

Employee Transit Pass Program

Team 4 Anvesha Dwivedi Sarah Cooper Marcus Bockhold Matthew Araneta

CURRENT SITUATION

Would a Subsidized Employee Transit Pass help UBC achieve its transportation targets?

Target 1 Sustainable Travel by 2040 at least two-thirds of all trips to and from UBC will be made by walking, cycling or transit. maintain at least 50% of all trips to and from the campus on public transit.

Target 3 Daily Private Automobile Traffic

maintain daily
private automobile traffic
at or less than 1997 levels.

POLICY QUESTION:

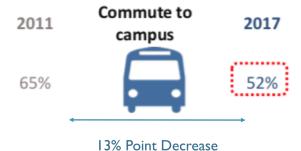
Should UBC Vancouver subsidize an Employee Transit Pass program? What would the optimal subsidy amount be?

Further Research on:

- The effect on UBC employee ridership to campus
- The financial impact on UBC of a subsidized employee transit pass

ECONOMIC FRAMEWORK

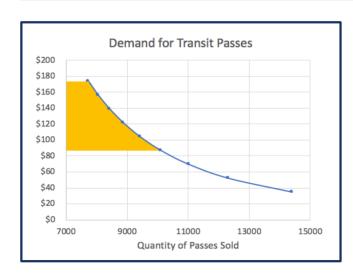
- We conducted a cost-benefit analysis:
 - Benefits:
 - Consumer surplus (benefit to faculty & staff)
 - Costs:
 - Tax Implications (cost to faculty & staff)
 - Direct subsidy cost (cost to UBC)
 - Implementation costs (cost to UBC)
- Results are summarized as table of costs and benefits


ASSUMPTIONS AND LIMITATIONS

- Assume those listed as using public transit use a monthly transit pass
- Could not isolate faculty and staff responses in the data
- Conducting analysis as a single three-zone pass
- Conduct analysis for each individual zone; using the same relationship between quantity and price from single three-zone pass
- Currently given excess demand for parking, we are uncertain how parking revenue would be affected

METHODOLOGY

Estimating elasticity of demand for transit passes:


- Previous Employee Pass Program (EPP) introduced by TransLink, discontinued in 2014, offered a 15% discount
- Elasticity = (% change in Quantity) / (% change Price)
- Elasticity of demand is approximately –0.39

METHODOLOGY

Estimating the change consumer surplus (Δ CS):

- Example: at a 50% subsidy price = \$87
- Benefits to Faculty & Staff
 - Δ CS = \$775,800.00 (benefits per month)
 - Δ CS = \$9,310,000 (benefits per year)

Net benefit to faculty & staff

• At 50% discount: Price = \$87, Quantity = 10,105

CONSUMER SURPLUS

\$9,310,000

TAX
IMPLICATIONS

\$3,713,000

\$5,596,000

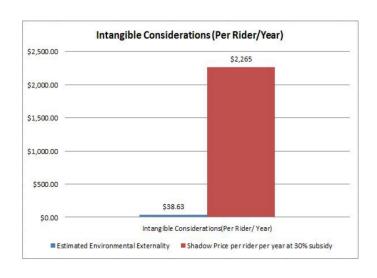
Total cost to UBC

• At 50% discount: Price = \$87, Quantity = 10,105

Net benefit of 50% subsidy

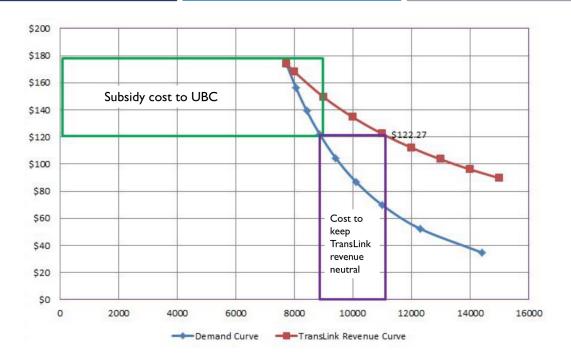
3 ZONE PASS OPT IN MODEL ANNUAL NET BENEFITS

Discount Factor	Price of Transit Pass (per month)	Quantity sold	Net Benefit to Faculty and Staff	Total Cost to UBC	Net Benefit of Subsidy Program
0%	\$174	7730	\$0	\$0	\$0
10%	\$157	805 I	\$1,056,000	\$1,955,000	-\$899,000
20%	\$139	8426	\$2,135,000	\$3,793,000	-\$1,658,000
30%	\$122	8873	\$3,244,000	\$5,832,000	-\$2,588,000
40%	\$104	9417	\$4,392,000	\$8,140,000	-\$3,748,000
50%	\$87	10105	\$5,596,000	\$10,824,000	-\$5,228,000
60%	\$70	11015	\$6,884,000	\$14,074,000	-\$7,190,000
70%	\$52	12310	\$8,312,000	\$18,267,000	-\$9,955,000
80%	\$35	14399	\$10,016,000	\$24,326,000	-\$14,310,000


INDIVIDUAL ZONE OPT IN MODEL

- Total Cost for providing individual zone subsidy at 30% discount: -\$1,695,798
- Total Cost for providing only a three zone pass at 30% discount: -\$2,588,443
- On average 35% less expensive to provide individual zone subsidy passes
 - Most 27% less expensive (10% subsidy)
 - Least 38% less expensive (80% subsidy)

ANNUAL MANDATORY MODEL


- More expensive for UBC
- Expect similar change in ridership as in opt-in model
- Added intangible costs

SHADOW PRICING

- Intangible Goals Considerations :
 - Reputational Value
 - Environmental Goals
- We estimate the average value of reduced emissions per rider to be about \$40
- If UBC values intangible benefits at size of negative monetary value, then project could still be worthwhile

AREAS FOR FURTHER RESEARCH

- Having an accurate elasticity for all three transit zones individually, which would require data collection
- Looking into accuracy of parking revenue changes as there might be a waitlist

RECOMMENDATION

- UBC would incur a net finanlial loss under all subsidy programs analyzed
- Most cost effective strategy: Negotiate with TransLink
 - If unable to negotiate, Individual Zone Model is more cost effective than Single Three-Zone Model
 - Produces about the same quantity of passes purchased