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Future Planting Locations of Salmonberry and Sword Fern
MaxEnt Model Results
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• SSP5-8.5 scenario has planting suitability values ranging from 0.048 to 0.933.

• SSP2-4.5 scenario has planting suitability values ranging from 0.008 to 0.362.

• SSP5-8.5 scenario has planting suitability values ranging from 0.145 to 0.896.

• SSP2-4.5 scenario has planting suitability values ranging from 0.089 to 0.715.

Urban greenspaces, including forests, parks, and planted boulevards,

provide essential ecosystem services and support biodiversity. (Gill et

al., 2007; Nielsen et al., 2014). Beyond ecological benefits, these

spaces hold cultural significance, particularly for Indigenous

populations with deep-rooted connections to the land (Dickinson &

Hobbs, 2017). However, they face threats from climate change,

densification, and poor management practices (Aronson et al., 2017;

Faeth et al., 2011). A key research gap exists in integrating planting

guidelines with future climate suitability. This study aims to address this

gap by modeling future planting locations for culturally significant

plants for the Musqueam people at UBC Vancouver.

This study identifies suitable planting locations for

Salmonberry (Rubus spectabilis) and Sword Fern

(Polystichum munitum), by integrating future climate data

with species distribution modeling.

Salmonberry
• Results indicated a preference for moderate shade with high

precipitation and temperature, aligning with known seedling

preferences (United States Forest Service, 2019).

Sword Fern
• Results indicated a preference for full shade and high

precipitation, aligning with known preferences (United States

Forest Service, 2019).

• An unexpected preference for cooler temperatures may be due

to the spatial concentration of occurrence data, mostly found in

forested areas, intersecting with cooler areas of the studied area.

Model performance
• Potential overfitting, with shade contributing up to 92% of

predictions, possibly due to limited environmental variability.

• Jagged response curves for temperature and precipitation further

indicates spatial bias.

• Reliance on complex relationships and low regularization

multipliers may have reduced model generalizability.

Future improvements
• Incorporating soil data as a relevant local variable.

• Combining models at different spatial scales to improve climate

variance representation.
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• Future climate data was

generated using ClimateBC,

software capable deriving

climate values based on

location, elevation and climate

scenario (Spittlehouse, 2008).

• Two Shared Socioeconomic

Pathways (SSP) were chosen:

SSP 2-4.5 (moderate emissions)

and SSP 5-8.5 (high emissions).

• Categorical variables, including slope, aspect, and

shade, were derived using a DEM, DSM and CHM.

• MaxEnt, a machine-learning

algorithm that predicts species

distribution based on presence

data and biological variables, was

used to predict future plant

suitability.

• The final model was run for each

plant species under both climate

scenarios, generating mean

probability rasters for the year

2100.

Sword Fern

Salmonberry

• For each plant and climate

scenario, shade was the

variable with the largest

contribution to the model.

• Mean average precipitation

(MAP) and mean average

temperature (MAT) in distant

second and third place.

• Unlike the smooth shade

response curve, MAT and

MAP had jagged, spiking

and noisy response

curves.
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