

Developer Manual for Dynamic Parking Signage Project

ELEC 491 Capstone Design Project

Team PL-89

Geoff Goodwin-Wilson

Timothy Cheng
Hiu Lok Cheung

Yuyang He
Jared West

Developer Manual 1

TABLE OF CONTENTS

Glossary 2

1. Summary 3

2. Firmware Development on STM32 and Goodisplay Development Boards 4
2.1 Getting Started 4
2.2 IDE and Debugger 4
2.3 Datasheets 5

2.4 Debugging 5

3. Hardware 5
3.1 General Usage 5

3.1.1 Powering On: 5
3.1.2 Flashing Firmware: 6
3.1.3 Communicating to the device over UART: 7
3.1.4 Hardware Debugging 7
3.1.5 Header functions: 8

3.2 Assembly Instructions 10
3.2.1 Sanding and Touch-up 10
3.2.2 Painting the Enclosure 10
3.2.3 Installing and Soldering the LED Strips 11
3.2.5 Installing LED Diffusers 13
3.2.6 Installing Plexiglass Cover 13
3.2.7 Installing Heat-set Inserts 14
3.2.8 Installing the Display 15
3.2.9 Installing Cable Gland 16
3.2.10 Installing PCB 17
3.2.11 Installing Charge-port and Charging Indicator 18
3.2.12 Solar Cable and Connectors Wiring 19
3.2.13 Gasket Fabrication and Installation 21
3.2.14 Lid and Sign Installation 21

3.3 Known Issues and Resolutions 21
3.3.1 Schematic & PCB Layout 21
3.3.2 Enclosure 22

4. Team Contact Information 24

Appendix A: File Structure Overview 25

Appendix B: Debugging and Troubleshooting Q&A 26

Developer Manual 2

Glossary

E-Ink Electronic Ink

FPC Flat Printed Circuit

GCC GNU Compiler Collection

GPIO General-Purpose Input/Output

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IP65 Ingress Protection Standard

KB Kilo-Byte

MCU Microcontroller Unit

PCB Printed Circuit Board

SEEDS Social Ecological Economic Development Studies

SLS Selective Laser Sintering

UART Universal Asynchronous Receiver/Transmitter

UBC University of British Columbia

UBC PAS UBC Parking and Access Services

Developer Manual 3

1. Summary
The target audience of this document is for future capstone teams working with UBC PAS on
improving the Dynamic Parking Signage project. The purpose of this document is to help future
teams understand what tools and resources to use in order to quickly transition into
development and reduce time trying to figure things out. We understand the technical
challenges for a project of this complexity. We have included resources and tools we used and
found useful in our team with the project. This document will serve as an operation guide for the
device, including setup procedures, small nuances, hardware assembly and understanding, as
well as standard strategies we have used over the course of the project.

As a final note, get used to being uncomfortable, learning, reading lots of documentation,
forums and Googling. Good luck!

From Team 089, April 2020

Developer Manual 4

2. Firmware Development on STM32 and
Goodisplay Development Boards

2.1 Getting Started

There are three main steps in embedded programming. First, you write the code, which in this
capstone project is in C, a fast and powerful yet dangerous (with great power comes great
responsibility - pointers, references, magic!) language. This step also includes configuring
hardware such as clock speed, peripherals, GPIO, UART using C. Then, you need to compile
the code (makefiles) and find a way to upload it into the microcontroller (MCU) flash memory
where it finally executes your program. Lastly, you need a way to debug. Often, you will find
yourself at 3:00 AM stepping through the instructions one at a time to find a pesky bug.

Back in the day, an embedded programmer would need to use three separate tools to
accomplish this task. Today, more MCU manufacturers are creating their own toolchains that
help developers prototype rapidly by combining three tools into one. However, none of them are
perfect as some limit program size for free users (e.g. maximum 8KB), are expensive ($1,000/
license), or difficult to use as the graphical user interface is not user-friendly and buggy.
Generally, manufacturers modify the eclipse (an open-sourced integrated development
environment) codebase by adding their own features. Alternatively, one can use unmodified
eclipse, visual studio with plugins, or any text editor with a toolchain (to compile the code. e.g.
GCC) and STM32CubeProgrammer to load the binary file onto a development board or MCU.

For our project, we used STM32CubeIDE as our development environment as it is free with the
3 aforementioned components built-in. Like IDEs developed by other manufacturers,
STM32CubeIDE is also an IDE based on eclipse with STM32CubeMX (code generation tool for
configuration i.e. by interacting with a GUI, relevant code is generated for you) and
STM32CubeProgrammer (flash on to an MCU). With the ST-Link V2 debugger or development
board with builtin ST-Link, one may also debug the program line by line.

2.2 IDE and Debugger

The IDE for programming the microcontroller is STM32CubeIDE. To download go to:
https://www.st.com/en/development-tools/stm32cubeide.html​ for the newest version as ST
continues to update their software. ST requires an account to be created to download any of
their programs. We have provided the relevant credentials in the list of deliverables document.

https://www.st.com/en/development-tools/stm32cubeide.html

Developer Manual 5

2.3 Datasheets

During our development process, we used the following ST components (with all of their
respective datasheets included in a zipped file in this folder called “datasheets”):

● MCU stm32f103zg (display dev board MCU)
● MCU stm32l496ag (cellular dev board MCU)
● BOARD p-l496-cell02 (cellular dev board)
● BOARD stm32 nucleo-144 board

Further datasheets for the STM32 series are all provided on the website: www.st.com.

2.4 Debugging
Please see appendix B for some common compilation issues. The appendix is in a question and
answer format to assist you in debugging in your darkest hours.

As we have struggled in the development process, we adopted a method which is documenting
what we did each step of the way during development to track the changes and where we
suspect the bugs to be at. See appendix A to find out where these annotations are in the files
we have included in the list of deliverables.

3. Hardware

3.1 General Usage

3.1.1 Powering On:
Using the hardware is made very simple with the use of an integrated PCB. The first step is to
power the system on. This can be done in multiple different ways. If you have access to 18650
battery cells (should be included in the carry-over supplies), you can insert at least two in series
and any amount in parallel which will turn the system on when the long-term shutdown switch is
in the “ON” position. If batteries are unavailable, you can power the system through a USB
micro-b connector by the large display header, which will provide USB_5V to the 5V rail. There
is also an auxiliary power connector which can supply the 5V and 3V3 rails using an external
power supply. You may want to disconnect the LED_OUT connector or set the LED_CTRL pin
high in firmware to ensure that the LED driver & LEDs are not drawing unnecessary power while
debugging.

Developer Manual 6

3.1.2 Flashing Firmware:
As long as the 3V3 rail is powered, you should be able to flash firmware to the MCU. This is
done using a programming device (we used ST-LINK programmers), as well as a JTAG to SWD
adapter board - connections can be seen in Figure 1. Simply plug in the SWD ribbon cable into
the PCB - Figure 2 - and connect the ST-LINK USB to your computer and program through
STM32CubeIDE. The programming hardware will be included in the carry-over supplies.

Figure 1. ST-LINK Programmer with JTAG to SWD Adapter

Figure 2. SWD Plug-in Location on PCB

Developer Manual 7

3.1.3 Communicating to the device over UART:
As long as UART is configured in firmware, you can communicate to the device through the
USB Micro-B header since there is a USB to UART converter chip on the PCB. This can be
useful for sending and receiving commands from your computer through a terminal (PuTTY or
similar), which is helpful for debugging.

Figure 3. USB to UART Converter Chip

3.1.4 Hardware Debugging
Test points are deliberately added into the hardware in order to probe with the oscilloscope. An
oscilloscope probe should fit directly inside each test point, but a ground wire may need to be
soldered on to the PCB in order to tap off GND.

Developer Manual 8

Figure 4. Ground Wire Jumper Connection

3.1.5 Header functions:
There are multiple headers soldered onto the PCB, each with different functionality. In Figure 5,
the cellular and display headers are highlighted using red and orange squares respectively.
Additional headers are labeled on the PCB.

Developer Manual 9

Figure 5. Location for cellular header and display header

Each header has specific functionality as follows:

1. Cellular
As shown in Figure 5, the header indicated by the red rectangle is intended to connect to
an ST cellular device which will be included in the carryover package. The device follows
the ST-Mod standard, which is used to be compatible with many ST devices, but the
hardware configuration on the PCB is designed to only connect with this specific cellular
module board.

2. Display
You can either connect the display directly from its ribbon headers on the rear of the
PCB or through the large ribbon header indicated by the orange rectangle to the
GooDisplay display breakout board. Having multiple ways to connect the display is
meant to assist with debugging by removing the on-board driving circuitry as a variable.

3. SLR/AUX
Intended as a connection to the solar panel or a 24V, 5.5mm wall adapter. Both are

Developer Manual 10

included in the carry-over package. The pinout is written in silkscreen on the PCB.

4. LED_OUT
Connects the LED driver’s 12V output directly to the screen illumination LEDs. The four
top connections are 12V, and the four bottom connections are GND

5. EXT_PWR
Used to power the system from an external power supply. Contains 5V, 3V3 and GND
rails. The pinout is written in silkscreen on the PCB.

3.2 Assembly Instructions

The assembly instructions for all of the hardware are listed below in chronological order.

Figure 6. Enclosure exploded view

3.2.1 Sanding and Touch-up
Coat with XTC-3D and sand down all gasket and rubber sealing surfaces (for cable gland,
charge port, etc.). Make sure each surface is smooth to ensure proper sealing

3.2.2 Painting the Enclosure
We painted the enclosure with black spray paint since SLS Nylon-12 is generally white by
default. Before you paint an enclosure, sand down the gasket surface to ensure tight contact
with gasket adhesive.

Developer Manual 11

Figure 7. Painted Enclosure

3.2.3 Installing and Soldering the LED Strips
Install the LED strips on the inner sides of the enclosure. The default adhesive on the strips is
pretty weak so reinforce it with superglue or similar. Make sure the orientation of the strips is
such that the positive terminals are facing upwards.

Figure 8. Enclosure with LED Strip Adhered

Developer Manual 12

Solder the ends of two sets of LED strips together with solid-core wire, and then solder
red/black wires for PWR/GND respectively on the ends of each LED strip. Adding more strip
segments just connects more LEDs in parallel, so it does not really matter how you wire them up
as long as it is convenient. Make sure all the wires are coming out near the PCB connectors to
avoid lone wire distances inside the enclosure.

Figure 9. LED Power and Ground Wires

Figure 10. Connections Between LED Strips

Developer Manual 13

3.2.5 Installing LED Diffusers
Cut the LED diffusers to their appropriate size and super-glue them into place. Make sure that
the diffusers are not interfering with where the display goes. They should be flush or below the
display resting ledge.

Figure 11. Enclosure with LED Strip and Diffuser Installed

3.2.6 Installing Plexiglass Cover
Apply silicone adhesive to the edges of the screen indent and place the acrylic window on top. It
is important that the adhesive has no gaps in coverage to avoid water ingress.

Developer Manual 14

Figure 12. Enclosure with Silicone Adhesive Applied

Figure 13. Enclosure with Plexiglass Cover Installed

3.2.7 Installing Heat-set Inserts
Use a wide tip soldering iron to install heat-set threaded inserts. Make sure that each insert is
aligned vertically and is flush or below flush with the enclosure surfaces. After all of the inserts
are done, clean up the “overflow” nylon from the edges with a sharp knife.

Developer Manual 15

Figure 14. Enclosure with Heat-Set Inserts

3.2.8 Installing the Display
Install some double-sided tape on the top and bottom of where the display sits. Place the
display on top and make sure it is aligned in the center (no part of the display is cut off). I
recommend taping the display in to start so it is not permanent. Make sure the display is in the
correct orientation - this information can be found on the datasheet.

Developer Manual 16

Figure 15. Display Mounted in Enclosure

3.2.9 Installing Cable Gland
Note:​ This cable-gland has to be installed incorrectly with the current enclosure setup due to the
incorrect hole for it in the enclosure. To ensure a waterproof setup, you may need to fill the
inside of the cable gland with silicone adhesive after the solar panel cable is installed.

Developer Manual 17

Figure 16. Installed Cable Gland

3.2.10 Installing PCB
Place the board in the correct orientation so the sensors are inside their pockets. Connect
display ribbon cables to the headers on the bottom of the board. This can be tricky due to space
constraints. Install each fastener except for the one by the charging port. It will interfere with the
charge port terminals (this is fixed in the next enclosure revision).

Developer Manual 18

Figure 17. Enclosure with Installed PCB

3.2.11 Installing Charge-port and Charging Indicator
Cut off the S/C terminal (labeled) on the charge port. Insert the charge port and 5mm LED into
their designated holes. Epoxy the back of the LED to ensure no water ingress. This is not
necessary for the charge port, it is already IP65 rated. Make sure the charge port rubber gasket
is on the inside of the enclosure.

Developer Manual 19

Figure 18. Charge Indicator Connection

3.2.12 Solar Cable and Connectors Wiring
Crimp the solar cable and insert the contacts into the correct places in the SLR/AUX Molex
connector. Run the cable out of the enclosure through the cable gland. Take appropriate
measures to waterproof the cable gland.

Developer Manual 20

Figure 19. Solar Panel Cable Installed

Crimp the ends of the wires and insert them into their respective connectors. Make sure all the
wires are cut to the shortest length. All wires should be twisted to ensure neatness.

Developer Manual 21

Figure 20. Wiring Connections to PCB

3.2.13 Gasket Fabrication and Installation
Print out the .dxf file for the gasket surface and cut out the shape on a piece of closed-cell foam
material. Adhere the gasket on the lid-to-enclosure gasket surface.

3.2.14 Lid and Sign Installation
The lid and sign can be fastened to the threaded inserts and carriage bolts/lock nuts/washers
respectively. Ensure the lid properly compresses the gasket (50%, even compression).

3.3 Known Issues and Resolutions
There are a number of known issues with each part of the system, some of which are fixed in
the current design files, others that still need to be implemented. This section should serve as a
good to-do list for the new hardware team for Revision B of the design.

3.3.1 Schematic & PCB Layout

Unfinished:

1. The solar charging MPPT chip needs a ground pad on the footprint. Currently, the solder
mask is scraped off the PCB for a ground pad

Developer Manual 22

2. C5 needs to be a 0805 footprint instead of 0603
3. USB Micro-B connector footprint is wrong. Missing two thru-holes by the connector pins.
4. Change 5V regulator Digi-Key part number to LM22670MRE-5.0/NOPBCT-ND. It is

currently the adjustable option, -5.0 is a fixed 5V output version
5. The under-voltage comparator has 500mV of hysteresis instead of the intended 200mV.

Change hysteresis resistor divider to fix this
6. Fault AND gate footprint VCC and VSS are flipped
7. All vias should be tented to prevent shorts
8. The charging controller should have a diode-OR controller from VBAT to 24V_IN. The

5V buck converter should have 24V_IN input instead of VBAT input. This configuration is
shown on the example schematic of the charging controller datasheet

9. Display ribbon headers should be moved ~0.5cm leftwards to properly align with display
ribbon cables

10. Indicator LEDs should be depopulated for actual use to reduce operating current. More
measures should be taken to reduce the quiescent current in the battery management
circuit.

11. Current leaks through the cell balancing chip when a single cell is inserted. Look for a
way to solve this

12. The LED_OUT connector should be 4 pin instead of 8 pin - 2x +12V and 2x GND.
13. Adjust the number of batteries in parallel for experimental energy consumption to meet

the 2-week requirement
14. The MCU pin text designation on the display header is mislabelled on Sensors & IO

sheet for PB13, PB14, and PB15
15. Address PCB testing issues in the validation document
16. Use precision resistors (0.1%) on under-voltage and over-temperature comparator

threshold dividers
17. Consider making custom breakout boards mapping the display ribbon cables to standard

ribbon headers. This will make the design much easier to manufacture. The hardest part
right now is connecting the display to the back of the PCB. This will also eliminate all
components on the back of the PCB

3.3.2 Enclosure

Finished:

1. Charge port and indicator LED should be moved in order to avoid conflicts with PCB
fastener

2. Enclosure hole for cable gland has incorrect dimensions

Unfinished:

1. Move hole for cable gland so it does not interfere with the top of the enclosure

Developer Manual 23

2. Add slot on top of enclosure and holes to mount metal drip-edge to prevent water
ingress

3. All gasket and rubber seal surfaces should be coated with XTC-3D and sanded to
ensure smooth contact surface

4. Add a ledge near the cable gland cutout for the display to sit on. From lack of support,
one of the displays cracked on that corner

5. Investigate using an LED backlight for this type of display. This will reduce vertical
enclosure footprint by removing the need for LED strips

6. Accommodate size and mounting for custom display ribbon header adapter boards (if
you choose to design them)

Developer Manual 24

4. Team Contact Information

Name Phone Number Email

Geoff Goodwin-Wilson 604-690-1008 goodwinwilsongeoff@gmail.com

Timothy Cheng 604-783-2421 timothycheng222@alumni.ubc.ca

Jared West 250-961-3039 jaredwest1994@gmail.com

Yuyang He 778-681-0610 yuyanghe97@gmail.com

Larry Cheung 778-798-7588 hiulok.cheung@alumni.ubc.ca

Developer Manual 25

Appendix A: File Structure Overview
In this section, we will guide you through on how to use the zipped folder we have included in
the list of deliverables. We found many resources useful and believe you may too. Once you go
into the folder ‘files’ that we have included in our deliverables, you will see 4 folders (see Figure
21).

Figure 21. Repository Folders

In components, there are 8 folders (see Figure 22). This repository was downloaded from our
google drive. In this folder, there are manufacturer manuals, schematics, and debugging notes
that we used during our capstone project. For example, in the AWS server folder, you will find
debugging notes we made through hours of debugging the given AWS code for the cellular
development board. It took us 40+ hours to find a memory bug by Amazon that allocated the
size of a pointer when it should have allocated memory for the structure that the pointer points
to. We hope our debugging notes will aid your team in your development process and save you
from wasting time on the same issues we’ve encountered.

Figure 22. Folders Within Components Folder

In the Github folder (see Figure 23), there are 3 zip files. Make sure you unzip them first before
navigating, otherwise it would be very slow as the computer processes the unzipped files for
you to use in real time.

Developer Manual 26

Figure 23. Zipped Source Code Folders

Appendix B: Debugging and Troubleshooting Q&A

In this appendix, we include some issues that we encountered during setup for development. It
took us quite a bit of time to figure them out and wish to minimize that time for your team as you
set up for development.

1. Compilation error:​ “cannot find STM32_Debugger_CLI.exe”

Reason:​ This error occurs when the installation of STM32_Debugger_CLI.exe is
installed into the wrong directory. This executable is 64-bits but on default is installed in:

C:\Program Files (x86)\STMicroelectronics\STM32Cube\STM32CubeProgammer

but the path that scripts expect in the provided demo code is:

C:\Program Files\STMicroelectronics\STM32Cube\STM32CubeProgammer

Solution 1:​ In “postbuild.sh” line 87, change the path to the actual directory of
STM32_Debugger_CLI.exe, which is the path with (x86).

Solution 2:​ uninstall STM32CubeProgrammer and reinstall in C:\Program Files\...\...

2. “Break at address “0x8000----” with no debug information available, or outside of

program code.” If you see this message - seen in Figure 24 - while in debugging mode in
STM32CubeIDE, it will be impossible to debug as the first breakpoint is supposed to be
in main().

Developer Manual 27

Figure 24. Break at Address Error Message

Possible Reason:​ An incorrect version of cubeIDE is installed. This issue occurred
when team members used version 1.1.0 but went away when version 1.2.0 was
installed.

3. When installing STM32CubeIDE on macOS, you may see ​“STM32CubeIDE is damaged

and can't be opene​d”.

Reason:​ From researching around the web, we found that it appears that when macOS
adds some extended attributes to the .dmg when a download is downloaded directly on
the Mac.
Solution:​ download the Mac version on a pc, move the .dmg file to the intended Mac
and run installation. No issues should occur after. To reading further, visit
https://community.st.com/s/question/0D50X0000BUh6nK/not-able-to-open-stm32cubeid
e-110-on-macos-mohave-10146?s1oid=00Db0000000YtG6&t=1574078933520

4. Where is my binary (or BIN) file? I want to flash it directly to the chip without debugging
after building and compiling my code.

Solution:​ Right-click on your project, go to Properties - you will see an image like Figure
25. Then C/C++ Build -> Settings -> Tool settings -> MCU Post-build outputs and check
“Convert to binary file (-O binary).

https://community.st.com/s/question/0D50X0000Bdenza/stm32cubeide-is-damaged-and-cant-be-opened
https://community.st.com/s/question/0D50X0000Bdenza/stm32cubeide-is-damaged-and-cant-be-opened
https://community.st.com/s/question/0D50X0000BUh6nK/not-able-to-open-stm32cubeide-110-on-macos-mohave-10146?s1oid=00Db0000000YtG6&t=1574078933520
https://community.st.com/s/question/0D50X0000BUh6nK/not-able-to-open-stm32cubeide-110-on-macos-mohave-10146?s1oid=00Db0000000YtG6&t=1574078933520

Developer Manual 28

Figure 25. Properties for TryMini

5. Nothing is happening with the Goodisplay e-ink display even though you compiled and

loaded it on the F103 development board without any issues.

Possible Reason 1:​ You hooked up the cable for the display wrong.
Solution:​ Verify that the E-Ink display in Figure 26 is facing up. The DESPI-C1248 -
seen in Figure 26 - the board is placed on top of the display. Make sure to connect the
driver and display cables exactly as it is shown in Figure 27. The connector for the
cables on the display should be facing upward. Connector P1 should be connected to
the main FPC with the serial WFT1248BZ23 or the right cable when the white logo is at
the bottom of the driver board (see Figure 26). Connector P2 should be connected to the
ancillary FPC with the serial WFT1248BZ24 (see Figure 29). The serial of the FPCs can
be found on the top side when the display is facing up (see Figure 30).

Developer Manual 29

Figure 26. DESPI-C1248 Pinboard for E-Ink Display

Figure 27. Display Connections with STM F103 Development Board

Figure 28. Main FPC with Connector P1

Developer Manual 30

Figure 29. Ancillary FPC with Connector P2

Figure 30. Serial Location on FPC

Possible Reason 2: ​JTAG cable is not connected correctly.

Solution:​ Make sure cable is connected in the same orientation as Figure 27 with the
red cable furthest from broken pins (circled in blue in Figure 31). Four pins are removed
by the manufacturer on purpose and are not used.

Developer Manual 31

Figure 31. Connector Locations (Blue - Pins Removed)

6. I cannot compile the project on a specific computer even though I had it working on

another computer. I am sure the code is exactly the same as before.

Possible Reason:​ You are trying to run the AWS source code that can toggle the LED

light. We encountered an obscure bug where if your directory path is too long, the project

will not compile.

Solution:​ Delete the project from the STM32CubeIDE. Get a fresh copy of the file i.e.

one you have never opened in STM32CubeIDE. Move the copy to the shortest possible

directory path. We moved it to right under the C: or E: drive and compiled it and it

worked.

