon 9/25/17 |
| Student Union Blvd (CHAMBER) | 44 days      | Wed 7/26/17 | Mon 9/25/17 |
| Student Union Blvd (CMP)     | 18 days      | Wed 8/16/17 | Fri 9/8/17  |
| Cecil Green Park (CHAMBERS)  | 141 days     | Tue 9/26/17 | Tue 4/10/18 |

Figure 32: North catchment redevelopment and sub-project order, durations, and start/finish







Figure 34: NW Marine Drive Gantt chart schedule

### 11.2.2 Individual Project Priority Justification

The following projects were deemed to be the highest priority due mainly to traffic disruptions and the need to sever sewer lines that can have high flows during rainy seasons. For these reasons, it is important that these projects be completed during the summer months when traffic and rainfall are at their lowest. Rainfall events when sewer lines have been severed will likely lead to costly work stoppages that will also delay the project's completion. Projects not listed here can be completed during the school months without heavily disrupting the University's typical operations.

#### 11.2.2.1 NW Marine Drive

This project was determined to be high priority because it requires disruption to the regular use of NW Marine drive , and parking access to the St. John's College. With an estimated completion time of 26 days, this project is the second shortest duration and can be completed rapidly before moving the crew to the next project. NW Marine drive see more traffic during the school year, and thus it is ideal to complete this project in the summer months.

#### 11.2.2.2 Chancellor Boulevard

As one of the largest, most disruptive projects, this storage loop is considered to be a very high priority. This project will decommission one lane of Chancellor boulevard for just over two months and a main storm sewer line for roughly 50 days. Due to these constraints, the completion of this project during summer months is essential for both weather and traffic. Large rain events when the main sewer trunk has been severed will have the potential to stop work and impede the schedule for many days.

## 12.0 Cost Estimate

School of Music (30 m^3 Storage)

Bus Loop (900 m^3 Storage)

**Total Construction Cost** 

A detailed Class "C" cost estimate has been performed for this project. The total construction cost for this project is estimated at \$2.4 Million (CAD) and the total cost including all contingencies and profit is \$3.3 Million (CAD). Quantities of material, equipment and labor have been taken from detailed design calculations and entered into estimate quantity take off sheets (see Appendix C for full estimate quantity take offs). The RS Means Building Construction Cost Data (2006) textbook has been used to get cost unit rates for all quantities involved. As data in this textbook applies to 2006 - American National Average costs two separate indexes which were taken from present RS Means data have been used to adjust to present Vancouver costs. The 2006 to 2016 transfer index was 1.366 and the National Average to Vancouver transfer index was 1.051 for a total multiplier of 1.436 compared to data in the textbook. This multiplier was applied to all values obtained to get the detailed estimate for this project. Table 9 below provides a project by project breakdown of the construction costs and a sum of all construction costs involved.

| Project Description                    | Project Total Construction Cost |
|----------------------------------------|---------------------------------|
| Memorial Rd (120 m^3 Storage)          | \$66,007                        |
| Walter Gage Rd (65 m^3 Storage)        | \$44,000                        |
| NW Marine Drive (200 m^3 Storage)      | \$125,151                       |
| Cecil Green Park Rd (1500 m^3 Storage) | \$269,681                       |
| Cecil Green Park Rd (2900 m^3 Storage) | \$508,897                       |
| Chancellor BLVD (1670 m^3 Storage)     | \$918,942                       |

\$31,371

\$451,038

\$2,415,087

To arrive at a final estimate cost several contingency percentages needed to be added on to the total construction cost estimate. Table 10 below highlights the list of these contingencies, their associated percentages and costs, and a final cost estimate for the project.

#### Table 10: Final cost estimate

| Description                                              | Percentage | Cost        |
|----------------------------------------------------------|------------|-------------|
| Total Construction Cost                                  |            | \$2,415,087 |
| Overhead and Profit                                      | 20.0%      | \$483,017   |
| Permitting                                               | 1.00%      | \$24,151    |
| Final Working Drawing Contingency                        | 3.00%      | \$72,453    |
| Construction Management                                  | 3.00%      | \$72,453    |
| Engineering (Mechanical)                                 | 4.20%      | \$101,434   |
| Engineering (Geotechnical)                               | 2.50%      | \$60,377    |
| Clean up (After Job Completion)                          | 0.30%      | \$7,245     |
| Insurance (Minimum Risk)                                 | 0.22%      | \$5,313     |
| Annual Maintenance                                       | 2.00%      | \$48,302    |
| Total Cost Including Overhead, Profit, and Contingencies |            | \$3,289,832 |

This section will outline T20 Consultants future considerations for the area and our conclusion to this report.

## 13.1 Future Considerations

The design has been made such that it will extend the usable life of the spiral drain, and this section outlines some considerations to make as the end of the spiral drain's usable life approaches.

### 13.1.1 Future Land Use

The UBC campus is constantly undergoing both new development and redevelopment of the land it uses. In GeoAdvice's document "UBC Stormwater Model Analysis, Detention Analysis and System Optimization" the total impervious area of development by 2030 is estimated to be 115 hectares; approximately 30 hectares of this total is within the north catchment area of campus. Although this is a significant area, only a small portion located between Lower Mall and Marine Drive will see a significant increase in storm water flow; this area will have storm water solutions installed upon development. The future land use within the north catchment area demand on the storm water system. The campus will not see flooding issues due to future developments by 2030 with this design.

### 13.1.2 Projected Impact on Storm System

The solution of a series of storage contraptions across campus will alleviate the flooding threat from a serious storm hitting UBC. The storage capacity that has been designed is large enough to take on average expected rainfall with ease. A 200-year storm will cause the new system to reach capacity, however there is a mere 0.5% chance of this occurring in any given year. Even as the development plans of 2030 are built, our system will serve to limit the 200-year storm to very minimal flooding, enough to prevent any serious damages to the campus lands. Currently the spiral drain has been evaluated to have a service life of at least 50 years. The addition of the detention systems will limit the instantaneous loads on the drain and extend the service life to at least 75 years. The spiral drain is a unique piece of heritage infrastructure; thus, the extension of its life is historically cherished and valuable.

#### 13.1.3 Expected Usable Life Span

Underground concrete water tanks, with proper maintenance, have an indefinitely long service life. The kinetic load is one of the largest threats to the erosion of concrete but this load is very minimal inside the tanks. Since the addition of these tanks will help prolong the life of the spiral drain, the design does not incorporate a direct replacement; we recommend installing a vortex drain in parallel with the spiral drain within the next 75 years. This kind of remedy would be designed such that the spiral drain would be eased of most of its loads, thus significantly increasing the service life. The design for a parallel vortex drain would contain heavy considerations with respect to keeping the spiral drain in service while minimizing its load.

#### 13.2 Conclusion

In order to meet the extreme demands of a 200-year rainfall event, UBC's north catchment drainage system needs significant upgrades in key areas. Over 9000 m<sup>3</sup> of potential flood loss has been accounted for in the design. The system's current drainage takes place through one outfall, a spiral drain at the northern perimeter of the campus. The drainage rate of the entire system is limited by this outfall, as well as specific flow rate capacities of pipe in high flow regions. T20 Consultants have prepared a design that contains excess stormwater on site, rather than construct any additional outflow infrastructure near the environmentally sensitive cliffs of Pacific Spirit Park. The design employs low impact principles in using storage loops of pipe to relocate flooding waters and puddles into the stormwater system's excess volumetric storage. The goal of this approach is to reduce the volumetric flow rate of stormwater delivered to the ocean through the spiral drain, and to prevent property damage in major rainfall events. This will extend the usable life of the spiral drain while also reducing the environmental impacts related to expelled sediment and other pollutants potentially carried by stormwater. Bio-retention basins were researched however in the north catchment zone the required storage upgrades are too large to be satisfied with bio-retention methods given the limited working space; subsurface storage loops with significantly larger storage capacities have been designed. This preliminary design has focused on storage loops made of regular pipes and large storage containers in the form of simple prefabricated concrete chambers.

The overall project has been divided into 6 sub-projects that will be completed independently. Certain projects are considered high-priority for completion during summer months, when traffic and rainfall are minimal, while others were deemed constructible any time of year. The preliminary schedule was constructed under the assumption that two separate crews would work simultaneously on the various sub-projects during regular business hours. The addition of overtime hours, more crews, or a combination of the two, could be employed to expedite construction at additional cost. The project has a start date of May 1, 2017 and a preliminary completion date in April, 2018.

For this Detailed design the total anticipated cost was \$3.3 Million. A quantity takeoff approach was utilized, using data from RS Means. Recommended percentages were included in the final estimate for items such as permitting, project management, and contingency funding.

Based on future land use projections, the proposed design will sufficiently service UBC's north catchment for the duration of the spiral drain's serviceable life.

Appendix A – Design Drawings









# Appendix B – Stormwater Modelling Data





EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.007)

\_\_\_\_\_

\*\*\*\*\*\*\*\*\*\* NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. \*\*\*\*\*\*\* \*\*\*\*\*\* Analysis Options \*\*\*\*\* Flow Units ..... LPS Process Models: Rainfall/Runoff ...... YES RDII ..... NO Snowmelt ..... NO Groundwater ..... NO Flow Routing ...... YES Ponding Allowed ...... YES Water Quality ..... NO Infiltration Method ..... CURVE NUMBER Flow Routing Method ..... DYNWAVE Starting Date ..... NOV-01-2008 00:00:00 Ending Date ..... NOV-02-2008 00:00:00 Antecedent Dry Days ..... 0.5 Report Time Step ...... 00:15:00 Wet Time Step ..... 00:15:00 Dry Time Step ..... 00:15:00 Routing Time Step ...... 15.00 sec Variable Time Step ...... YES Maximum Trials ......8 Head Tolerance ...... 0.016404 m \*\*\*\*\*\* Volume Depth Runoff Quantity Continuity hectare-m mm \*\*\*\*\* \_\_\_\_\_ Total Precipitation ..... 46.025 112.650 0.000 0.000 Evaporation Loss ..... Infiltration Loss ...... 11.087 27.136 Surface Runoff ..... 32.600 79.792 Final Surface Storage .... 2.468 6.041 Continuity Error (%) ..... -0.283 \*\*\*\*\*\* Volume Volume 10^6 ltr Flow Routing Continuity hectare-m \*\*\*\*\* -----\_\_\_\_\_ Dry Weather Inflow ...... 0.000 0.000 Wet Weather Inflow ...... 32.326 323.263 Groundwater Inflow ...... 0.000 0.000 RDII Inflow ..... 0.000 0.000 External Inflow ..... 1.799 17.990 External Outflow ..... 33.544 335.441 Internal Outflow ..... 0.804 8.043

Evaporation Loss ..... 0.000 0.000 0.000 0.000 Exfiltration Loss ..... Initial Stored Volume .... 0.074 0.737 Final Stored Volume ..... 0.592 5.920 Continuity Error (%) ..... -2.168\*\*\*\*\*\*\*\* Highest Continuity Errors \*\*\*\*\*\* Node JUNC-40 (-22.05%) Node Q7D-S271 (-4.90%) Node USL-78 (-1.31%) Node D6D-N70 (-1.15%) Node O8D-S219D (1.05%) \*\*\*\*\*\* Time-Step Critical Elements \*\*\*\*\*\* Link A4D-N1X (82.45%) Link T6D-S24X (6.46%) Link ST-2215 (4.29%) \*\*\*\*\*\*\* \*\*\*\*\* **Highest Flow Instability Indexes** \*\*\*\*\* Link P7D-S242AX (39) Link ST-3096 (37) Link CO-209 (29) Link N8D-S265AX (26) Link O8D-S221X (23) \*\*\*\*\*\* **Routing Time Step Summary** \*\*\*\*\*\* Minimum Time Step : 0.50 sec Average Time Step : 2.66 sec Maximum Time Step : 15.00 sec Percent in Steady State : 0.00 Average Iterations per Step: 3.71 Percent Not Converging : 17.77 \*\*\*\* \*\*\*\*\*\* Analysis begun on: Wed Apr 05 21:10:08 2017 Analysis ended on: Wed Apr 05 21:12:01 2017

Total elapsed time: 00:01:53

|            | N       | ode Floodi | ng Summa | ry of Resul | ts       |        |
|------------|---------|------------|----------|-------------|----------|--------|
| Node       | Flooded | LPS        | Flooding | Flooding    | 10^6 ltr | Meters |
| A4D-N1     | 0.01    | 41.07      | 0        | 9:15        | 0        | 0      |
| A4D-N2     | 0.01    | 546.09     | 0        | 8:19        | 0.001    | 0      |
| B5D-N82A   | 0.01    | 193.41     | 0        | 8:20        | 0        | 0      |
| B5D-N82B   | 0.01    | 123.49     | 0        | 8:20        | 0        | 0      |
| C5D-N88    | 0.01    | 16.17      | 0        | 8:17        | 0        | 0      |
| D3D-N32    | 0.01    | 0.32       | 0        | 8:27        | 0        | 0      |
| D3D-N33    | 0.15    | 31.94      | 0        | 8.30        | 0.009    | 0      |
| D4D-N314   | 0.27    | 8.01       | 0        | 8.30        | 0.006    | 0      |
| D4D-N31B   | 0.16    | 5 39       | 0        | 8.30        | 0.002    | 0      |
| D6D-N70    | 0.48    | 414.52     | 0        | 8:30        | 0.457    | 0      |
| D7D-N108   | 0.01    | 19.24      | 0        | 8.13        | 0.1.57   | 0      |
| E6D-N73A   | 0.44    | 63.99      | 0        | 8:30        | 0.062    | 0      |
| F7D-N108   | 1.01    | 43.51      | 0        | 8:30        | 0.071    | 0      |
| E7D-N115   | 0.17    | 6.59       | 0        | 8.29        | 0.002    | 0      |
| E2D-N30    | 0.01    | 1 36       | 0        | 8.18        | 0.002    | 0      |
| F2D-N304   | 0.49    | 79.3       | 0        | 8.30        | 0.083    | 0      |
| F5D-N77B   | 0.45    | 5 19       | 0        | 8.30        | 0.005    | 0      |
| E6D-N76    | 0.15    | 110.9      | 0        | 8-31        | 0.064    | 0      |
| E6D-N86    | 0.20    | /7 51      | 0        | 8-31        | 0.004    | 0      |
| G2D_NI564  | 0.14    | 28.54      | 0        | 8-20        | 0.011    | 0      |
| G2D-N58    | 0.3     | 20.04      | 0        | 8.30        | 0.017    | 0      |
| G2D NI59B  | 0.02    | 0.20       | 0        | 9.20        | 0.022    | 0      |
| G5D N91L   | 0.01    | 0.20       | 0        | 0.50        | 0        | 0      |
| G3D-N016   | 0.01    | 24.54      | 0        | 0.51        | 0        | 0      |
| G7D-N113   | 0.01    | 114.61     | 0        | 0.10        | 0        | 0      |
|            | 0.01    | 114.01     | 0        | 0.10        | 0        | 0      |
|            | 0.07    | 2.15       | 0        | 0.50        | 0        | 0      |
|            | 1.15    | 2.2/       | 0        | 0:29        | 0.06     | 0      |
| 16D NW11   | 0.44    | 11 5/      | 0        | 8:30        | 0.00     | 0      |
| 100-110012 | 0.44    | 12.34      | 0        | 0.50        | 0.01     | 0      |
| 100-52511  | 0.27    | 0.50       | 0        | 0.25        | 0.007    | 0      |
| 100-52510  | 0.01    | 18.51      | 0        | 8-20        | 0.007    | 0      |
| UNC-10     | 0.2     | 1 02       | 0        | 9.21        | 0.007    | 0      |
| 11INC-19   | 0.05    | 81.86      | 0        | 8.30        | 0 112    | 0      |
| UNC-34     | 0.75    | 5 55       | 0        | 8.30        | 0.112    | 0      |
| 1UNC-40    | 0.01    | 2100.92    | 0        | 9.24        | 0.014    | 0      |
| IUNC-41    | 0.64    | 483.89     | 0        | 8.20        | 0.014    | 0      |
| K8D-\$289  | 0.14    | 29.34      | 0        | 8.16        | 0.001    | 0      |
| 180-5282   | 0.01    | 500.45     | 0        | 8.16        | 0.001    | 0      |
| 180-5286   | 0.46    | 150.78     | 0        | 8.29        | 0.172    | 0      |
| 190-52854  | 0.01    | 1.49       | 0        | 8:16        | 0.1/2    | 0      |
| 190-52850  | 0.46    | 33,59      | 0        | 8:29        | 0.034    | 0      |
| 190-\$2850 | 0.40    | 2 15       | 0        | 8.30        | 0.034    | 0      |
| M6D-\$276  | 0.10    | 52 22      | 0        | 8.30        | 0.056    | 0      |
| MD-Culve   | 1 25    | 689.08     | 0        | 8.43        | 1 649    | 0      |
| MH-D5      | 0.69    | 192.04     | 0        | 8-20        | 0 255    | 0      |
| N7D-\$775  | 1 11    | 102.04     | 0        | 8-20        | 0.555    | 0      |
| N8D-\$265  | 1.11    | 38/11/     | 0        | 8-20        | 0.23     | 0      |
| N8D-\$265  | 0.01    | 13.01      | 0        | 8.05        | 0.244    | 0      |
| \$8D-\$209 | 0.01    | 229.04     | 0        | 8.05        | 0.19     | 0      |
| T6D_\$3/   | 1 10    | 1/12/ 09   | 0        | Q-//1       | 2 866    | 0      |
| .00-524    | 1.10    | 1404.00    | 0        | 0.41        | 2.000    | 0      |

#### Project: Memorial Rd (120m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

|        |                |                                            |              |          |        |        |        | QUANTI  | TY TAKE | OFF       |          |       |            |        |           |           |                        | METHOD       |          |              | MA        | ATERIAL |                  |        | LABOR        |             | EQUIF     | PMENT       | TOTAL           | . BARE COST    |
|--------|----------------|--------------------------------------------|--------------|----------|--------|--------|--------|---------|---------|-----------|----------|-------|------------|--------|-----------|-----------|------------------------|--------------|----------|--------------|-----------|---------|------------------|--------|--------------|-------------|-----------|-------------|-----------------|----------------|
| Item # | Cost Code      | Description                                | No of Pieces | Length   | Length | Width  | Width  | Depth / | Depth / | Sub-Total | Total    | Units | Total      | Units  | Crew Code | Crew Size | e Daily                | Worker-Hours | Duration | Total        | Unit Cost | Tota    | al Cost Unit Lab | or Uni | t Labor Cost | Total Labor | Unit Cost | Cost        | Total Unit Cost | Total Cost     |
|        |                |                                            |              | (meters) | (feet) | (meter | (feet) | Height  | Height  |           | Quantity |       | Quantity   |        |           |           | Output<br>(Upito(dou)) | (WHr/Unit)   | (days)   | Worker-Hours |           |         | Pricing          | 3      | (\$/Units)   | Cost        |           |             | (\$/Units)      |                |
|        |                |                                            |              |          |        | s)     |        | (meters | (feet)  |           | (metric) |       | (Imperial) |        |           |           | (Offics/day)           |              |          |              |           |         | (2000)           | ·/     |              |             |           |             |                 |                |
|        |                |                                            |              |          |        |        |        | )       |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 |                |
| 1      | 02315 610 0910 | Excavating, Trench (10' to 14' deep, 1     |              | 24       | 78.72  | 4      | 13.12  | 3       | 9.84    |           | 288      | m^3   | 376.69     | B.C.Y. | B-12A     | 2         | 360                    | 0.044        | 1.05     | 16.57        | s -       | \$      | - \$30.7         | 7 \$   | 1.37         | \$ 516.06   | \$ 1.56   | \$ 587.64   | , \$ 2.9        | 3 \$ 1,103.70  |
|        |                | C.Y. Hydraulic backhoe)                    |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 |                |
| 2      | 02315 610 0910 | Excavating, Trench (6' to 10' deep, 1 C.Y. |              | 8        | 26.24  | 1.5    | 4.92   | 2       | 6.56    |           | 24       | m^3   | 31.39      | B.C.Y. | B-12A     | 2         | 400                    | 0.040        | 0.08     | 1.26         | s -       | \$      | - \$30.7         | 7 \$   | 1.23         | \$ 38.61    | \$ 1.40   | \$ 43.95    | \$ 2.6          | 3 \$ 82.56     |
|        |                | Hydraulic backhoe)                         |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 |                |
| 3      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)   |              |          |        |        |        |         |         |           | 85       | m^3   | 138.97     | L.C.Y. | B-34D     | 1         | 78                     | 0.103        | 1.78     | 14.31        | s -       | \$      | - \$28.9         | 0 \$   | 2.96         | \$ 411.35   | \$ 5.35   | \$ 743.49   | \$ 8.3          | 1 \$ 1,154.84  |
| 4      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)   |              |          |        |        |        |         |         |           | 85       | m^3   | 138.97     | L.C.Y. | B-34D     | 1         | 78                     | 0.103        | 1.78     | 14.31        | \$ -      | \$      | - \$28.9         | 0 \$   | 2.96         | \$ 411.35   | \$ 5.35   | \$ 743.49   | \$ 8.3          | 1 \$ 1,154.84  |
| 5      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)   |              |          |        |        |        |         |         |           | 85       | m^3   | 138.97     | L.C.Y. | B-34D     | 1         | 78                     | 0.103        | 1.78     | 14.31        | \$ -      | \$      | - \$28.9         | 0 \$   | 2.96         | \$ 411.35   | \$ 5.35   | \$ 743.49   | \$ 8.3          | 1 \$ 1,154.84  |
| 6      | 02315 520 0020 | Fill, Spread dumped material, By dozer,    |              | 24       | 78.72  | 4      | 13.12  | 0.3     | 0.984   |           | 28.8     | m^3   | 37.67      | B.C.Y. | B-10B     | 1.5       | 1000                   | 0.012        | 0.04     | 0.45         | \$ 12.05  | 5 \$    | 453.91 \$31.9    | 3 \$   | 0.38         | \$ 14.31    | \$ 0.92   | \$ 34.66    | i\$ 13.3        | 5 \$ 502.88    |
|        |                | Gravel                                     |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 | 1              |
| 7      | 02315 520 0020 | Fill, Spread dumped material, By dozer,    |              | 8        | 26.24  | 1.5    | 4.92   | 0.3     | 0.984   |           | 3.6      | m^3   | 4.71       | B.C.Y. | B-10B     | 1.5       | 1000                   | 0.012        | 0.00     | 0.06         | \$ 12.05  | 5 \$    | 56.74 \$31.9     | 3 \$   | 0.38         | \$ 1.79     | \$ 0.92   | \$ 4.33     | \$ 13.3         | 5 \$ 62.86     |
|        |                | Gravel                                     |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 | 1              |
| 8      | 02315 520 0020 | Fill, Spread dumped material, By dozer,    |              | 10       | 32.8   | 4      | 13.12  | 2       | 6.56    |           | 80       | m^3   | 104.64     | B.C.Y. | B-10B     | 1.5       | 1000                   | 0.012        | 0.10     | 1.26         | \$ 12.05  | 5 \$    | 1,260.86 \$31.9  | 3 \$   | 0.38         | \$ 39.76    | \$ 0.92   | \$ 96.27    | \$ 13.3         | 5 \$ 1,396.89  |
|        |                | Gravel                                     |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 |                |
| 9      | 02315 640 0200 | Utility Bedding For Pipe and Conduit,      |              | 8        | 26.24  | 1.5    | 4.92   | 0.2     | 0.656   |           | 2.4      | m^3   | 3.14       | B.C.Y. | B-6       | 3         | 150                    | 0.160        | 0.02     | 0.50         | \$ 4.21   | \$      | 13.22 \$28.6     | 8 \$   | 4.59         | \$ 14.41    | \$ 1.51   | \$ 4.74     | \$ 10.3         | 1 \$ 32.36     |
|        |                | Sand                                       |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 |                |
| 10     | 02740 310 0200 | Asphaltic Concrete Pavement, Binder        |              | 20       | 65.6   | 6      | 19.68  | 0.12    | 0.3936  |           | 120      | m^2   | 143.52     | S.Y.   | B-25      | 11        | 4140                   | 0.021        | 0.03     | 3.01         | \$ 7.70   | \$      | 1,105.10 \$28.4  | 9 \$   | 0.61         | \$ 87.55    | \$ 0.51   | \$ 73.20    | \$ 8.8          | 2 \$ 1,265.85  |
|        |                | Course, 4" Thick                           |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 | 1              |
| 11     | 02740 310 0460 | Asphaltic Concrete Pavement, Wearing       |              | 20       | 65.6   | 6      | 19.68  | 0.08    | 0.2624  |           | 120      | m^2   | 143.52     | S.Y.   | B-25B     | 12        | 4900                   | 0.020        | 0.03     | 2.87         | \$ 6.15   | 5 \$    | 882.65 \$29.0    | 3 \$   | 0.57         | \$ 81.81    | \$ 0.47   | \$ 67.45    | \$ 7.1          | 9 \$ 1,031.91  |
|        |                | Course, 3" Thick                           |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 | 1              |
| 12     | 02360 510 2660 | Piping, reinforced Culvert, class 3, no    | 2            | 20       | 65.6   |        | 0      |         | 0       |           | 40       | m     | 131.2      | L.F.   | B-13B     | 7         | 40                     | 1.400        | 3.28     | 183.68       | \$ 180.00 | \$ 2    | 23,616.00        | \$     | 12.30        | \$ 1,613.76 | \$ 24.00  | \$ 3,148.80 | \$ 244.0        | 0 \$ 32,012.80 |
|        |                | gaskets, 72" Diameter                      |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             |                 | 1              |
| 13     | 02510 750 3070 | Polyvinyl Chloride Pipe, 24" diameter      |              | 10       | 32.8   |        |        |         |         |           | 10       | m     | 32.8       | L.F.   | B-20A     | 4         | 107                    | 0.299        | 0.31     | 9.81         | \$ 37.50  | ) \$    | 1,230.00 \$31.9  | 0 \$   | 9.55         | \$ 313.24   | \$ -      | \$ -        | \$ 47.0         | 5 \$ 1,543.24  |
| 14     | 01560 250 0550 | Temporary Fencing Wire Mesh, 8' high       |              | 55       | 180.4  | 1 -    | 1      |         |         |           | 55       | m     | 180.4      | L.F.   | 2 Carp    | 2         | 600                    | 0.027        | 0.30     | 4.87         | \$ 12.60  | \$      | 2,273.04         | \$     | 6.65         | \$ 1,199.66 | \$ -      | s -         | \$ 19.2         | 5 \$ 3,472.70  |
|        |                |                                            |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             | TOTAL BARE      | \$ 45.972.26   |
|        |                |                                            |              |          |        |        |        |         |         |           |          |       |            |        |           |           |                        |              |          |              |           |         |                  |        |              |             |           |             | COST SUM        | 40,812.20      |

#### Project: Walter Gage Rd (65m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

|        |                |                                             |              |          |        |          | C      | QUANTI  | TY TAKE | DFF      |          |       |            |        |           |           |            | METHOD       |          |              | MA        | FERIAL      |            | LABOR           |             | EQUIP     | MENT       | TOTAL       | BARE COST    |
|--------|----------------|---------------------------------------------|--------------|----------|--------|----------|--------|---------|---------|----------|----------|-------|------------|--------|-----------|-----------|------------|--------------|----------|--------------|-----------|-------------|------------|-----------------|-------------|-----------|------------|-------------|--------------|
| Item # | Cost Code      | Description                                 | No of Pieces | Length   | Length | Width V  | Vidth  | Depth / | Depth / | Sub-Tota | Total    | Units | Total      | Units  | Crew Code | Crew Size | Daily      | Worker-Hours | Duration | Total        | Unit Cost | Total Cost  | Unit Labor | Unit Labor Cost | Total Labor | Unit Cost | Cost       | Total Unit  | Total Cost   |
|        |                |                                             |              | (meters) | (feet) | (meter ( | (feet) | Height  | Height  |          | Quantity | ,     | Quantity   |        |           |           | Output     | (WHr/Unit)   | (days)   | Worker-Hours |           |             | Pricing    | (\$/Units)      | Cost        |           |            | Cost        |              |
|        |                |                                             |              |          |        | s)       |        | (meters | (feet)  |          | (metric) |       | (Imperial) |        |           |           | (Units/day | )            |          |              |           |             | (\$/WHr)   |                 |             |           |            | (\$/Units)  |              |
|        |                |                                             |              |          |        |          |        | )       |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |             |           |            |             |              |
| 1      | 02315 610 0510 | Excavating, Trench (1' to 4' deep, 1/2 C.Y. |              | 20       | 65.6   | 3.5 1    | 1.48   | 1.5     | 4.92    |          | 105      | m^3   | 137.33     | B.C.Y. | B11M      | 2         | 200        | 0.080        | 0.69     | 10.99        | \$-       | \$          | \$30.40    | \$ 2.43         | \$ 333.72   | \$ 1.39   | \$ 190.9   | J \$ 3.82   | \$ 524.62    |
|        |                | Tractor loader/backhoe)                     |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |             |           |            |             |              |
| 2      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |          |        |         |         |          | 85       | m^3   | 138.97     | L.C.Y. | B-34D     | 1         | 78         | 0.103        | 1.78     | 14.31        | \$ -      | \$          | \$28.90    | \$ 2.96         | \$ 411.35   | \$ 5.35   | \$ 743.4   | € 8.31      | \$ 1,154.84  |
| 3      | 02510 750 4560 | Polyvinyl Chloride Pipe, 12" diameter       |              | 20       | 65.6   |          | 0      |         | 0       |          | 20       | m     | 65.6       | L.F.   | B-20A     | 4         | 186        | 0.172        | 0.35     | 11.28        | \$ 18.80  | \$ 1,233.2  | B \$31.90  | \$ 5.50         | \$ 360.80   | \$ -      | \$         | \$ 24.30    | \$ 1,594.08  |
| 4      | 01560 250 0550 | Temporary Fencing Wire Mesh, 8' high        |              |          | 0      |          | 0      |         | 0       |          | 180      | m     | 590.4      | L.F.   | 2 Carp    | 2         | 600        | 0.027        | 0.98     | 15.94        | \$ 12.60  | \$ 7,439.0  | 4 \$ 33.25 | \$ 6.65         | \$ 3,926.16 | \$ -      | \$         | · \$ 19.25  | \$ 11,365.20 |
|        |                |                                             |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |             |           |            |             |              |
| 12     | 02360 510 2660 | Piping, reinforced Culvert, class 3, no     | 1            | 20       | 65.6   |          | 0      |         | 0       |          | 20       | m     | 65.6       | L.F.   | B-13B     | 7         | 40         | 1.400        | 1.64     | 91.84        | \$ 180.00 | \$ 11,808.0 | 0          | \$ 12.30        | \$ 806.88   | \$ 24.00  | \$ 1,574.4 | ) \$ 244.00 | \$ 16,006.40 |
|        |                | gaskets, 84" Diameter                       |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |             |           |            |             |              |
|        | •              |                                             |              |          |        |          |        |         |         |          |          |       |            |        | •         |           |            |              |          |              |           |             |            |                 |             |           |            | TOTAL       |              |
|        |                |                                             |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |             |           |            | BARE COST   | \$ 30,645.14 |
|        |                |                                             |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |             |           |            | SUM         |              |

#### Project: NW Marine Dr (200m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |              |          |        |        | 0      | UANTI   | TY TAKE | OFF             |       |            |        |           |           |             | METHOD       |          |              |        | MATERIAL        |            | LABOR           |             | EQUIPM    | ENT         | TOTAL B         | ARE COST     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|----------|--------|--------|--------|---------|---------|-----------------|-------|------------|--------|-----------|-----------|-------------|--------------|----------|--------------|--------|-----------------|------------|-----------------|-------------|-----------|-------------|-----------------|--------------|
| Item # | Cost Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Description                                | No of Pieces | Length   | Length | Width  | Width  | Depth / | Depth / | Sub-Total Total | Units | Total      | Units  | Crew Code | Crew Size | Daily       | Worker-Hours | Duration | Total        | Unit C | ost Total Cost  | Unit Labor | Unit Labor Cost | Total Labor | Unit Cost | Cost        | Total Unit Cost | Total Cost   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |              | (meters) | (feet) | (meter | (feet) | Height  | Height  | Quantity        |       | Quantity   |        |           |           | Output      | (WHr/Unit)   | (days)   | Worker-Hours |        |                 | Pricing    | (\$/Units)      | Cost        |           |             | (\$/Units)      |              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |              |          |        | s)     |        | (meters | (feet)  | (metric)        |       | (Imperial) |        |           |           | (Units/day) |              |          |              |        |                 | (\$/WHr)   |                 |             |           |             |                 |              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |              |          |        |        |        | )       |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 1      | 02315 610 0510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Excavating, Trench (6' to 10' deep, 1 C.Y. |              | 24       | 78.72  | 6      | 19.68  | 3       | 9.84    | 432             | m^3   | 565.03     | B.C.Y. | B-12A     | 2         | 400         | 0.040        | 1.41     | 22.60        | \$     | - \$            | - \$30.77  | \$ 1.23         | \$ 694.99   | \$ 1.40   | \$ 791.05   | \$ 2.63         | \$ 1,486.04  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hydraulic backhoe)                         |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 2      | 02315 610 0510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Excavating, Trench (6' to 10' deep, 1 C.Y. |              | 36       | 118.08 | 1.5    | 4.92   | 2       | 6.56    | 108             | m^3   | 141.26     | B.C.Y. | B-12A     | 2         | 400         | 0.040        | 0.35     | 5.65         | \$     | - \$            | - \$30.77  | \$ 1.23         | \$ 173.75   | \$ 1.40   | \$ 197.76   | \$ 2.63         | \$ 371.51    |
|        | Hydraulic backhoe)         247.5         m'3         404.66         LC.Y.         B-34D         1         76         0.103         5.19         416.6         5         5         -         5.28.90         \$         2.96 \$         \$ 1.197.76 \$         5.35 \$         \$ 2.164.86 \$         5         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         -         \$         - <th< td=""><td></td><td></td></th<> |                                            |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 3      | 02315 490 1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hauling (20 mile round trip, .5 load/hr)   |              |          |        |        |        |         |         | 247.5           | m^3   | 404.65     | L.C.Y. | B-34D     | 1         | 78          | 0.103        | 5.19     | 41.68        | \$     | - \$            | - \$28.90  | \$ 2.96         | \$ 1,197.76 | \$ 5.35   | \$ 2,164.86 | \$ 8.31         | \$ 3,362.62  |
| 4      | 02315 490 1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hauling (20 mile round trip, .5 load/hr)   |              |          |        |        |        |         |         | 247.5           | m^3   | 404.65     | L.C.Y. | B-34D     | 1         | 78          | 0.103        | 5.19     | 41.68        | \$     | - \$            | - \$28.90  | \$ 2.96         | \$ 1,197.76 | \$ 5.35   | \$ 2,164.86 | \$ 8.31         | \$ 3,362.62  |
| 5      | 02315 520 0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fill, Spread dumped material, By dozer,    |              | 24       | 78.72  | 6      | 19.68  | 0.3     | 0.984   | 43.2            | m^3   | 56.50      | B.C.Y. | B-10B     | 1.5       | 1000        | 0.012        | 0.06     | 0.68         | \$ 1   | 2.05 \$ 680.    | \$31.93    | \$ 0.38         | \$ 21.47    | \$ 0.92   | \$ 51.98    | \$ 13.35        | \$ 754.32    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gravel                                     |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 6      | 02315 520 0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fill, Spread dumped material, By dozer,    |              | 8        | 26.24  | 8      | 26.24  | 0.3     | 0.984   | 19.2            | m^3   | 25.11      | B.C.Y. | B-10B     | 1.5       | 1000        | 0.012        | 0.03     | 0.30         | \$ 1   | 2.05 \$ 302.    | \$31.93    | \$ 0.38         | \$ 9.54     | \$ 0.92   | \$ 23.10    | \$ 13.35        | \$ 335.25    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gravel                                     |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 7      | 02315 640 0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Utility Bedding For Pipe and Conduit,      |              | 36       | 118.08 | 1      | 3.28   | 0.2     | 0.656   | 7.2             | m^3   | 9.42       | B.C.Y. | B-6       |           | 150         | 0.160        | 0.06     | 1.51         | \$     | 4.21 \$ 39.     | \$28.68    | \$ 4.59         | \$ 43.23    | \$ 1.51   | \$ 14.22    | \$ 10.31        | \$ 97.09     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sand                                       |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 8      | 02740 310 0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asphaltic Concrete Pavement, Binder        |              | 8        | 26.24  | 10     | 32.8   | 0.12    | 0.3936  | 80              | m^2   | 95.68      | S.Y.   | B-25      |           | 4140        | 0.021        | 0.02     | 2.01         | \$     | 7.70 \$ 736.    | 4 \$28.49  | \$ 0.61         | \$ 58.36    | \$ 0.51   | \$ 48.80    | \$ 8.82         | \$ 843.90    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Course, 4" Thick                           |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 9      | 02740 310 0460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Asphaltic Concrete Pavement, Wearing       |              | 8        | 26.24  | 10     | 32.8   | 0.08    | 0.2624  | 80              | m^2   | 95.68      | S.Y.   | B-25B     |           | 4900        | 0.020        | 0.02     | 1.91         | \$     | 6.15 \$ 588.4   | \$29.03    | \$ 0.57         | \$ 54.54    | \$ 0.47   | \$ 44.97    | \$ 7.19         | \$ 687.94    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Course, 3" Thick                           |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 10     | 02315 520 0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fill, Spread dumped material, By dozer,    |              | 24       | 78.72  | 6      | 19.68  | 1       | 3.28    | 144             | m^3   | 188.34     | B.C.Y. | B-10B     | 1.5       | 1000        | 0.012        | 0.19     | 2.26         | \$     | - \$            | - \$31.93  | \$ 1.38         | \$ 259.92   | \$ 1.92   | \$ 361.62   | \$ 1.30         | \$ 244.85    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Onsite Pre-excavated Fill                  |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             |                 |              |
| 11     | 02510 750 3070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Polyvinyl Chloride Pipe, 24" diameter      |              | 36       | 118.08 |        |        |         |         | 36              | m     | 118.08     | L.F.   | B-20A     | 4         | 107         | 0.299        | 1.10     | 35.31        | \$ 3   | 7.50 \$ 4,428.  | \$31.90    | \$ 9.55         | \$ 1,127.66 | \$-       | ş -         | \$ 47.05        | \$ 5,555.66  |
| 12     | 01560 250 0550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temporary Fencing Wire Mesh, 8' high       |              | 70       | 229.6  |        |        |         |         | 70              | m     | 229.6      | L.F.   | 2 Carp    | 2         | 600         | 0.027        | 0.38     | 6.20         | \$ 1   | 2.60 \$ 2,892.  | \$33.25    | \$ 6.65         | \$ 1,526.84 | \$-       | \$ -        | \$ 19.25        | \$ 4,419.80  |
| 12     | 02360 510 2660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Piping, reinforced Culvert, class 3, no    | 3            | 37       | 121.36 |        | 0      |         | 0       | 111             | m     | 364.08     | L.F.   | B-13B     | 7         | 48          | 1.167        | 7.59     | 424.88       | \$ 12  | 7.00 \$ 46,238. | 6          | \$ 33.50        | \$12,196.68 | \$ 19.80  | \$ 7,208.78 | \$ 180.30       | \$ 65,643.62 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gaskets, 60" Diameter                      |              |          | 1      |        |        |         |         |                 |       | 1          |        |           |           |             |              |          |              | 1      |                 |            | 1               |             |           |             |                 | 1            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             | TOTAL BARE      | \$ 87,165,22 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |              |          |        |        |        |         |         |                 |       |            |        |           |           |             |              |          |              |        |                 |            |                 |             |           |             | COSTSUM         |              |

# Project: Cecil Green Park Rd (1500 m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

|        |                |                                             |              |          |        |        | (      | JUANTI  | IY TAKE | JFF            |       |            |         |           |           |             | METHOD       |          |              | MAI       | ERIAL                    |            | LABOR              |                        | EQUIPMEN           | NI       | TOTAL           | BARE COST    |
|--------|----------------|---------------------------------------------|--------------|----------|--------|--------|--------|---------|---------|----------------|-------|------------|---------|-----------|-----------|-------------|--------------|----------|--------------|-----------|--------------------------|------------|--------------------|------------------------|--------------------|----------|-----------------|--------------|
| Item # | Cost Code      | Description                                 | No of Pieces | Length   | Length | Width  | Width  | Depth / | Depth / | Sub-Total Tota | Units | Total      | Units   | Crew Code | Crew Size | e Daily     | Worker-Hours | Duration | Total        | Unit Cost | Total Cost               | Unit Labor | Unit Labor Cost    | Total Labor Cost       | Unit Cost          | Cost     | Total Unit Cost | Total Cost   |
|        |                |                                             |              | (meters) | (feet) | (meter | (feet) | Height  | Height  | Quant          | ty    | Quantity   |         |           |           | Output      | (WHr/Unit)   | (days)   | Worker-Hours |           |                          | Pricing    | (\$/Units)         |                        |                    |          | (\$/Units)      |              |
|        |                |                                             |              |          |        | s)     |        | (meters | (feet)  | (metr          | c)    | (Imperial) |         |           |           | (Units/day) |              |          |              |           |                          | (\$/WHr)   |                    |                        |                    |          |                 |              |
|        |                |                                             |              |          |        |        |        | 1       |         |                | ·     |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 1      | 02215 610 1200 | Excavating Trench (14' to 20' deep 1        |              | 20       | 65.6   | 20     | 65.6   | 5       | 16.4    | 200            | m^3   | 2615.00    | BCV     | B-12A     | 2         | 320         | 0.050        | 8 17     | 130.80       | ۹         | ¢                        | \$30.77    | \$ 154             | \$ 4.028.40            | 1 75 \$            | 4 577 83 | \$ 3.20         | \$ 8,606,31  |
|        | 02515 010 1500 | C V Hudraulia haakhaa)                      |              | 20       | 03.0   | 20     | 00.0   | 5       | 10.4    | 200            |       | 2013.30    | 0.0.1.  | D-12A     | -         | 520         | 0.000        | 0.17     | 130.00       | ÷ -       | ÷ -                      | \$50.11    | φ 1.54             | 9 4,020.43 q           | μ 1.75 ψ           | 4,311.03 | ų J.23          | \$ 0,000.51  |
|        |                | C.T. Hydraulic backride)                    |              | 10       | 101.0  |        | 1.00   | 0.5     |         | 150            |       | 100.10     | D. O. V | B (0)     |           | 100         | 0.010        | 0.10     | 3.05         |           |                          | 000 33     | <b>A</b> ( 00      |                        |                    | 074.07   | • • • • •       | A 545.00     |
| 2      | 02315 610 0510 | Excavating, Trench (6 to 10 deep, 1 C.Y.    |              | 40       | 131.2  | 1.5    | 4.92   | 2.5     | 8.2     | 150            | m^3   | 196.19     | B.C.Y.  | B-12A     | 2         | 400         | 0.040        | 0.49     | 7.85         | s -       | \$ -                     | \$30.77    | \$ 1.23            | \$ 241.32              | 5 1.40 \$          | 2/4.6/   | \$ 2.63         | \$ 515.99    |
|        |                | Hydraulic backhoe)                          |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 3      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        |        |         |         | 463.4          | 4 m^3 | 757.69     | L.C.Y.  | B-34D     | 1         | 78          | 0.103        | 9.71     | 78.04        | ş -       | \$-                      | \$28.90    | \$ 2.96            | \$ 2,242.77            | \$                 | 4,053.65 | \$ 8.31         | \$ 6,296.42  |
| 4      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        |        |         |         | 463.4          | 4 m^3 | 757.69     | L.C.Y.  | B-34D     | 1         | 78          | 0.103        | 9.71     | 78.04        | \$-       | \$-                      | \$28.90    | \$ 2.96            | \$ 2,242.77 \$         | 5.35 \$            | 4,053.65 | \$ 8.31         | \$ 6,296.42  |
| 5      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        |        |         |         | 463.4          | 4 m^3 | 757.69     | L.C.Y.  | B-34D     | 1         | 78          | 0.103        | 9.71     | 78.04        | ş -       | \$ -                     | \$28.90    | \$ 2.96            | \$ 2,242.77 \$         | 5.35 \$            | 4,053.65 | \$ 8.31         | \$ 6,296.42  |
| 6      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        | 1      |         |         | 463.4          | 4 m^3 | 757.69     | L.C.Y.  | B-34D     | 1         | 78          | 0.103        | 9.71     | 78.04        | \$ -      | \$-                      | \$28.90    | \$ 2.96            | \$ 2,242.77 \$         | 5.35 \$            | 4,053.65 | \$ 8.31         | \$ 6,296.42  |
| 7      | 02315 520 0020 | Fill, Spread dumped material, By dozer,     |              | 20       | 65.6   | 20     | 65.6   | 0.3     | 0.984   | 120            | m^3   | 156.95     | B.C.Y.  | B-10B     | 1.5       | 1000        | 0.012        | 0.16     | 1.88         | \$ 12.05  | \$ 1.891.30              | \$31.93    | \$ 0.38            | \$ 59.64 \$            | 0.92 \$            | 144.40   | \$ 13.35        | \$ 2.095.34  |
|        |                | Gravel                                      |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 8      | 02215 520 0020 | Fill Spread dumped material By dozer        |              | 10       | 32.8   | 8      | 26.24  | 0.3     | 0.084   | 24             | m^3   | 31 30      | BCY     | B-10B     | 1.5       | 1000        | 0.012        | 0.03     | 0.38         | \$ 12.05  | \$ 378.26                | \$31.03    | \$ 0.38            | s 11.03 g              | 2 20.0             | 28.88    | \$ 13.35        | \$ 410.07    |
| Ŭ      | 02515 520 0020 | Oracial                                     |              | 10       | 02.0   | 0      | 20.24  | 0.0     | 0.001   | 2.1            |       | 01.00      | 0.0.11  | 0.00      | 1.0       | 1000        | 0.012        | 0.00     | 0.00         | ¢ 12.00   | 010.20                   | 001.00     | ф 0.00             | • 11.00 4              | φ 0.0 <b>2</b> φ   | 20.00    | • 10.00         | ¢ 410.01     |
|        |                | Gravei                                      |              | 10       | 101.0  | 4.5    | 1.00   |         | 0.050   | 10             | 10    | 15 70      | 8.0.1   |           |           | 150         | 0.400        | 0.10     | 0.54         |           | • • • • • •              |            |                    |                        |                    | 00.70    |                 |              |
| 9      | 02315 640 0200 | Utility Bedding For Pipe and Conduit,       |              | 40       | 131.2  | 1.5    | 4.92   | 0.2     | 0.656   | 12             | m^3   | 15.70      | B.C.Y.  | B-6       |           | 150         | 0.160        | 0.10     | 2.51         | \$ 4.21   | \$ 66.08                 | \$28.68    | \$ 4.59            | \$ 72.04               | 5 1.51 \$          | 23.70    | \$ 10.31        | \$ 161.82    |
|        |                | Sand                                        |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 10     | 02740 310 0200 | Asphaltic Concrete Pavement, Binder         |              | 8        | 26.24  | 10     | 32.8   | 0.12    | 0.3936  | 80             | m^2   | 95.68      | S.Y.    | B-25      |           | 4140        | 0.021        | 0.02     | 2.01         | \$ 7.70   | \$ 736.74                | \$28.49    | \$ 0.61            | \$ 58.36 \$            | § 0.51 \$          | 48.80    | \$ 8.82         | \$ 843.90    |
|        |                | Course, 4" Thick                            |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 11     | 02740 310 0460 | Asphaltic Concrete Pavement, Wearing        |              | 8        | 26.24  | 10     | 32.8   | 0.08    | 0.2624  | 80             | m^2   | 95.68      | S.Y.    | B-25B     |           | 4900        | 0.020        | 0.02     | 1.91         | \$ 6.15   | \$ 588.43                | \$29.03    | \$ 0.57            | \$ 54.54 \$            | 6 0.47 \$          | 44.97    | \$ 7.19         | \$ 687.94    |
|        |                | Course, 3" Thick                            |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 12     | 02315 520 0020 | Fill, Spread dumped material, By dozer,     |              | 29       | 95.12  | 23     | 75.44  | 1       | 3.28    | 667            | m^3   | 872.40     | B.C.Y.  | B-10B     | 1.5       | 1000        | 0.012        | 0.87     | 10,47        | S -       | S -                      | \$31.93    | \$ 1.38            | \$ 1,203,92 \$         | § 1.92 \$          | 1.675.01 | \$ 1.30         | \$ 1.134.12  |
|        |                | Onsite Pre-excavated Fill                   |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| 13     | 02510 750 3070 | Polyvinyl Chloride Pine 24" diameter        |              | 30       | 98.4   |        |        |         |         | 30             | m     | 98.4       | LE      | B-204     | 4         | 107         | 0.299        | 0.92     | 29.42        | \$ 37.50  | \$ 3,690,00              | \$31.90    | \$ 9.55            | \$ 939.72              | s . s              |          | \$ 47.05        | \$ 4 629 72  |
| 14     | 025107503070   | Polyvinyl Chloride Pipe, 24 diameter        |              | 10       | 20.4   | -      |        |         |         | 10             |       | 20.4       | L.I     | B 20A     | 4         | 196         | 0.172        | 0.32     | E GA         | \$ 19.90  | \$ 5,030.00<br>\$ 646.64 | \$31.30    | \$ 5.55<br>\$ 5.60 | \$ 333.72<br>\$ 190.40 |                    | -        | \$ 94.30        | \$ 707.04    |
| 14     | 02510 750 4560 | Folyvinyi Chionde Fipe, 12 diameter         |              | 10       | 32.0   | -      |        |         |         | 10             |       | 32.0       | L.F.    | B-20A     | 4         | 180         | 0.172        | 0.18     | 0.74         | \$ 10.00  | \$ 010.04                | 331.90     | \$ 0.00            | 3 180.40<br>C 0.000.00 | 3 - 3              |          | 3 24.30         | \$ 797.04    |
| 15     | 01560 250 0550 | Temporary Pencing Wile Mesh, 8 high         |              | 110      | 300.0  | -      |        |         |         | 110            | 10    | 300.8      | L.F.    | 2 Galp    | 2         | 000         | 0.027        | 0.00     | 9.74         | \$ 12.00  | 3 4,340.08               | 333.20     | \$ 0.03            | 3 2,399.32             | 3 - 3<br>          |          | 3 19.23         | \$ 0,945.40  |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |        |         |         | 25             | m^3   | 32.5       | CY      | C-14A     |           | 18.55       | 10.782       | 1.75     | 350.42       | \$ 298.00 | \$ 9,685.00              |            | \$ 360.00          | \$ 11,700.00           | 5 39.00 \$         | 1,267.50 | \$ 697.00       | \$ 22,652.50 |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | steel and finishing, Beams, 25' span        |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |        |         |         | 4.5            | m^3   | 5.85       | CY      | C-14A     |           | 12.57       | 15.911       | 0.47     | 93.08        | \$ 410.00 | \$ 2,398.50              |            | \$ 535.00          | \$ 3,129.75 \$         | \$ 57.50 \$        | 336.38   | \$ 1,002.50     | \$ 5,864.63  |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | steel and finishing, Columns 16" x 16"      |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | Average Reinforcing                         |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | Concrete in place. Including Forms (4       |              |          |        |        |        |         |         | 72             | m^3   | 93.6       | CY      | C-14A     |           | 35.87       | 5 799        | 2.61     | 542 79       | \$ 195.00 | \$ 18 252 00             |            | \$ 194.00          | \$ 18 158 40 \$        | \$ 20.00 <b>\$</b> | 1 872 00 | \$ 409.00       | \$ 38 282 40 |
|        |                | uses) concrete placement reinforcing        |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           | •                        |            |                    |                        |                    | .,       |                 | • •••,=••••  |
|        |                | steel and finishing. Elevated Slahs, Two    |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | wey been & alab 25' ener                    |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | way beam & slab, 25 span                    |              |          | _      | -      |        |         |         | 0              |       | 40.4       | 01/     | 0.444     |           | 04.04       | 4 000        | 0.40     | 44.07        | ¢ 040.00  | e 0.540.00               |            | ¢ 44.00            | e 453.00 e             | 0.00               | 0.70     | e 000.00        | ¢ 0.077.40   |
| 1      |                | Concrete in place, including Forms (4       |              | 1        | 1      | 1      | 1      |         |         | 8              | m~3   | 10.4       | UT      | C-14A     | 1         | 01.04       | 1.382        | 0.13     | 14.37        | φ 242.00  | ¢ ∠,516.80               | 1          | φ 44.00            | a 457.00 \$            | o ∪.20 \$          | 2.70     |                 | φ 2,977.10   |
| 1      |                | uses), concrete, placement, reinforcing     |              | 1        | 1      | 1      | 1      |         |         |                |       | 1          | 1       |           | 1         |             | 1            | 1        | 1            |           | 1                        | 1          |                    |                        |                    |          |                 |              |
|        |                | steel and finishing, Footings, spread, over |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | 5 C.Y                                       |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |        |         |         | 18.9           | m^3   | 24.57      | CY      | C-14A     |           | 60          | 1.867        | 0.41     | 45.87        | \$ 115.00 | \$ 2,825.55              |            | \$ 59.50           | \$ 1,461.92 \$         | \$ 0.35 <b>\$</b>  | 8.60     | \$ 174.85       | \$ 4,296.06  |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | steel and finishing, Footings, Strip, 36" x |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                | 12", reinforced                             |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
| L      | 1              | Concrete in place. Including Forms (4       |              | i        |        | 1      | 1      |         |         | 54             | m^3   | 70.2       | CY      | C-14A     | 1         | 56.4        | 1.986        | 1.24     | 139.42       | \$ 154.00 | \$ 10,810.80             | 1          | \$ 63,50           | \$ 4,457,70 9          | 0.38 S             | 26.68    | \$ 217.88       | \$ 15,295 18 |
| 1      |                | uses) concrete placement reinforcing        |              | 1        | 1      | 1      | 1      |         |         |                |       | 1          | 1       | 1         | 1         |             |              | 1        |              |           | ,                        | 1          |                    | ,                      | v                  |          |                 | ,            |
| 1      |                | steel and finishing. Slab on Grade          |              | 1        | 1      | 1      | 1      |         |         |                |       | 1          | 1       |           | 1         |             | 1            | 1        | 1            |           | 1                        | 1          |                    |                        |                    |          |                 |              |
| 1      |                | (foundation mat), aver 20 C V               |              |          |        | 1      | 1      |         |         |                |       | 1          | 1       |           |           |             | 1            | 1        | 1            |           | 1                        |            |                    |                        |                    |          |                 |              |
|        |                | (ioundation mat), over 20 C. F              |              |          |        |        | +      |         |         | 36.0           |       | 00.00      |         |           |           | 07.00       | 7.007        |          | 701.00       |           |                          |            |                    |                        |                    | 0.001.10 |                 |              |
| 1      |                | Concrete in place, Including Forms (4       |              |          |        | 1      | 1      |         |         | 75.6           | m^3   | 98.28      | CY      | C-14A     |           | 27.26       | 7.337        | 3.61     | /21.08       | \$ 203.00 | \$ 19,950.84             |            | \$ 243.00          | \$ 23,882.04           | 5 26.50 \$         | 2,604.42 | \$ 472.50       | \$ 46,437.30 |
| 1      |                | uses), concrete, placement, reinforcing     |              | 1        | 1      | 1      | 1      |         |         |                |       | 1          | 1       |           | 1         |             | 1            | 1        | 1            |           | 1                        | 1          |                    |                        |                    |          |                 |              |
| 1      |                | steel and finishing, Grade walls, 8"thick,  |              |          |        | 1      | 1      |         |         |                |       | 1          | 1       |           |           |             | 1            | 1        | 1            |           | 1                        |            |                    |                        |                    |          |                 |              |
|        |                | 14' high                                    |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          |                 |              |
|        |                |                                             |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          | TOTAL BARE      | e 197 927 47 |
|        |                |                                             |              |          |        |        |        |         |         |                |       |            |         |           |           |             |              |          |              |           |                          |            |                    |                        |                    |          | COST SUM        | a 187,827.47 |

# Project: Cecil Green Park Rd (2900 m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

Cost Estimate - Quantity Take-Offs

|        |                |                                             |              |          |        |        | QUA        | NTITY TAP  | EOFF              |       |            |        |           |           | D.          | METHOD       |          |              | MAT       | ERIAL        |            | LABOR           |                  | EQUI      | PMENT       | TOTAL B                      | ARE COST     | TOTAL INCL      | D&P COST Notes |
|--------|----------------|---------------------------------------------|--------------|----------|--------|--------|------------|------------|-------------------|-------|------------|--------|-----------|-----------|-------------|--------------|----------|--------------|-----------|--------------|------------|-----------------|------------------|-----------|-------------|------------------------------|--------------|-----------------|----------------|
| Item # | Cost Code      | Description                                 | No of Pieces | Length   | Length | Width  | Width Dep  | th / Depti | / Sub-Total Total | Units | Total      | Units  | Crew Code | Crew Size | Daily       | Worker-Hours | Duration | Total        | Unit Cost | Total Cost   | Unit Labor | Unit Labor Cost | Total Labor Cost | Unit Cost | Cost        | Total Unit Cost              | Total Cost   | Total Unit Cost | Total Cost     |
|        |                |                                             |              | (meters) | (feet) | (meter | (feet) Hei | tht Heigh  | t Quantity        |       | Quantity   |        |           |           | Output      | (WHr/Unit)   | (days)   | Worker-Hours |           |              | Pricing    | (\$/Units)      |                  |           |             | (\$/Units)                   |              | (\$/Units)      |                |
|        |                |                                             |              |          |        | s)     | (me        | ers (fee   | (metric)          |       | (Imperial) |        |           |           | (Units/day) |              |          |              |           |              | (\$/WHr)   |                 |                  |           |             |                              |              |                 |                |
|        |                |                                             |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
| 1      | 02315 610 1300 | Excavating Trench (14' to 20' deep 1        |              | 29       | 95 12  | 23     | 75 44      | 26.2       | 5336              | m^3   | 6979 22    | BCY    | B-12A     | 2         | 320         | 0.050        | 21.81    | 348.96       | S -       | \$ -         | \$30.77    | \$ 1.54         | \$ 1074800       | \$ 175    | \$ 12 213 6 | 4 \$ 3.29                    | \$ 22,961,64 | \$ 426 \$       | 29 731 48      |
|        |                | C Y Hydraulic backboe)                      |              |          |        |        |            |            |                   |       |            |        |           | -         |             |              |          |              | ÷         | ÷            |            | •               | •                | •         | •,          |                              |              |                 |                |
| 2      | 02315 610 0510 | Excavating Trench (6' to 10' deep 1 C.Y.    |              | 30       | 98.4   | 15     | 4.92       | 9.8        | 135               | m^3   | 176 57     | BCY    | B-124     | 2         | 400         | 0.040        | 0.44     | 7.06         | s .       | \$ .         | \$30.77    | \$ 123          | \$ 217.19        | \$ 1.40   | \$ 247.2    | 0 \$ 2.63                    | \$ 464.39    | \$ 3.40 \$      | 600.35         |
| -      | 01515 010 0510 | Hydraulic backhoe)                          |              | 00       | 50.4   | 1.0    | 4.02       | 0.0        | 100               |       | 110.07     | 0.0.1. | 0.27      | -         | 400         | 0.040        | 0.44     | 7.00         | v         | Ť            | 000.11     | ¢ 1.20          | ÷ 200.00         | • 1.40    | ÷ 247.2     | ¢ 2.00                       | • ••••.00    | ¢ 0.40 ¢        | 000.00         |
| 2      | 02215 400 1255 | Hauling (20 mile round trip 5 load/br)      |              |          |        |        |            |            | 1000.8            | m/\2  | 1626.20    | LCX    | P 24D     | 1         | 79          | 0.102        | 20.08    | 169.54       | c         | ¢            | \$28.00    | \$ 2.06         | \$ 4.942.45      | \$ 5.25   | \$ 9.754.2  | 0 \$ 9.21                    | \$ 12 507 65 | \$ 10.25 \$     | 16 025 70      |
| 4      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          | -      |        |            |            | 1000.0            | m/2   | 1626.20    | LCX    | B-34D     | 1         | 70          | 0.103        | 20.30    | 169.54       | 5 -       | с.<br>С      | \$28.00    | \$ 2.00         | \$ 4,043.45      | \$ 5.35   | \$ 9,754.2  | 0 \$ 0.31                    | \$ 13,597.05 | \$ 10.35 \$     | 16,935.70      |
| 6      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        |            |            | 1000.0            | m 42  | 1636.30    | L.C.Y  | D-34D     | 1         | 70          | 0.103        | 20.30    | 100.54       | \$        | \$ -         | \$20.00    | \$ 2.30         | \$ 4,043.45      | 9 J.JJ    | \$ 0,754.2  | 0 0 0.01                     | \$ 13,337.05 | \$ 10.35 \$     | 10,005.70      |
| 6      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        |            |            | 1000.0            | m/2   | 1626.20    | LCX    | B-34D     | 1         | 70          | 0.103        | 20.00    | 169.54       | c ·       | с.<br>с      | \$28.00    | \$ 2.00         | \$ 4,043.45      | \$ 5.35   | \$ 9,754.2  | 0 \$ 0.31                    | \$ 12,597,65 | \$ 10.35 \$     | 16,035.70      |
| 7      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    | -            |          |        |        |            |            | 1000.0            | m/2   | 1626.20    | LCX    | B-34D     | 1         | 70          | 0.103        | 20.00    | 169.54       | s -       | с -          | \$28.00    | \$ 2.00         | \$ 4,043.45      | \$ 5.35   | \$ 9,754.2  | 0 0 0.01                     | \$ 12,597.65 | \$ 10.35 \$     | 16,035.70      |
| ,      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |        |            |            | 1000.0            | m 42  | 1636.30    | L.C.Y  | D-34D     | 1         | 70          | 0.103        | 20.30    | 100.54       | \$        | \$ -         | \$20.00    | \$ 2.30         | \$ 4,043.45      | 9 J.JJ    | \$ 0,754.2  | 0 0 0.01                     | \$ 13,337.05 | \$ 10.35 \$     | 10,005.70      |
| 0      | 02315 490 1255 | Hauling (20 mile round unp, .5 load/m)      | -            | 20       | 05.10  | 22     | 75.44 0    | 2 0.00     | 1000.8            | m^3   | 1636.30    | L.C.T. | B-34D     | 1.5       | 1000        | 0.103        | 20.96    | 100.54       | \$ 10.05  | \$ 0.450.74  | \$20.90    | \$ 2.90         | \$ 4,043.45      | a 5.35    | \$ 0,754.2  | 0 0 0.31                     | \$ 13,397.65 | 5 10.35 3       | 2,560,97       |
| 9      | 02315 520 0020 | Fill, Spread dumped material, by dozer,     |              | 29       | 95.12  | 23     | /5.44 0    | 3 0.90     | 200.1             | 111-5 | 201.72     | B.C.T. | D-TUD     | 1.5       | 1000        | 0.012        | 0.20     | 3.14         | \$ 12.05  | \$ 3,133.74  | 331.93     | a 0.30          | \$ 99.40         | \$ 0.92   | \$ 240.7    | a 13.33                      | \$ 3,493.97  | a 13.04 a       | 3,309.07       |
| 40     |                | Gravei                                      |              | 40       | 00.0   |        | 00.04      |            |                   |       | 04.00      | 5.0.V  | 0.400     | 4.5       | 4000        | 0.040        | 0.00     | 0.00         | A 40.05   | A 070.00     | 004.00     | <b>A</b> 0.00   | A 44.00          |           | A 00.0      |                              | a 440.07     | A 40.04 A       | 100.17         |
| 10     | 02315 520 0020 | Fill, Spread dumped material, by dozer,     |              | 10       | 32.0   | °      | 20.24 0    | 3 0.90     | 24                | 111-5 | 31.39      | B.C.T. | D-TUD     | 1.5       | 1000        | 0.012        | 0.03     | 0.30         | \$ 12.05  | \$ 3/0.20    | 331.93     | a 0.30          | a 11.85          | \$ 0.92   | ə 20.0      | a 13.33                      | \$ 419.07    | a 13.04 a       | 420.17         |
|        |                | Gravel                                      |              |          | 00.4   | 1.5    | 100 0      | 0 0.05     |                   | 10    | 44.77      | 0.01   |           |           | 450         | 0.400        | 0.00     | 4.00         |           | A 40.50      | 000.00     | A 150           | 6 54.00          |           |             |                              |              | A 40.05 A       | 455.07         |
| 11     | 02315 640 0200 | Utility Bedding For Pipe and Conduit,       |              | 30       | 98.4   | 1.5    | 4.92 0     | 2 0.65     | 9                 | mn3   | 11.77      | B.C.Y. | B-0       | 3         | 150         | 0.160        | 0.08     | 1.88         | \$ 4.21   | \$ 49.56     | \$28.68    | \$ 4.59         | \$ 54.03         | \$ 1.51   | \$ 17.7     | 8 \$ 10.31                   | \$ 121.30    | \$ 13.25 \$     | 155.97         |
|        |                | Sand                                        |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
| 12     | 02740 310 0200 | Asphaltic Concrete Pavement, Binder         |              | 8        | 26.24  | 10     | 32.8 0.    | 0.393      | 6 80              | m^2   | 95.68      | S.Y.   | B-25      | 11        | 4140        | 0.021        | 0.02     | 2.01         | \$ 7.70   | \$ 736.74    | \$28.49    | \$ 0.61         | \$ 58.36         | \$ 0.51   | \$ 48.8     | 0 \$ 8.82                    | \$ 843.90    | \$ 9.95 \$      | 952.02         |
|        |                | Course, 4" Thick                            |              | _        |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
| 13     | 02740 310 0460 | Asphaltic Concrete Pavement, Wearing        |              | 8        | 26.24  | 10     | 32.8 0.    | 0.262      | 4 80              | m^2   | 95.68      | S.Y.   | B-25B     | 12        | 4900        | 0.020        | 0.02     | 1.91         | \$ 6.15   | \$ 588.43    | \$29.03    | \$ 0.57         | \$ 54.54         | \$ 0.47   | \$ 44.9     | / \$ 7.19                    | \$ 687.94    | \$ 8.20 \$      | 784.58         |
|        |                | Course, 3" Thick                            |              |          | _      |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
| 14     | 02315 520 0020 | Fill, Spread dumped material, By dozer,     |              | 29       | 95.12  | 23     | 75.44      | 3.20       | 667               | m^3   | 872.40     | B.C.Y. | B-10B     | 1.5       | 1000        | 0.012        | 0.87     | 10.47        | ş -       | \$ -         | \$31.93    | \$ 1.38         | \$ 1,203.92      | \$ 1.92   | \$ 1,675.0  | 1 \$ 1.30                    | \$ 1,134.12  | \$ 1.59 \$      | 1,387.12       |
|        |                | Onsite Pre-excavated Fill                   |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
| 15     | 02510 750 3070 | Polyvinyl Chloride Pipe, 24" diameter       |              | 30       | 98.4   |        |            |            | 30                | m     | 98.4       | L.F.   | B-20A     | 4         | 107         | 0.299        | 0.92     | 29.42        | \$ 37.50  | \$ 3,690.00  | \$31.90    | \$ 9.55         | \$ 939.72        | \$ -      | s           | \$ 47.05                     | \$ 4,629.72  | \$ 55.50 \$     | 5,461.20       |
| 16     | 01560 250 0550 | Temporary Fencing Wire Mesh, 8' high        |              | 200      | 656    |        |            |            | 200               | m     | 656        | L.F.   | 2 Carp    | 2         | 600         | 0.027        | 1.09     | 17.71        | \$ 12.60  | \$ 8,265.60  | \$33.25    | \$ 6.65         | \$ 4,362.40      | \$ -      | s           | <ul> <li>\$ 19.25</li> </ul> | \$ 12,628.00 | \$ 24.00 \$     | 15,744.00      |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |            |            | 51.84             | m^3   | 67.392     | CY     | C-14A     |           | 18.55       | 10.782       | 3.63     | 726.62       | \$ 298.00 | \$ 20,082.82 |            | \$ 360.00       | \$ 24,261.12     | \$ 39.00  | \$ 2,628.2  | 9 \$ 697.00                  | \$ 46,972.22 | \$ 930.00 \$    | 62,674.56      |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | steel and finishing, Beams, 25' span        |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |            |            | 7.2               | m^3   | 9.36       | CY     | C-14A     |           | 12.57       | 15.911       | 0.74     | 148.93       | \$ 410.00 | \$ 3,837.60  |            | \$ 535.00       | \$ 5,007.60      | \$ 57.50  | \$ 538.2    | 0 \$ 1,002.50                | \$ 9,383.40  | \$ 1,350.00 \$  | 12,636.00      |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | steel and finishing, Columns 16" x 16"      |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | Average Reinforcing                         |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |            |            | 129.6             | m^3   | 168.48     | CY     | C-14A     |           | 35.87       | 5.799        | 4.70     | 977.02       | \$ 195.00 | \$ 32,853.60 |            | \$ 194.00       | \$ 32,685.12     | \$ 20.00  | \$ 3,369.6  | 0 \$ 409.00                  | \$ 68,908.32 | \$ 535.00 \$    | 90,136.80      |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | steel and finishing, Elevated Slabs, Two    |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | way beam & slab, 25' span                   |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
| 1      |                | Concrete in place, Including Forms (4       | 1            |          |        | 1      |            |            | 20                | m^3   | 26         | CY     | C-14A     |           | 81.04       | 1.382        | 0.32     | 35.93        | \$ 242.00 | \$ 6,292.00  | 1          | \$ 44.00        | \$ 1,144.00      | \$ 0.26   | \$ 6.7      | 6 \$ 286.26                  | \$ 7,442.76  | \$ 335.00 \$    | 8,710.00       |
| 1      |                | uses), concrete, placement, reinforcing     | 1            |          |        |        |            |            |                   |       |            |        |           |           |             |              |          | 1            | 1         |              |            |                 | 1                | 1         |             |                              | 1            | 1               |                |
|        |                | steel and finishing, Footings, spread, ove  | ər           |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | 5 C.Y                                       |              |          |        | 1      |            |            |                   | L     |            |        |           |           |             |              |          |              |           | 1            |            |                 |                  |           |             | 1                            |              |                 |                |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |            |            | 24.3              | m^3   | 31.59      | CY     | C-14A     |           | 60          | 1.867        | 0.53     | 58.98        | \$ 115.00 | \$ 3,632.85  |            | \$ 59.50        | \$ 1,879.61      | \$ 0.35   | \$ 11.0     | 6 \$ 174.85                  | \$ 5,523.51  | \$ 218.00 \$    | 6,886.62       |
|        |                | uses), concrete, placement, reinforcing     |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | steel and finishing, Footings, Strip, 36" x |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | 12", reinforced                             |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |                              |              |                 |                |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |            |            | 97.2              | m^3   | 126.36     | CY     | C-14A     |           | 56.4        | 1.986        | 2.24     | 250.95       | \$ 154.00 | \$ 19,459.44 |            | \$ 63.50        | \$ 8,023.86      | \$ 0.38   | \$ 48.0     | 2 \$ 217.88                  | \$ 27,531.32 | \$ 268.00 \$    | 33,864.48      |
| 1      |                | uses), concrete, placement, reinforcing     | 1            |          |        | 1      |            |            |                   | 1     |            | 1      |           |           |             |              |          | 1            | 1         | 1            | 1          |                 | 1                | 1         |             | 1                            | 1            | 1               |                |
| 1      |                | steel and finishing, Slab on Grade          | 1            |          |        | 1      |            |            |                   | 1     |            | 1      |           |           |             |              |          | 1            | 1         | 1            | 1          |                 | 1                | 1         |             | 1                            | 1            | 1               |                |
|        | L              | (foundation mat), over 20 C.Y               |              |          |        |        |            |            |                   |       |            |        |           |           |             |              |          |              |           | I            |            |                 |                  |           |             |                              | <u> </u>     |                 |                |
|        |                | Concrete in place, Including Forms (4       |              |          |        |        |            |            | 97.2              | m^3   | 126.36     | CY     | C-14A     |           | 27.26       | 7.337        | 4.64     | 927.10       | \$ 203.00 | \$ 25,651.08 |            | \$ 243.00       | \$ 30,705.48     | \$ 26.50  | \$ 3,348.5  | 4 \$ 472.50                  | \$ 59,705.10 | \$ 625.00 \$    | 78,975.00      |
| 1      |                | uses), concrete, placement, reinforcing     | 1            |          | 1      |        |            |            |                   |       |            |        |           |           |             |              |          | 1            | 1         | 1            |            |                 | 1                | 1         |             |                              |              | 1               |                |
| 1      |                | steel and finishing, Grade walls, 8"thick,  | 1            |          |        | 1      |            |            |                   | 1     |            | 1      |           |           |             |              |          | 1            | 1         | 1            | 1          |                 | 1                | 1         |             | 1                            | 1            | 1               |                |
| 1      |                | 14' high                                    | 1            |          |        |        |            |            |                   |       |            |        |           |           |             |              |          | 1            | 1         |              |            |                 | 1                | 1         |             |                              | 1            | 1               |                |
| -      |                |                                             |              |          | *      |        |            | -          |                   |       |            |        |           |           | *           |              |          |              |           |              | *          |                 |                  |           |             |                              |              |                 |                |

TOTAL BARE \$ 354,436.66 TOTAL O&P \$ 454,312.45 COST SUM \$ 454,312.45

Project: Chancellor BLVD (1670 m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

|        |                |                                          |              |          |        |        | (      | QUANTI  | Y TAKE  | DFF      |          |       |            |        |           |           |            | METHOD       |          |              | MAT       | ERIAL       |            | LABOR           |               | EQUIP     | MENT        | TOTAL F    | 3ARE COST     |
|--------|----------------|------------------------------------------|--------------|----------|--------|--------|--------|---------|---------|----------|----------|-------|------------|--------|-----------|-----------|------------|--------------|----------|--------------|-----------|-------------|------------|-----------------|---------------|-----------|-------------|------------|---------------|
| Item # | Cost Code      | Description                              | No of Pieces | Length   | Length | Width  | Width  | Depth / | Depth / | Sub-Tota | I Total  | Units | Total      | Units  | Crew Code | Crew Size | Daily      | Worker-Hours | Duration | Total        | Unit Cost | Total Cost  | Unit Labor | Unit Labor Cost | Total Labor   | Unit Cost | Cost        | Total Unit | Total Cost    |
|        |                |                                          |              | (meters) | (feet) | (meter | (feet) | Height  | Height  |          | Quantity | ,     | Quantity   |        |           |           | Output     | (WHr/Unit)   | (days)   | Worker-Hours |           |             | Pricing    | (\$/Units)      | Cost          |           |             | Cost       | 1             |
|        |                |                                          |              |          |        | s)     |        | (meters | (feet)  |          | (metric) |       | (Imperial) |        |           |           | (Units/day |              |          |              |           |             | (S/WHr)    |                 |               |           |             | (\$/Units) | 1             |
|        |                |                                          |              |          |        |        |        | )       |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | 1          | 1             |
| 1      | 02315 610 0910 | Excavating, Trench (10' to 14' deep, 1   |              | 210      | 688.8  | 4      | 13.12  | 3.5     | 11.48   |          | 2940     | m^3   | 3845.37    | B.C.Y. | B-12A     | 2         | 360        | 0.044        | 10.68    | 169.20       | \$-       | \$ .        | \$30.77    | \$ 1.3          | 7 \$ 5,268.16 | \$ 1.56   | \$ 5,998.78 | \$ 2.93    | \$ 11,266.94  |
|        |                | C.Y. Hydraulic backhoe)                  |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | I          | 1             |
| 2      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr) |              |          |        |        |        |         |         |          | 813.75   | m^3   | 1330.43    | L.C.Y. | B-34D     | 1         | 78         | 0.103        | 17.06    | 137.03       | \$-       | s -         | \$28.90    | \$ 2.9          | 6 \$ 3,938.07 | \$ 5.35   | \$ 7,117.80 | \$ 8.31    | \$ 11,055.88  |
| 3      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr) |              |          |        |        |        |         |         |          | 813.75   | m^3   | 1330.43    | L.C.Y. | B-34D     | 1         | 78         | 0.103        | 17.06    | 137.03       | \$-       | \$.         | \$28.90    | \$ 2.9          | 6 \$ 3,938.07 | \$ 5.35   | \$ 7,117.80 | \$ 8.31    | \$ 11,055.88  |
| 4      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr) |              |          |        |        |        |         |         |          | 813.75   | m^3   | 1330.43    | L.C.Y. | B-34D     | 1         | 78         | 0.103        | 17.06    | 137.03       | \$-       | s -         | \$28.90    | \$ 2.9          | 6 \$ 3,938.07 | \$ 5.35   | \$ 7,117.80 | \$ 8.31    | \$ 11,055.88  |
| 5      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr) |              |          |        |        |        |         |         |          | 813.75   | m^3   | 1330.43    | L.C.Y. | B-34D     | 1         | 78         | 0.103        | 17.06    | 137.03       | \$-       | \$.         | \$28.90    | \$ 2.9          | 6 \$ 3,938.07 | \$ 5.35   | \$ 7,117.80 | \$ 8.31    | \$ 11,055.88  |
| 6      | 02315 520 0020 | Fill, Spread dumped material, By dozer,  |              | 210      | 688.8  | 4      | 13.12  | 3       | 9.84    |          | 2520     | m^3   | 3296.03    | B.C.Y. | B-10B     | 1.5       | 1000       | 0.012        | 3.30     | 39.55        | \$ 12.05  | \$ 39,717.2 | 1 \$31.93  | \$ 0.3          | 8 \$ 1,252.49 | \$ 0.92   | \$ 3,032.35 | \$ 13.35   | \$ 44,002.05  |
|        |                | Gravel Drain Rock                        |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | I          | 1             |
| 7      | 02315 520 0020 | Fill, Spread dumped material, By dozer,  |              | 210      | 688.8  | 4      | 13.12  | 0.5     | 1.64    |          | 420      | m^3   | 549.34     | B.C.Y. | B-10B     | 1.5       | 1000       | 0.012        | 0.55     | 6.59         | \$-       | s -         | \$31.93    | \$ 1.3          | 8 \$ 758.09   | \$ 1.92   | \$ 1,054.73 | \$ 1.30    | \$ 714.14     |
|        |                | Onsite Pre-excavated Fill                |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | I          | 1             |
| 12     | 02360 510 2660 | Piping, reinforced Culvert, class 3, no  | 3            | 213      | 698.64 |        | 0      |         | 0       |          | 639      | m     | 2095.92    | L.F.   | B-13B     | 7         | 40         | 1.400        | 52.40    | 2934.29      | \$ 180.00 | \$377,265.6 | 0          | \$ 12.3         | 0 \$25,779.82 | \$ 24.00  | \$50,302.08 | \$ 244.00  | \$511,404.48  |
|        |                | gaskets, 72" Diameter                    |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | I          | 1             |
| 9      | 01560 250 0550 | Temporary Fencing Wire Mesh, 8' high     |              | 450      | 1476   |        | 0      |         | 0       |          | 450      | m     | 1476       | L.F.   | 2 Carp    | 2         | 600        | 0.027        | 2.46     | 39.85        | \$ 12.60  | \$ 18,597.6 | 0 \$33.25  | \$ 6.6          | 5 \$ 9,815.40 | \$-       | s -         | \$ 19.25   | \$ 28,413.00  |
|        |                |                                          |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | TOTAL      |               |
|        |                |                                          |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | BARE COST  | \$ 640,024.12 |
|        |                |                                          |              |          |        |        |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |             |            |                 |               |           |             | SUM        |               |

#### Project: School of Music (30m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

|        |                |                                             |              |          |        |          | 0      | QUANTI  | TY TAKE | DFF      |          |       |            |        |           |           |            | METHOD       |          |              | MA        | FERIAL    |              | LABOR           |              | EQUIP     | MENT     | TOTAL       | BARE COST    |
|--------|----------------|---------------------------------------------|--------------|----------|--------|----------|--------|---------|---------|----------|----------|-------|------------|--------|-----------|-----------|------------|--------------|----------|--------------|-----------|-----------|--------------|-----------------|--------------|-----------|----------|-------------|--------------|
| Item # | Cost Code      | Description                                 | No of Pieces | Length   | Length | Width V  | Vidth  | Depth / | Depth / | Sub-Tota | I Total  | Units | Total      | Units  | Crew Code | Crew Size | Daily      | Worker-Hours | Duration | Total        | Unit Cost | Total Cos | t Unit Labor | Unit Labor Cost | Total Labor  | Unit Cost | Cost     | Total Unit  | Total Cost   |
|        |                |                                             |              | (meters) | (feet) | (meter ( | (feet) | Height  | Height  |          | Quantity |       | Quantity   |        |           |           | Output     | (WHr/Unit)   | (days)   | Worker-Hours |           |           | Pricing      | (\$/Units)      | Cost         |           |          | Cost        |              |
|        |                |                                             |              |          |        | s)       |        | (meters | (feet)  |          | (metric) |       | (Imperial) |        |           |           | (Units/day | )            |          |              |           |           | (\$/WHr)     |                 |              |           |          | (\$/Units)  |              |
|        |                |                                             |              |          |        |          |        | )       |         |          |          |       |            |        |           |           |            |              |          |              |           |           |              |                 |              |           |          |             |              |
| 1      | 02315 610 0510 | Excavating, Trench (1' to 4' deep, 1/2 C.Y. |              | 10.5     | 34.44  | 3.5 1    | 1.48   | 1.5     | 4.92    |          | 55.125   | m^3   | 72.10      | B.C.Y. | B11M      | 2         | 200        | 0.080        | 0.36     | 5.77         | \$-       | S         | - \$30.40    | \$ 2.43         | \$ 175.20    | \$ 1.39   | \$ 100.2 | 2 \$ 3.82   | \$ 275.42    |
|        |                | Tractor loader/backhoe)                     |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |           |              |                 |              |           |          |             |              |
| 2      | 02315 490 1255 | Hauling (20 mile round trip, .5 load/hr)    |              |          |        |          |        |         |         |          | 45       | m^3   | 73.57      | L.C.Y. | B-34D     | 1         | 78         | 0.103        | 0.94     | 7.58         | \$-       | s         | - \$28.90    | \$ 2.96         | \$ \$ 217.77 | \$ 5.35   | \$ 393.6 | 1 \$ 8.31   | \$ 611.38    |
| 3      | 02510 750 4560 | Polyvinyl Chloride Pipe, 12" diameter       |              | 20       | 65.6   |          | 0      |         | 0       |          | 20       | m     | 65.6       | L.F.   | B-20A     | 4         | 186        | 0.172        | 0.35     | 11.28        | \$ 18.80  | \$ 1,233. | 28 \$31.90   | \$ 5.50         | \$ 360.80    | \$-       | \$       | · \$ 24.30  | \$ 1,594.08  |
| 4      | 01560 250 0550 | Temporary Fencing Wire Mesh, 8' high        |              |          | 0      |          | 0      |         | 0       |          | 180      | m     | 590.4      | L.F.   | 2 Carp    | 2         | 600        | 0.027        | 0.98     | 15.94        | \$ 12.60  | \$ 7,439. | 04 \$ 33.25  | \$ 6.65         | \$ 3,926.16  | \$ -      | \$       | · \$ 19.25  | \$ 11,365.20 |
|        |                |                                             |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |           |              |                 |              |           |          |             |              |
| 12     | 02360 510 2660 | Piping, reinforced Culvert, class 3, no     | 1            | 10       | 32.8   |          | 0      |         | 0       |          | 10       | m     | 32.8       | L.F.   | B-13B     | 7         | 40         | 1.400        | 0.82     | 45.92        | \$ 180.00 | \$ 5,904. | 00           | \$ 12.30        | \$ 403.44    | \$ 24.00  | \$ 787.2 | ) \$ 244.00 | \$ 8,003.20  |
|        |                | gaskets, 72" Diameter                       |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |           |              |                 |              |           |          |             |              |
|        | •              |                                             |              |          |        |          |        |         |         |          |          |       |            |        | •         |           |            |              |          |              |           |           |              |                 |              |           |          | TOTAL       |              |
|        |                |                                             |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |           |              |                 |              |           |          | BARE COST   | \$ 21,849.29 |
|        |                |                                             |              |          |        |          |        |         |         |          |          |       |            |        |           |           |            |              |          |              |           |           |              |                 |              |           |          | SUM         |              |

## Project: Bus Loop (900m^3 Storage) Date: April 6th, 2017 Estimator: Neil Courtney

Cost Estimate - Quantity Take-Offs

|        |                                                            |              |          |           |       | Q      | UANTIT  | TY TAKEOFF  |          |        |       |            |        |           |           |             | METHOD       |          |              | MA        | TERIAL       |            | LABOR           |                  | EQUIPM    | ENT         | TOTAL      | BARE COST    | TOTAL INCL O&P (                 | COST Notes |
|--------|------------------------------------------------------------|--------------|----------|-----------|-------|--------|---------|-------------|----------|--------|-------|------------|--------|-----------|-----------|-------------|--------------|----------|--------------|-----------|--------------|------------|-----------------|------------------|-----------|-------------|------------|--------------|----------------------------------|------------|
| Item # | Cost Code Description                                      | No of Pieces | Length   | Length V  | Nidth | Width  | Depth / | Depth / Sub | -Total T | otal   | Units | Total      | Units  | Crew Code | Crew Size | Daily       | Worker-Hours | Duration | Total        | Unit Cost | Total Cost   | Unit Labor | Unit Labor Cost | Total Labor Cost | Unit Cost | Cost        | Total Unit | Total Cost   | Total Unit Cost Tota             | / Cost     |
|        |                                                            |              | (meters) | (feet) (r | meter | (feet) | Height  | Height      | Qu       | antity |       | Quantity   |        |           |           | Output      | (WHr/Unit)   | (days)   | Worker-Hours |           |              | Pricing    | (\$/Units)      |                  |           |             | Cost       |              | (\$/Units)                       |            |
|        |                                                            |              |          |           | s)    |        | (meters | (feet)      | (m       | etric) |       | (Imperial) |        |           |           | (Units/day) |              |          |              |           |              | (\$/WHr)   |                 |                  |           |             | (\$/Units) |              |                                  |            |
|        |                                                            |              |          |           | -,    |        | )       | (           | (        | ,      |       | (          |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 1      | 02315 610 0510 Excevation Trench (6' to 10' deep 1 C V     |              | 9.5      | 31.16     | 45    | 14 76  | á       | 9.84        | 12       | 8 25   | m^3   | 167 74     | BCY    | B-124     | 2         | 400         | 0.040        | 0.42     | 6.71         | \$        | s .          | \$30.77    | \$ 123          | \$ 206.33 \$     | 1.40      | \$ 234.84   | \$ 2.63    | \$ 441.17    | \$ 3.40 \$                       | 570.33     |
|        | Hydraulic backboo)                                         |              | 0.0      | 01.10     | 4.0   | 14.70  | 0       | 0.04        |          | .0.20  |       | 101.14     | 0.0.1. | 5 121     | -         | 400         | 0.040        | 0.42     | 0.71         | v         | ÷            | 000.11     | ψ 1.20          | φ 200.00 φ       | 1.40      | 201.01      | φ 2.00     | • •••••      | φ 0.40 φ                         | 010.00     |
| 2      | Hydraulic backhoe)                                         |              | 0        | 26.24     | 0.5   | 4.64   | 2       | 0.94        |          | 10     |       | 45.70      | BCV    | D 404     | 2         | 400         | 0.040        | 0.04     | 0.62         |           |              | 620 77     | ¢ 4.00          | £ 40.24 £        | 1.40      | ¢ 04.07     | ¢ 262      | ¢ 44.00      | e 240 e                          | 53.36      |
| 2      | 02313 610 0510 Excavaling, Tench (6 to To deep, T.C.T.     |              | •        | 20.24     | 0.5   | 1.04   | 3       | 9.04        |          | 12     | m-3   | 15.70      | B.C.T. | D-12A     | 2         | 400         | 0.040        | 0.04     | 0.65         | 3 -       | ə -          | \$30.77    | a 1.23          | a 19.51 a        | 1.40      | \$ 21.97    | \$ 2.05    | a 41.20      | a 3.40 a                         | 33.30      |
| -      | Hydraulic backhoe)                                         |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 3      | 02315 610 0510 Excavating, Trench (6' to 10' deep, 1 C.Y.  |              | 50       | 164       | 50    | 164    | 2       | 6.56        | 5        | 000    | m^3   | 6539.75    | B.C.Y. | B-12A     | 2         | 400         | 0.040        | 16.35    | 261.59       | s -       | \$ -         | \$30.77    | \$ 1.23         | \$ 8,043.89 \$   | 1.40      | \$ 9,155.65 | \$ 2.63    | \$ 17,199.54 | \$ 3.40 \$ 22                    | ,235.15    |
|        | Hydraulic backhoe)                                         |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 4      | 02315 610 0510 Excavating, Trench (1' to 4' deep, 1/2 C.Y. |              | 144      | 472.32    | 1     | 3.28   | 1       | 3.28        | 1        | 144    | m^3   | 188.34     | B.C.Y. | B11M      | 2         | 200         | 0.080        | 0.94     | 15.07        | s -       | \$-          | \$30.40    | \$ 2.43         | \$ 457.68 \$     | 1.39      | \$ 261.80   | \$ 3.82    | \$ 719.48    | \$ 5.20 \$                       | 979.39     |
|        | Tractor loader/backhoe)                                    |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 5      | 02315 490 1255 Hauling (20 mile round trip, .5 load/hr)    |              |          |           |       |        |         |             | 94       | 3.57   | m^3   | 1542.68    | L.C.Y. | B-34D     | 1         | 78          | 0.103        | 19.78    | 158.90       | S -       | \$ -         | \$28.90    | \$ 2.96         | \$ 4,566.33 \$   | 5.35      | \$ 8,253.34 | \$ 8.31    | \$ 12,819.67 | \$ 10.35 \$ 15                   | ,966.74    |
| 6      | 02315 490 1255 Hauling (20 mile round trip, .5 load/hr)    |              |          |           |       |        |         |             | 94       | 3.57   | m^3   | 1542.68    | L.C.Y. | B-34D     | 1         | 78          | 0.103        | 19.78    | 158.90       | S -       | \$ -         | \$28.90    | \$ 2.96         | \$ 4,566.33 \$   | 5.35      | \$ 8,253.34 | \$ 8.31    | \$ 12,819.67 | \$ 10.35 \$ 15                   | ,966.74    |
| 7      | 02315 490 1255 Hauling (20 mile round trip5 load/hr)       |              |          |           |       |        |         |             | 94       | 3.57   | m^3   | 1542.68    | L.C.Y. | B-34D     | 1         | 78          | 0.103        | 19.78    | 158.90       | S -       | \$ -         | \$28.90    | \$ 2.96         | \$ 4,566.33 \$   | 5.35      | \$ 8,253,34 | \$ 8.31    | \$ 12.819.67 | \$ 10.35 \$ 15                   | .966.74    |
| 8      | 02315 490 1255 Hauling (20 mile round trip 5 load/hr)      |              |          |           |       |        |         |             | 94       | 3 57   | m^3   | 1542 68    | LCY    | B-34D     | 1         | 78          | 0 103        | 19.78    | 158.90       | S -       | s -          | \$28.90    | \$ 2.96         | \$ 4566.33 \$    | 5.35      | \$ 8 253 34 | \$ 8.31    | \$ 1281967   | \$ 10.35 \$ 15                   | 966 74     |
| 9      | 02315 490 1255 Hauling (20 mile round trip 5 load/hr)      |              |          |           |       |        |         |             | 94       | 3.57   | m^3   | 1542.68    | LCY    | B-34D     | 1         | 78          | 0.103        | 19.78    | 158.90       | Š -       | \$ -         | \$28.90    | \$ 2.96         | \$ 4,566,33 \$   | 5.35      | \$ 8 253 34 | \$ 8.31    | \$ 12,819,67 | \$ 10.35 \$ 15                   | 966 74     |
| 10     | 02315 490 1255 Hauling (20 mile round trin 5 load/hr)      |              |          |           |       |        |         |             | 0.4      | 3.57   | m^3   | 1542.68    | LCY    | B-34D     | 1         | 78          | 0.103        | 19.78    | 158.90       | ŝ.        | ŝ.           | \$28.90    | \$ 2.96         | \$ 456633 \$     | 5 35      | \$ 8 253 34 | \$ 831     | \$ 12,819,67 | \$ 10.35 \$ 15                   | 966 74     |
| 11     | 03315 490 1355 Hauling (20 mile round trip, 10 load/hr)    |              |          |           |       |        |         |             | 04       | 12.67  | m/2   | 1542.69    | LCX    | B 34D     | 1         | 79          | 0.100        | 10.70    | 168.00       | e e       | ŝ            | \$28.00    | \$ 2.00         | \$ 4,666.22 \$   | 5.25      | \$ 9 252 24 | \$ 9.21    | \$ 12,010,07 | \$ 10.35 \$ 15                   | 066.74     |
| 10     | 02315 430 1255 Trading (20 Thie found trip, .5 loading)    |              | AE       | 447.6     | 45    | 147.0  | 0.5     | 1.04        | 40       | 10.07  | m 42  | 13942.00   | D.C.Y  | D-34D     | 1.5       | 1000        | 0.103        | 13.70    | 150.90       | \$ 10.05  | C 15 057 01  | \$20.30    | \$ 2.30         | \$ 4,000.00 \$   | 0.00      | \$ 0,200.04 | \$ 12.25   | \$ 12,013.07 | \$ 10.33 \$ 13<br>\$ 12.64 \$ 10 | 062.44     |
| 12     | 02313 520 0020 Fill, Spread duriped material, by dozer,    |              | 40       | 147.0     | 43    | 147.0  | 0.5     | 1.0%        | 10       | 12.5   | m-3   | 1324.30    | B.C.T. | D-TUD     | 1.5       | 1000        | 0.012        | 1.32     | 13.69        | \$ 12.05  | \$ 15,957.01 | \$31.93    | а 0.30          | \$ 303.23 \$     | 0.92      | \$ 1,210.30 | \$ 13.30   | \$ 17,079.40 | a 13.04 a 10                     | 003.44     |
| 40     | Gravel Drain Rock                                          |              | 450      | 400.50    | 0.5   | 1.01   | 0.5     | 4.04        |          |        |       | 40.70      | 0.0.1/ |           |           | 450         | 0.400        | 0.00     | 7.05         | A 1.04    | a            | 000.00     | A 450           | A 000.40 A       | 1.54      | A 75.05     | A 40.04    | A 540.40     | A 40.05 A                        | 050.55     |
| 13     | 02315 640 0200 Utility Bedding For Pipe and Conduit,       |              | 152      | 498.56    | 0.5   | 1.64   | 0.5     | 1.64        |          | 38     | m^3   | 49.70      | B.C.Y. | B-6       | 3         | 150         | 0.160        | 0.33     | 7.95         | \$ 4.21   | \$ 209.25    | \$28.68    | \$ 4.59         | \$ 228.13 \$     | 1.51      | \$ 75.05    | \$ 10.31   | \$ 512.43    | \$ 13.25 \$                      | 658.55     |
|        | Sand                                                       |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 14     | 02740 310 0200 Asphaltic Concrete Pavement, Binder         |              | 15       | 49.2      | 8     | 26.24  | 0.12    | 0.3936      | 1        | 120    | m^2   | 143.52     | S.Y.   | B-25      | 11        | 4140        | 0.021        | 0.03     | 3.01         | \$ 7.70   | \$ 1,105.10  | \$28.49    | \$ 0.61         | \$ 87.55 \$      | 0.51      | \$ 73.20    | \$ 8.82    | \$ 1,265.85  | \$ 9.95 \$ 1                     | ,428.02    |
|        | Course, 4" Thick                                           |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 15     | 02740 310 0460 Asphaltic Concrete Pavement, Wearing        |              | 15       | 49.2      | 8     | 26.24  | 0.08    | 0.2624      | 1        | 120    | m^2   | 143.52     | S.Y.   | B-25B     | 12        | 4900        | 0.020        | 0.03     | 2.87         | \$ 6.15   | \$ 882.65    | \$29.03    | \$ 0.57         | \$ 81.81 \$      | 0.47      | \$ 67.45    | \$ 7.19    | \$ 1,031.91  | \$ 8.20 \$ 1                     | ,176.86    |
|        | Course, 3" Thick                                           |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 16     | 02150 750 3050 Polyvinyl Chloride Pipe, 18" diameter       |              | 140      | 459.2     |       | 0      |         | 0           |          | 140    | m     | 459.2      | L.F.   | B-20A     | 4         | 160         | 0.200        | 2.87     | 91.84        | \$ 21.50  | \$ 9.872.80  | \$31.90    | \$ 6.40         | \$ 2,938.88 \$   | 27.90     | s -         | \$ 33.00   | \$ 15,153,60 | \$ 29.00 \$ 13                   | .316.80    |
| 17     | 02510 750 4560 Polyvinyl Chloride Pipe 12" diameter        |              | 11       | 36.08     |       | 0      |         | 0           |          | 11     | m     | 36.08      | LE     | B-20A     | 4         | 186         | 0.172        | 0.19     | 6.21         | \$ 18.80  | \$ 678.30    | \$31.90    | \$ 5.50         | \$ 198.44 \$     | s -       | \$ -        | \$ 24.30   | \$ 876.74    | \$ 29.00 \$ 1                    | 046.32     |
| 18     | 01560 250 0550 Temporary Fencing Wire Mesh 8' binh         |              | 240      | 787.2     |       | 0      |         | 0           | 1        | 240    | m     | 787.2      | LE     | 2 Caro    | 2         | 600         | 0.027        | 1 31     | 21.25        | \$ 12.60  | \$ 9,918,72  | \$33.25    | \$ 6.65         | \$ 5,234,88      |           | š .         | \$ 19.25   | \$ 15153.60  | \$ 24.00 \$ 18                   | 892.80     |
| 10     | 01560 250 0550 Temporary Fending Wire Mesh, 6 high         |              | 50       | 164       |       | 0      |         | 0           |          | 60     | m     | 164        | 1.5    | 2 Carp    | 2         | 000         | 0.027        | 0.27     | 4.42         | \$ 12.00  | \$ 2,066,40  | \$22.25    | \$ 6.65         | \$ 1,000,60      |           | é           | \$ 10.25   | \$ 2,157,00  | \$ 24.00 \$ 2                    | 036.00     |
| 13     | Concrete in place. Including Forms /4                      |              | 30       | 104       |       | 0      |         | 0           |          | 12.4   | m/2   | 55.12      | CV.    | 2 Carp    | 2         | 19.66       | 10.792       | 2.07     | 604 20       | \$ 208.00 | \$ 16,425,76 | JJJ.2J     | \$ 260.00       | \$ 10.942.20 \$  | 20.00     | e 2 1/0 69  | \$ 697.00  | \$ 29,419,64 | \$ 020.00 \$ 51                  | 261.60     |
|        | Concrete in place, including rollins (4                    |              |          |           |       |        |         |             |          | 2.4    |       | 33.12      | 01     | 0-140     |           | 10.33       | 10.702       | 2.01     | 384.30       | \$ 250.00 | 3 10,423.70  |            | \$ 300.00       | \$ 15,045.20 \$  | 35.00     | \$ 2,143.00 | \$ 037.00  | \$ 30,410.04 | a 200.00 a 21                    | 201.00     |
|        | uses), concrete, placement, reinforcing                    |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| -      | steel and finishing, Beams, 25 span                        |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
|        | Concrete in place, Including Forms (4                      |              |          |           |       |        |         |             |          | 4      | m^3   | 5.2        | CY     | C-14A     |           | 12.57       | 15.911       | 0.41     | 82.74        | \$ 410.00 | \$ 2,132.00  |            | \$ 535.00       | \$ 2,782.00 \$   | 57.50     | \$ 299.00   | \$1,002.50 | \$ 5,213.00  | \$ 1,350.00 \$ 7                 | ,020.00    |
|        | uses), concrete, placement, reinforcing                    |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
|        | steel and finishing, Columns 16" x 16"                     |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
|        | Average Reinforcing                                        |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
|        | Concrete in place, Including Forms (4                      |              |          |           |       |        |         |             | 1        | 108    | m^3   | 140.4      | CY     | C-14A     |           | 35.87       | 5.799        | 3.91     | 814.18       | \$ 195.00 | \$ 27,378.00 |            | \$ 194.00       | \$ 27,237.60 \$  | 20.00     | \$ 2,808.00 | \$ 409.00  | \$ 57,423.60 | \$ 535.00 \$ 75                  | ,114.00    |
|        | uses), concrete, placement, reinforcing                    |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
|        | steel and finishing. Elevated Slabs, Two                   |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| 1      | way beam & slab, 25' span                                  | 1            | 1        |           |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          |              | 1         | 1            | 1          |                 |                  | 1         |             |            |              |                                  | 1          |
|        | Concrete in place, Including Forms (4                      |              | 1        |           | -     |        |         |             |          | 16     | m^3   | 20.8       | CY     | C-14A     |           | 81.04       | 1.382        | 0.26     | 28.75        | \$ 242.00 | \$ 5,033.60  | 1          | \$ 44.00        | \$ 915.20 \$     | 0.26      | \$ 5,41     | \$ 286.26  | \$ 5,954.21  | \$ 335.00 \$ 6                   | .968.00    |
| 1      | uses) concrete placement reinforcing                       | 1            | 1        |           |       |        |         |             |          | ·      | -     |            |        | 1         | 1         |             |              |          |              |           |              | 1          |                 |                  |           |             |            |              |                                  |            |
| 1      | steel and finishing. Eastings, spread, over                |              | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | 1            | 1         | 1            | 1          | 1               |                  |           |             |            |              | 1                                | 1          |
| 1      | 6 C V                                                      | 1            | 1        |           |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          |              | 1         | 1            | 1          |                 |                  | 1         |             |            |              |                                  | 1          |
|        | Concrete in place. Including Server (4                     |              | 1        | + +       |       |        |         |             |          | 16     | m/2   | 28.08      | CV     | C 144     |           | 60          | 1 967        | 0.47     | 52.42        | \$ 115.00 | \$ 2,220.00  |            | \$ 50.50        | \$ 1670.70       | 0.25      | ¢ 0.02      | \$ 174.95  | \$ 4,000.70  | \$ 219.00 \$ 9                   | 121.44     |
| 1      | Concrete in place, including Forms (4                      | 1            | 1        | 1         |       |        |         |             | 2        |        | m**3  | 20.00      | 01     | 0-14A     | 1         | 00          | 1.007        | 0.47     | 32.43        | φ 115.00  | \$ 3,229.20  | 1          | ອ ວອ.ວບ         | φ 1,0/0./0 \$    | 0.35      | y 9.83      | φ 1/4.85   | φ 4,909.79   |                                  | 121.44     |
|        | uses), concrete, placement, reinforcing                    |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
|        | steel and finishing, Footings, Strip, 36" x                |              |          |           |       |        |         |             |          |        |       |            |        |           |           |             |              |          |              |           |              |            |                 |                  |           |             |            |              |                                  |            |
| L      | 12", reinforced                                            |              | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         |           | 1           |              |          |              | 1         |              | 1          |                 |                  |           |             |            |              |                                  |            |
| 1      | Concrete in place, Including Forms (4                      | 1            | 1        | 1 1       | 1     |        |         |             |          | 81     | m^3   | 105.3      | CY     | C-14A     |           | 56.4        | 1.986        | 1.87     | 209.13       | \$ 154.00 | \$ 16,216.20 | 1          | \$ 63.50        | \$ 6,686.55 \$   | 0.38      | \$ 40.01    | \$ 217.88  | \$ 22,942.76 | \$ 268.00 \$ 28                  | ,220.40    |
| 1      | uses), concrete, placement, reinforcing                    | 1            | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | 1            | 1         | 1            | 1          | 1               |                  |           |             |            |              | 1                                | 1          |
| 1      | steel and finishing, Slab on Grade                         | 1            | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | 1            | 1         | 1            | 1          | 1               |                  |           |             |            |              | 1                                | 1          |
| 1      | (foundation mat), over 20 C.Y                              | 1            | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | 1            | 1         | 1            | 1          | 1               |                  |           |             |            |              | 1                                | 1          |
| 1      | Concrete in place, Including Forms (4                      |              | 1        | 1         | -     |        |         |             | 3        | 8.4    | m^3   | 49.92      | CY     | C-14A     |           | 45.83       | 4.364        | 1.09     | 217.85       | \$ 157.00 | \$ 7,837.44  | 1          | \$ 145.00       | \$ 7,238.40 \$   | 15.75     | \$ 786.24   | \$ 317.75  | \$ 15,862.08 | \$ 410.00 \$ 20                  | ,467.20    |
| 1      | uses), concrete, placement, reinforcing                    | 1            | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | 1            |           | 1            | 1          |                 |                  |           |             |            |              | 1                                | 1          |
| 1      | steel and finishing. Grade walls 8"thick 8"                | 1            | 1        | 1         |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | 1            | 1         | 1            | 1          | 1               |                  |           |             |            |              | 1                                | 1          |
| 1      | high                                                       | 1            | 1        | 1 1       |       |        |         |             |          |        |       |            |        |           |           | 1           | 1            |          |              | 1         | 1            | 1          |                 |                  |           |             |            |              |                                  | 1          |
| 12     | 02360 510 2660 Pining reinforced Culvert class 3 po        | 1            | 19       | 62.32     | -     | 0      |         | 0           |          | 19     | m     | 62.32      | LE     | B-13B     | 7         | 32          | 1 750        | 1.95     | 109.06       | \$ 305.00 | \$ 19,007.60 |            | \$ 50.00        | \$ 3116.00 \$    | 29.50     | \$ 384.50   | \$ 244.00  | \$ 445.00    | \$ 285.00 \$ 17                  | 761.20     |
| 1      | noskets 84" Diameter                                       | I .          |          | 02.02     |       | Ŭ      |         |             |          |        |       | 52.02      |        | 1 5 .05   | l '       |             |              | 1.00     | 100.00       | + 000.00  | - 10,007.00  | 1          | - 00.00         | ÷ 0,110.00 Ø     | 20.00     | - 004.00    | 00         | + ++0.00     | 2 200.00 0 17                    |            |
| L      | guoroto, 04 Diameter                                       | 1            | 1        | 1 1       |       |        |         |             |          |        |       |            |        | 1         | 1         | 1           | 1            |          | I            | 1         | 1            |            | I               | 1                |           |             | TOTAL      |              |                                  |            |

TOTAL BARE COST \$ 314,138.79 SUM

# Appendix D – Project Schedule

#### June 2017 May 2017 Task Name 4 7 10 13 16 19 22 28 31 1 25 3 A NW Marine Drive (CMP) ▲ Staging Fencing delivered Fencing erected Equipment delivered Pipe and components delivered 4 Excavation & pipe installation Survey Remove asphalt Excavate trench Install diversion pipe Connect diversion QC inspection Municipal inspection Survey instalation A Backfill & paving Deliver paving machinery Backfill trench Prep road for paving Pave road ▲ Turnover Machinery off site Excess materials off site Fencing off site Complete Chancellor Blvd (CMP) Memorial Rd (CMP)

#### (NW Marine Drive Gantt Chart)

(Chancellor Blvd Gantt Chart)



(Memorial Road Gantt Chart)

|                            | pr 23, '17 May 7, '17 May 21, '17 Jun 4, '17 Jun 18, '17 Jul 2, '17 Jul 16, '17                                 |
|----------------------------|-----------------------------------------------------------------------------------------------------------------|
| lask Name                  | - 25 29 3 7 11 15 19 23 27 31 4 8 12 16 20 24 28 2 6 10 14 18 22                                                |
| NW Marine Drive (CMP)      |                                                                                                                 |
| Chancellor Blvd (CMP)      |                                                                                                                 |
| 4 Memorial Rd (CMP)        |                                                                                                                 |
| ▲ Staging                  |                                                                                                                 |
| Trailer delivered          | <b>\</b>                                                                                                        |
| Fencing delivered          |                                                                                                                 |
| Erect fencing              |                                                                                                                 |
| Excavation                 | Ľ – I – I – I – I – I – I – I – I – I –                                                                         |
| Equipment delivered        |                                                                                                                 |
| Lay out and remove asphalt | L L L L L L L L L L L L L L L L L L L                                                                           |
| Excavate detention pit     | T T                                                                                                             |
| Survey                     | l L L L L L L L L L L L L L L L L L L L                                                                         |
| A Chamber installation     |                                                                                                                 |
| Precast chambers delivered |                                                                                                                 |
| Chamber placing            | ••••••••••••••••••••••••••••••••••••••                                                                          |
| QC inspection              | The second se |
| Connect storm to detention |                                                                                                                 |
| Municipal inspection       |                                                                                                                 |
| Survey                     |                                                                                                                 |
| ▲ Backfill & Paving        |                                                                                                                 |
| Backfill road              |                                                                                                                 |
| Prep road for paving       | T T T T T T T T T T T T T T T T T T T                                                                           |
| Paving equipment delivered | T                                                                                                               |
| Pave road                  | T <b>Š</b>                                                                                                      |
| Backfill detention pit     | <b>\_</b>                                                                                                       |
| 4 Turnover                 |                                                                                                                 |
| Machinery off site         |                                                                                                                 |
| Excess materials off site  |                                                                                                                 |
| Fencing off site           | → <b>■</b>                                                                                                      |
| Trailer off site           | →■                                                                                                              |
| Complete                   | ★ 1                                                                                                             |
| School of Music (CMP)      |                                                                                                                 |








(Student Union Blvd CMP Gantt Chart)





| Task Name 👻                   |
|-------------------------------|
| NW Marine Drive (CMP)         |
| Chancellor Blvd (CMP)         |
| Memorial Rd (CMP)             |
| School of Music (CMP)         |
| Student Union Blvd (CHAMBER)  |
| Student Union Blvd (CMP)      |
| 4 Cecil Green Park (CHAMBERS) |
| ✓ Staging                     |
| Trailer delivered             |
| Fending delivered             |
| Erect fencing                 |
| Equipment delivered           |
| Precast chambers delivered    |
| 4 Excavation                  |
| Excavate detention pit        |
| Survey                        |
| 4 Chamber installation        |
| Chamber placing               |
| QCInspection                  |
| Excavate asphalt              |
| Excavate sewer trunk trench   |
| Connect storm to detention    |
| Municipal inspection          |
| Survey                        |
| ✓ Backfill & Paving           |
| Backfill road                 |
| Prep road for paving          |
| Paving equipment delivered    |
| Pave road                     |
| Backfill detention pit        |
| 4 Turnover                    |
| Machinery off site            |
| Excess materials off site     |
| Fencing off site              |
| Trailer off site              |
| Complete                      |

| Description              | Symbol   | Tank 1         | Tank 2           | Tank 3                  |
|--------------------------|----------|----------------|------------------|-------------------------|
| Base                     | L        | 36.000         | 30.000           | 30.000 m                |
| Width                    | w        | 18.000         | 12.000           | 18.000 m                |
| Height                   | h        | 4.500          | 4.500            | 2.000 m                 |
| Volume (initial)         | Vi       | 2916.000       | 1620.000         | 1080.000 m^3            |
| Collumns (I side)        | NL       | 5.000          | 4.000            | 4.000                   |
| Collumns (w side)        | Nw       | 2.000          | 1.000            | 2.000                   |
| C to C (I side)          | Li       | 6.000          | 6.000            | 6.000 m                 |
| C to C (w side)          | wi       | 6.000          | 6.000            | 6.000 m                 |
| Trib Area for col        |          | 36,000         | 36,000           | 36.000 m^2              |
| h/w                      | Li/wi    | 1 000          | 1 000            | 1 000                   |
| # of Cols                | Nc       | 10 000         | 4 000            | 8 000                   |
| Vol of Cols              | Vc       | 7 200          | 4 500            | 4 000 m^3               |
| Length of Beams          | IR       | 162,000        | 78 000           | 132 000 m               |
| Vol of Beams             | Vb       | 51 840         | 24,960           | 122.000 m<br>12 240 m^3 |
| Length of Walls          |          | 108.000        | 24.000<br>84.000 | 96 000 m                |
| Volume of Walls          |          | 100.000        | 75 600           | 38.400 mA3              |
| Volume of Slab (top      | Vot      | 120 600        | 73.000           | 109 000 mA2             |
| Volume of Slab (top      | VSL      | 129.600        | 72.000           | 108.000 m/3             |
| Volume of Stab (bottom)  | VSD      | 97.200         | 54.000           | 81.000 m/3              |
| Volume of Pad Footings   | vp       | 20.000         | 8.000            | 16.000 m <sup>2</sup> 3 |
| Volume of Strip Footings | Vst      | 24.300         | 18.900           | 21.600 m <sup>A</sup> 3 |
| Volume of Concrete       | VC       | 427.340        | 257.960          | 311.240 m^3             |
| Contact Areas            |          |                |                  |                         |
| Slab (top)               | CA st    | 658.800        | 368.400          | 549.600 m^2             |
| Slab (bottom)            | CA sb    | 8.100          | 6.300            | 7.200 m^2               |
| Beam                     | CA b     | 324.000        | 156.000          | 264.000 m^2             |
| Column                   | CA c     | 7.200          | 7.200            | 3.200 m^2               |
| Wall                     | CA L     | 972.000        | 756.000          | 384.000 m^2             |
| Pad Footing              | CA p     | 20.000         | 8.000            | 16.000 m^2              |
| Strip Footing            | CA sf    | 64.800         | 50.400           | 57.600 m^2              |
| Loads                    |          |                |                  |                         |
| Loaus                    |          |                |                  |                         |
| Dead Soil                | D        | 10.000         | 10.000           | 10.000 Kpa              |
| Snow                     | S        | 1.750          | 1.750            | 1.750 Kpa               |
| Live Load                | L        | 0.000          | 0.000            | 0.000 Kpa               |
| Unfactored Load          |          | 11.750         | 11.750           | 11.750 Kpa              |
| Load Case 3              | Кра      | 1.25 D + 1.5 S |                  |                         |
| Factored Load            | Кра      | 15.125         | 15.125           | 15.125 Kpa              |
| Beams (Flexure)          |          |                |                  |                         |
| Length                   | 1<br>1   | 6 000          | 6 000            | 6 000 m                 |
|                          | ^        | 10.000         | 10.000           | 12 000 mm/2             |
| Idealized Area Height    | A<br>h   | 2 000          | 2 000            | 2 000 m                 |
|                          | 11       | 3.000          | 24.125           | 3.000 III               |
|                          |          | 24.125         | 24.125           | 24.125 Kpa              |
| Beam weight              | BVV      | 19.200         | 19.200           | 19.200 Kpa              |
|                          |          | 144.575        | 144.575          | 144.375 KN/III          |
|                          | VV       | 114.450        | 114.450          | 114.450 KN/m            |
| Factored Moment          |          | 649.6875       | 649.6875         | 649.6875 KNM            |
| neight (estimated)       | ni<br>L: | 0.375          | 0.375            | 0.375 m                 |
| width (estimated)        | ומ       | 0.188          | 0.188            | 0.188 m                 |
| neight                   | n        | 0.800          | 0.800            | 0.800 m                 |
| width                    | bi       | 0.400          | 0.400            | 0.400 m                 |
| cover                    | m        | 0.040          | 0.040            | 0.040 m                 |
| depth (estimated)        | di       | 0.730          | 0.730            | 0.730 m                 |
| height (estimated)       | hi       | 375            | 375              | 375 mm                  |
| width (estimated)        | bi       | 188            | 188              | 188 mm                  |
| height                   | h        | 800            | 800              | 800 mm                  |
| width                    | b        | 400            | 400              | 400 mm                  |

| Constant | Value   |
|----------|---------|
| Phi s    | 0.850   |
| Phi c    | 0.650   |
| f'c      | 30.000  |
| fy       | 400.000 |
| alpha    | 0.800   |
| beta     | 0.900   |

Yellow = Load Green = Resistance

| cover                | m           |       | 40       |       | 40      | 40       | mm   |
|----------------------|-------------|-------|----------|-------|---------|----------|------|
| depth (estimated)    | di          |       | 730      |       | 730     | 730      | mm   |
| Steel Area           | As          |       | 2886.972 | 2     | 886.972 | 2886.972 | mm^2 |
| Configuration        |             | 6-25M |          | 6-25M |         | 6-25M    |      |
| Bars                 | n           |       | 6.000    |       | 6.000   | 6.000    |      |
| Diameter             | db          |       | 25.000   |       | 25.000  | 25.000   | mm   |
| Area                 | Ai          |       | 500.000  |       | 500.000 | 500.000  | mm^2 |
| Area Total           | As          |       | 3000.000 | 3     | 000.000 | 3000.000 | mm^2 |
| Ratio                | max = 0.027 |       | 0.010    |       | 0.010   | 0.010    |      |
| effective Depth      | d           |       | 737.500  |       | 737.500 | 737.500  | mm   |
| Spacing              | Smin        |       | 35.000   |       | 35.000  | 35.000   | mm   |
| 1.4db                |             |       | 35.000   |       | 35.000  | 35.000   | mm   |
| 1.4Amax              |             |       | 28.000   |       | 28.000  | 28.000   | mm   |
| 30                   |             |       | 30.000   |       | 30.000  | 30.000   | mm   |
| Minimum Width        | Bmin        |       | 390.000  |       | 390.000 | 390.000  | mm   |
| Minimum Steel Area   |             |       | 876.356  |       | 876.356 | 876.356  | mm^2 |
| Depth of compression | а           |       | 163.462  |       | 163.462 | 163.462  | mm   |
| Moment Resistance    | Mr          |       | 668.885  |       | 668.885 | 668.885  | KN*m |

| Beams (Shear)                   | _       |             |             |                  |
|---------------------------------|---------|-------------|-------------|------------------|
| Length                          | L       | 6.000       | 6.000       | 6.000 m          |
| Factored Load                   | Wf      | 144.375     | 144.375     | 144.375 KN       |
| Shear Force                     | V       | 343.350     | 343.350     | 343.350 KN       |
| Factored Shear Force            | Vf      | 433.125     | 433.125     | 433.125 KN       |
| Effective Depth                 | d       | 737.500     | 737.500     | 737.500 mm       |
| Effective Shear Depth           | Dv      | 663.750     | 663.750     | 663.750 mm       |
| Shear at Midspan                | Vfmid   | 0.000       | 0.000       | 0.000 KN         |
| Shear at Dv                     | Vf @ Dv | 337.2960938 | 337.2960938 | 337.2960938 KN   |
| Beta                            | В       | 0.18        | 0.18        | 0.18             |
| Concrete Shear Resistance       | Vc      | 170.1417967 | 170.1417967 | 170.1417967 KN   |
| Steel Resistance Required       | Vs      | 167.1542971 | 167.1542971 | 167.1542971 KN   |
| Stirrup Diameter                | Ds      | 10          | 10          | 10 mm            |
| Sitrrup Area                    | Ab      | 100         | 100         | 100 mm^2         |
| Shear Area                      | Av      | 200         | 200         | 200 mm^2         |
| Spacing                         | S       | 386         | 386         | 386 mm           |
| Spacing Max                     | Smax    | 464.625     | 464.625     | 464.625 mm       |
| Design Spacing                  | S       | 300         | 300         | 300 mm           |
| Minimum Area                    | Avmin   | 98.59006035 | 98.59006035 | 98.59006035 mm^2 |
| Max Shear Resistance            | Vrmax   | 1294.3125   | 1294.3125   | 1294.3125 KN     |
| Steel Shear Resistance (Design) | Vs      | 215.1435    | 215.1435    | 215.1435 KN      |
| Shear Resistance (Total)        | Vr      | 385.29      | 385.29      | 385.29 KN        |

## Slabs (Flexure)

| height of slab            | hs | 0.250    | 0.250    | 0.250 m         |
|---------------------------|----|----------|----------|-----------------|
| height of slab            | hs | 300.000  | 300.000  | 300.000 mm      |
| Clear Span                | Ln | 6.000    | 6.000    | 6.000 m         |
| Load                      |    | 15.125   | 15.125   | 15.125 Kpa      |
| Self Weight               | р  | 24.000   | 24.000   | 24.000 KN/m^3   |
| Dead Load (SW)            | р  | 7.200    | 7.200    | 7.200 Kpa       |
| Factored Load             | Wf | 24.125   | 24.125   | 24.125 Kpa      |
| Factored Moment           | Mf | 108.5625 | 108.5625 | 108.5625 KN*m/m |
| Width                     | b  | 1.000    | 1.000    | 1.000 m         |
|                           | b  | 1000.000 | 1000.000 | 1000.000 mm     |
| Effective Depth (initial) | di | 230.000  | 230.000  | 230.000 mm      |
| Steel Area Required       | As | 1466.880 | 1466.880 | 1466.880 mm^2/m |
|                           | Db | 20       | 20       | 20 mm           |
| Bar Area                  | Ab | 300      | 300      | 300 mm^2/m      |
| Spacing                   | S  | 205      | 205      | 205 mm          |
| Spacing Design            | S  | 200      | 200      | 200 mm          |

| Steel Area               | As | 1500.000    | 1500.000    | 1500.000 mm^2/m    |
|--------------------------|----|-------------|-------------|--------------------|
| Reinforcement Ratio      | р  | 0.007       | 0.007       | 0.007 Max = 0.027  |
| Effective Depth (actual) | d  | 250.000     | 250.000     | 250.000 mm         |
| Gross Area               | Ag | 300000.000  | 300000.000  | 300000.000 mm^2    |
| Compression Depth        | а  | 32.692      | 32.692      | 32.692 mm          |
| Moment Resistance        | Mr | 119.1634615 | 119.1634615 | 119.1634615 KN*m/m |

### Columns

| Height of Column                                                                                                                                                                           | Нс                                                 | 4.500                                                                                          | 4.500                                                                                          | 2.000 m                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Height of Column                                                                                                                                                                           | Hc                                                 | 4500.000                                                                                       | 4500.000                                                                                       | 2000.000 mm                                                                                                                |
| Compression Load (service)                                                                                                                                                                 | Ps                                                 | 1373.4                                                                                         | 1373.4                                                                                         | 1373.4 KN                                                                                                                  |
| Compression Load (factored)                                                                                                                                                                | Pf                                                 | 1732.5                                                                                         | 1732.5                                                                                         | 1732.5 KN                                                                                                                  |
| Area (required)                                                                                                                                                                            | Ag                                                 | 115500.000                                                                                     | 115500.000                                                                                     | 115500.000 mm^2                                                                                                            |
| Width/Height (required)                                                                                                                                                                    | b                                                  | 339.853                                                                                        | 339.853                                                                                        | 339.853 mm                                                                                                                 |
| Width/Height                                                                                                                                                                               | b                                                  | 400.000                                                                                        | 400.000                                                                                        | 400.000 mm                                                                                                                 |
| Area                                                                                                                                                                                       | Ag                                                 | 160000.000                                                                                     | 160000.000                                                                                     | 160000.000 mm^2                                                                                                            |
| Reinforcement Ratio                                                                                                                                                                        | р                                                  | 0.010                                                                                          | 0.010                                                                                          | 0.010                                                                                                                      |
| Steel Area (required)                                                                                                                                                                      | Ast                                                | 1600.000                                                                                       | 1600.000                                                                                       | 1600.000 mm^2                                                                                                              |
|                                                                                                                                                                                            |                                                    |                                                                                                |                                                                                                |                                                                                                                            |
| Reinforcement Ratio                                                                                                                                                                        |                                                    | 4-20M                                                                                          | 4-20M                                                                                          | 4-20M                                                                                                                      |
| Reinforcement Ratio<br>Number of Bars                                                                                                                                                      | n                                                  | 4-20M<br>4.000                                                                                 | 4-20M<br>4.000                                                                                 | 4-20M<br>4.000                                                                                                             |
| Reinforcement Ratio<br>Number of Bars<br>Diameter                                                                                                                                          | n<br>Db                                            | 4-20M<br>4.000<br>20.000                                                                       | 4-20M<br>4.000<br>20.000                                                                       | 4-20M<br>4.000<br>20.000 mm                                                                                                |
| Reinforcement Ratio<br>Number of Bars<br>Diameter<br>Bar Area                                                                                                                              | n<br>Db<br>Ab                                      | 4-20M<br>4.000<br>20.000<br>300.000                                                            | 4-20M<br>4.000<br>20.000<br>300.000                                                            | 4-20M<br>4.000<br>20.000 mm<br>300.000 mm^2                                                                                |
| Reinforcement Ratio<br>Number of Bars<br>Diameter<br>Bar Area<br>Steel Area                                                                                                                | n<br>Db<br>Ab<br>Ast                               | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000                                                | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000                                                | 4-20M<br>4.000<br>20.000 mm<br>300.000 mm^2<br>1200.000 mm^2                                                               |
| Reinforcement Ratio<br>Number of Bars<br>Diameter<br>Bar Area<br>Steel Area<br>Comp Resistance Steel                                                                                       | n<br>Db<br>Ab<br>Ast<br>Prs                        | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000                                     | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000                                     | 4-20M<br>4.000<br>20.000 mm<br>300.000 mm^2<br>1200.000 mm^2<br>408.000 KN                                                 |
| Reinforcement Ratio<br>Number of Bars<br>Diameter<br>Bar Area<br>Steel Area<br>Comp Resistance Steel<br>Comp Resistance Concrete                                                           | n<br>Db<br>Ab<br>Ast<br>Prs<br>Prc                 | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000<br>2477.280                         | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000<br>2477.280                         | 4-20M<br>4.000<br>20.000 mm<br>300.000 mm^2<br>1200.000 mm^2<br>408.000 KN<br>2477.280 KN                                  |
| Reinforcement Ratio<br>Number of Bars<br>Diameter<br>Bar Area<br>Steel Area<br>Comp Resistance Steel<br>Comp Resistance Concrete<br>Compression Resistance                                 | n<br>Db<br>Ab<br>Ast<br>Prs<br>Prc<br>Pro          | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000<br>2477.280<br>2885.280             | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000<br>2477.280<br>2885.280             | 4-20M<br>4.000<br>20.000 mm<br>300.000 mm^2<br>1200.000 mm^2<br>408.000 KN<br>2477.280 KN<br>2885.280 KN                   |
| Reinforcement Ratio<br>Number of Bars<br>Diameter<br>Bar Area<br>Steel Area<br>Comp Resistance Steel<br>Comp Resistance Concrete<br>Compression Resistance<br>Compression Resistance (max) | n<br>Db<br>Ab<br>Ast<br>Prs<br>Prc<br>Pro<br>Prmax | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000<br>2477.280<br>2885.280<br>2308.224 | 4-20M<br>4.000<br>20.000<br>300.000<br>1200.000<br>408.000<br>2477.280<br>2885.280<br>2308.224 | 4-20M<br>4.000 mm<br>20.000 mm<br>300.000 mm^2<br>1200.000 mm^2<br>408.000 KN<br>2477.280 KN<br>2885.280 KN<br>2308.224 KN |

### Walls (Flexure)

| Height of Wall                 | Hw    | 5           | 5           | 2 m                |
|--------------------------------|-------|-------------|-------------|--------------------|
| Pressure at top of Tank        | Ро    | 2.320       | 2.320       | 2.320 Kpa          |
| Pressure at bottom of Tank     | Ро    | 21.000      | 21.000      | 9.320 Kpa          |
| Factored Pressure @ Top        | Pof   | 3.480       | 3.480       | 3.480 Kpa          |
| Factored Pressure @ bottom     | Pof   | 31.500      | 31.500      | 13.980 Kpa         |
| Uniform Factored Pressure      | Wf    | 19.230      | 19.230      | 10.470 Kpa         |
| Slab weight                    | rho s | 7.200       | 7.200       | 7.200 Kpa          |
| Slab Load                      | Q     | 11.750      | 11.750      | 11.750 Kpa         |
| Slab Load Factored             | Qf    | 15.125      | 15.125      | 15.125 Kpa         |
| Beam Shear Force @ end         | V     | 433.125     | 433.125     | 433.125 KN/m       |
| Dead Load from Slab            | D     | 18.950      | 18.950      | 18.950 Kpa         |
| Dead Load from Slab (factored) | Df    | 24.125      | 24.125      | 24.125 Kpa         |
| Dead Load from Slab            | D     | 37.900      | 37.900      | 37.900 KN/m        |
| Dead Load from Slab (factored) | Df    | 72.375      | 72.375      | 72.375 KN/m        |
| Beam Force Distributed over 6m | wf    | 72.188      | 72.188      | 72.188 KN/m        |
| Beam Force Distributed over 6m | WS    | 57.225      | 57.225      | 57.225 KN/m        |
| Load on Wall (non factored)    | qs    | 95.125      | 95.125      | 95.125 KN/m        |
| Load on Wall (vertical)        | qf    | 144.563     | 144.5625    | 144.5625 Kn/m      |
| Length of Wall                 | Lw    | 6.000       | 6.000       | 6.000 m            |
| Horizontal Moment              | Mmax  | 60.09375    | 60.09375    | 5.235 KN*m/m       |
| Horizontal Shear               | Vmax  | 48.075      | 48.075      | 10.47 KN/m         |
| Shear Resistance of Concrete   | Vc    | 384.501     | 384.501     | 384.501 KN/m       |
| Minimum Thickness              | tmin  | 190.000     | 190.000     | 80.000 mm          |
| Design Thickness               | t     | 200.000     | 200.000     | 200.000 mm         |
| Bar Diameter                   | db    | 20.000      | 20.000      | 20.000 mm          |
| Effective Depth                | d     | 150         | 150         | 150 mm             |
| Steel Area required            | As    | 1277.739341 | 1277.739341 | 101.5374428 mm^2/m |
| Spacing required               | Sreq  | 234.790     | 234.790     | 2954.575 mm        |
| Spacing Maximum                | Smax  | 500.000     | 500.000     | 500.000 mm         |
| Spacing Design                 | S     | 200.000     | 200.000     | 200.000 mm         |

| Steel Area           | As    | 1500.000 | 1500.000 | 1500.000 mm^2/m |
|----------------------|-------|----------|----------|-----------------|
| Reinforcement Ratio  | р     | 0.010    | 0.010    | 0.010           |
| Min Reinforcing Area | Asmin | 300.000  | 300.000  | 300.000 mm^2/m  |
| Compression Depth    | а     | 32.692   | 32.692   | 32.692 mm       |
| Moment Resistance    | Mr    | 68.163   | 68.163   | 68.163 Kn*m/m   |

| Walls (Shear)                      |        |            |            |                   |
|------------------------------------|--------|------------|------------|-------------------|
| Horizontal Shear                   | Vmax   | 48.075     | 48.075     | 10.47 KN/m        |
| Effective Shear Depth              | Dv     | 144.000    | 144.000    | 144.000 mm        |
| Beta                               | В      | 0.200      | 0.200      | 0.200             |
| Concrete Shear Resistance          | Vc     | 102.534    | 102.534    | 102.534 KN/m      |
| Avmin                              | Avmin  | 400.000    | 400.000    | 400.000 mm^2/m    |
| Bar Diameter                       | Db     | 15.000     | 15.000     | 15.000 mm         |
| Bar Area                           | Ab     | 200.000    | 200.000    | 200.000 mm        |
| Spacing Required                   | Sreq   | 500.000    | 500.000    | 500.000 mm        |
| Spacing Max                        | Smax   | 500.000    | 500.000    | 500.000 mm        |
| Design Spacing                     | S      | 500.000    | 500.000    | 500.000           |
|                                    |        |            |            |                   |
| Bottom Slab                        | _      |            |            |                   |
| Load on the Wall (factored)        | qf     | 144.563    | 144.563    | 144.563 KN/m      |
| Weight of the Wall                 | w      | 24.000     | 24.000     | 9.600 KN/m        |
| Total Load (factored)              | Wf     | 174.563    | 174.563    | 156.563 KN/m      |
| Compression Load (column)          | Р      | 1732.500   | 1732.500   | 1732.500 KN       |
| Weight of the Column               | w      | 19.200     | 19.200     | 7.680 KN          |
| Total Load Transferred from Column | Р      | 1756.500   | 1756.500   | 1742.100 KN       |
|                                    |        |            |            |                   |
| Slabs (Flexure) bottom             | _      |            |            |                   |
| Slab Thickness                     | h      | 150.000    | 150.000    | 150.000 mm        |
| Gross Area                         | Ag     | 150000.000 | 150000.000 | 150000.000 mm^2/m |
| Minimum Reinforcement Area         | Asmin  | 150.000    | 150.000    | 150.000 mm^2/m    |
| Effective Depth                    | d      | 50.000     | 50.000     | 50.000 mm         |
| Diameter Bar                       | db     | 15.000     | 15.000     | 15.000 mm         |
| Area bar                           | Ab     | 200.000    | 200.000    | 200.000 mm^2      |
| Spacing                            | sreq   | 1333.333   | 1333.333   | 1333.333 mm       |
| Design Spacing                     | S      | 1000.000   | 1000.000   | 1000.000 mm       |
|                                    |        |            |            |                   |
| Pad Footings                       |        |            |            |                   |
| Ultimate Bearing Pressure          | qult   | 850.000    | 850.000    | 850.000 Kpa       |
| Unfactored Load                    | Ps     | 1390.680   | 1390.680   | 1381.080 KN       |
| Factore Load                       | Pf     | 1754.100   | 1754.100   | 1742.100 KN       |
| Allowable Bearing Pressure         | qall   | 425.000    | 900.000    | 900.000 Kpa       |
| Area required                      | А      | 3.272      | 1.545      | 1.535 m^2         |
| Width                              | В      | 1.809      | 1.243      | 1.239 m           |
| Design Width                       | В      | 2.000      | 2.000      | 2.000 m           |
| Area                               | А      | 4.000      | 4.000      | 4.000 m^2         |
| Factored soil Pressure             | qf     | 438.525    | 438.525    | 435.525 Kpa       |
| Factored Shear                     | Vf     | 1754.100   | 1754.100   | 1742.100 KN       |
| Concrete Shear Resistance          | Vc     | 1352.875   | 1352.875   | 1352.875 Kpa      |
| Concrete Shear Resistance (design) | Vc=Vf  | 1754.100   | 1754.100   | 1742.100 KN       |
|                                    | bo * d | 1.297      | 1.297      | 1.288 m^2         |
| Width                              | t      | 0.400      | 0.400      | 0.400 m           |
| Quadratic constants                | а      | 4.000      | 5.000      | 6.000             |
|                                    | b      | 1.600      | 1.600      | 1.600             |
|                                    | С      | -1.297     | -1.297     | -1.288            |
|                                    | d      | 0.403      | 0.374      | 0.349 m           |
|                                    | Vc 1   | 2.029      | 2.029      | 2.029 Kpa         |
|                                    | Vc 2   | 2.464      | 2.396      | 2.335 Kpa         |

Db

с

20.000

75.000

20.000

75.000

20.000 mm

75.000 mm

Bar Diameter

Cover

| Thickness                   | h      | 488.443     | 458.774     | 433.740     | mm     |
|-----------------------------|--------|-------------|-------------|-------------|--------|
| Design thickness            | h      | 500.000     | 501.000     | 502.000     | mm     |
| Design d                    | d      | 415.000     | 416.000     | 417.000     | mm     |
| 1 way Shear                 | Vf     | 337.66425   | 336.7872    | 333.61215   | KN     |
| Effective Shear Depth       | dv     | 373.500     | 374.400     | 375.300     | mm     |
| Concrete Shear Resistance   | Vc     | 398.920     | 399.881     | 400.843     | KN     |
| Factored Moment             | Mf     | 280.656     | 280.656     | 278.736     | KN*m   |
| Moment Resistance           | Mr     | 280.656     | 280.656     | 278.736     | KN*m   |
| Steel Area Required         | As req | 2006.662    | 2001.565    | 1982.456    | mm^2   |
| Gross Area                  | Ag     | 1000000.000 | 1002000.000 | 1004000.000 | mm^2   |
| Steel Area Minimum          | Asmin  | 2000.000    | 2004.000    | 2008.000    | mm^2   |
| Design Reinforcement        | Db     | 20.000      | 20.000      | 20.000      | mm     |
| Number of bars              | n      | 8.000       | 8.000       | 8.000       |        |
| Area of bars                | Ab     | 300.000     | 300.000     | 300.000     | mm^2   |
| Steel Area (design)         | As     | 2400.000    | 2400.000    | 2400.000    | mm^2   |
| Spacing                     | s      | 257.143     | 257.143     | 257.143     | mm     |
| Required Development Length | Ld     | 569.210     | 569.210     | 569.210     | mm     |
| Length                      | L      | 1700.000    | 1700.000    | 1700.000    | mm     |
| -                           |        |             |             |             |        |
| Strip Footings              | _      |             |             |             |        |
| Ultimate Bearing Pressure   | qult   | 473.000     | 473.000     | 473.000     | Кра    |
| Unfactored Load             | Ps     | 119.125     | 119.125     | 104.725     | KN/m   |
| Factored Load               | Pf     | 148.906     | 148.906     | 130.906     | KN/m   |
| Allowable Bearing Pressure  | qall   | 236.500     | 236.500     | 236.500     | Кра    |
| Footing Width               | 1      | 0.504       | 0.504       | 0.443       | m      |
| Design Width                | I      | 0.750       | 0.750       | 0.750       | m      |
| Length                      | b      | 1.000       | 1.000       | 1.000       | m      |
| Length                      | b      | 1000.000    | 1000.000    | 1000.000    | mm     |
| Area                        | A      | 0.504       | 0.504       | 0.443       | m^2    |
| Factored Soil Pressure      | qf     | 295.625     | 295.625     | 295.625     | Кра    |
| Cover                       | c      | 75          | 75          | 75          | mm     |
| Trial Thickness             | h      | 300.000     | 300.000     | 300.000     | mm     |
| Diameter of bar             | Db     | 15          | 15          | 15          | mm     |
| Area of Bar                 | Ab     | 200         | 200         | 200         | mm^2   |
| Number of Bars              | n      | 3           | 3           | 3           |        |
| Effective depth             | d      | 217.5       | 217.5       | 217.5       | mm     |
| Factored Shear Force        | Vf     | 16.9984375  | 16.9984375  | 16.9984375  | KN/m   |
| Effective Shear Depth       | Dv     | 216         | 216         | 216         | mm     |
| Beta                        | В      | 0.21        | 1.21        | 2.21        |        |
| Concrete Shear Resistance   | Vc     | 161.4905189 | 930.4929896 | 1699.49546  | KN/m   |
| Factored Moment             | Mf     | 11.17832031 | 11.17832031 | 11.17832031 | KN/m   |
| Steel Area Required         | As     | 149.5442905 | 149.5442905 | 149.5442905 | mm^2/m |
| Min Reinforcemenet Area     | Asmin  | 600         | 600         | 600         | mm^2/m |
| Steel Area Design           | As     | 600.000     | 600.000     | 600.000     | mm^2/m |
| Spacing                     | S      | 333.3333333 | 333.3333333 | 333.3333333 | mm     |
| Design Spacing              | Sdes   | 300         | 300         | 300         | mm     |
| Longitdunail Gross Area     | Ag     | 225000      | 225000      | 225000      | mm^2   |
| Asmin                       | Asmin  | 450         | 450         | 450         | mm^2   |
| Diameter of bar             | Db     | 15          | 15          | 15          | mm     |
| Area of Bar                 | Ab     | 200         | 200         | 200         | mm^2   |
| Number of Bars              | n      | 3           | 3           | 3           |        |
| Steel Area                  | As     | 600         | 600         | 600         | mm^2   |

# Appendix F: Geotechnical Analysis Calculations

Horizontal Soil/Water Load:

$$\sigma_{H} = K_{a}H * \gamma' + Hy_{w}$$

$$K_{a} = \frac{1 - \sin(38)}{1 + \sin(38)} = 0.238$$

$$\sigma_{H(0.5)} = 2.32kPa$$

$$\sigma_{H(5.0)} = 23.2kPa$$

**Vertical Loads:** 

$$\sigma_V = H * \gamma$$
  
$$\sigma_{(0.5)} = 0.5 * 19.6 = 10 kPa$$

**Factored Load:** 

$$L = 1.25 * DL + 1.75 * SL = 15.125 kPa$$

Settlement:

$$S_{\epsilon} = C_1 C_2 (\overline{q} - q) \sum_{0}^{z_2} \frac{I_t}{E_s} \Delta z$$

where

$$\begin{split} I_z &= \text{strain influence factor} \\ C_1 &= \text{a correction factor for the depth of foundation embedment} = 1 - 0.5 \\ & \left[ q/(\overline{q} - q) \right] \\ C_2 &= \text{a correction factor to account for creep in soil} \\ &= 1 + 0.2 \log \text{ (time in years/0.1)} \\ & \overline{q} &= \text{stress at the level of the foundation} \\ & q &= \gamma D_f = \text{effective stress at the base of the foundation} \\ & E_s &= \text{modulus of elasticity of soil} \end{split}$$

|       |             | 4.5 m box     |    |        |         |     |          |            |             |
|-------|-------------|---------------|----|--------|---------|-----|----------|------------|-------------|
|       |             | square        |    |        |         |     |          |            |             |
|       |             | Df            |    |        |         |     | 0.5      |            |             |
|       |             | σ             |    |        |         |     | 5.874    |            |             |
|       |             | Nq            |    |        |         |     | 48.9     |            |             |
|       |             | Nc            |    |        |         |     | 61.31    |            |             |
|       |             | Ny            |    |        |         |     | 77.9     |            |             |
|       |             | У             |    |        |         |     | 19.6     |            |             |
|       |             | У'            |    |        |         |     | 9.79     |            |             |
|       |             | В             |    |        |         |     | 2        |            |             |
|       |             | dw            |    |        |         |     | 0        |            |             |
|       |             | σ             |    |        |         |     | 5.874    |            |             |
|       |             | Φ (degrees)   |    |        |         |     | 38       |            |             |
|       |             | Φ (radians)   |    |        | 0.6     | 632 | 25116    |            |             |
| Laver | Depth (belo | w footing) ∆z | Es |        | z (mid) |     | az (mid) | lz (avg)   | Iz*∆z/Es    |
|       | 1 1m        | , <u> </u>    | 1  | 100000 | _ (     | 0.5 | 53.845   | 0.44096015 | 4.4096E-06  |
|       | 2 1m-4m     |               | 3  | 100000 |         | 2.5 | 73.425   | 0.39096015 | 1.17288E-05 |
|       |             |               |    |        |         |     |          | SUM        | 1.61384E-05 |

| 9096015 | 1.17288E-05 |
|---------|-------------|
| N       | 1.61384E-05 |

| cottlomont | 0.0098 m |
|------------|----------|
| settiement | 9.8 mm   |

**Bearing Capacity:** 

*Hydrostatic Bearing Pressure* = 
$$5m * \frac{9.81kN}{m3} = 44kPa$$

Mass of Tank = 469728kg

 $Tank Bearing Pressure = \frac{469278kg * 9.81 m/s^2}{30m * 12m} = 13kPa$ 

Total Bearing Pressure = 57kPa

Allowable Bearing Pressure = 150 kPa

$$FOS = \frac{150}{57} = 2.63$$

#### Sheet Pile Calculations:

| Density (kg/m3)     | 2000     | angle (deg) | 38          |       |
|---------------------|----------|-------------|-------------|-------|
| y (kN/m3)           | 19.6     | angle (rad) | 0.6632      |       |
| G (Mpa)             | 200      | Ка          | 0.2379      |       |
| K (kPa)             | 2000     | Кр          | 4.2037      |       |
| yw (kN/m3)          | 9.81     | ko          | 0.3843      |       |
|                     |          |             |             |       |
| Excavation Depth    | 6        | m           | FOS         | 1.5   |
| Wall Depth          | 10       | m           | 15 deg(rad) | 0.262 |
| Diff.               | 4        | m           |             |       |
| anchor spacing      | 1.2      | m           |             |       |
| load transfer       | 190      | kn/m        |             |       |
|                     |          |             |             |       |
| р                   | 18.18    | kN/m        |             |       |
| total load          | 109.10   | Kn/m2       |             |       |
| # anchors           | 1        |             |             |       |
|                     |          |             |             |       |
| H1                  | 2        |             |             |       |
|                     |          |             |             |       |
| pe                  | 27.28    |             |             |       |
|                     |          |             |             |       |
| loads               |          |             |             |       |
| Mb                  | 17.51    | kNm         |             |       |
| T1                  | 59.60    | kN          |             |       |
| R                   | 13.13    | kN          |             |       |
| x                   | 1.96     | m           |             |       |
|                     |          |             |             |       |
| bond length         |          |             |             |       |
| D                   | 74.05    |             |             |       |
| Bond Length         | 0.58     | m           |             |       |
| unbonded length     | From CAD |             |             |       |
|                     |          |             |             |       |
| Total Anchor Length |          |             |             |       |
|                     |          |             |             |       |
| Stability Checks    |          |             |             |       |
| T1                  | 59.60    | Pe          | 27.28       |       |
| R                   | 13.13    |             |             |       |
| SUM                 | 72.74    | FOS         | 2.67        |       |
|                     |          |             |             |       |
| 0.5*Pp              | 164.62   | R           | 13.13       |       |
|                     |          | Ра          | 93.16       |       |
| FOS                 | 1.55     | SUM         | 106.29      |       |