UBC Social Ecological Economic Development Studies (SEEDS) Student Report

Integrating Vermicomposting into AMS SUB Operations - Phase 3 - Compiled presentations Emme Lee University of British Columbia GRS 497B November 04, 2014

Disclaimer: "UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report".

Integrating Vermicomposting into AMS SUB Operations ~ Phase II ~ A SEEDS Project By: Emme Lee January 25, 2012

OVERVIEW

- Objective
- Background
- Review
- Methodology
- Findings
- Recommendations
- Conclusion

OBJECTIVE

To explore the feasibility of incorporating vermicomposting (VC) in the new SUB by expanding the VC project in the current SUB.

~ ~ ~ ~ ~

- Identify values provided to SUB operations
- Identify challenges created
- Further understand operational logistics of creating a local food loop in an institutional environment

BACKGROUND

- 1997: UBC first focused on climate action
- > 2001: ECOTrek (energy & water retro-fit)
- > 2008: AMS Sustainability (Lighter Footprint)
- > 2009: Waste Audit of SUB
- > 2009-10: Climate Action Plan at UBC
- > 2010: AMS Identifies VC for waste mgmt
- > 2011 January April: Phase I
 - Explore integration of small-scale VC into AMS
 - New SUB (2014) to include designated VC space
- 2011 May December: Phase II
 - Scale-up Phase I \rightarrow mid-scale VC in operations

REVIEW – REQUIREMENTS

- Red wiggler worms
- Aeration (no odours)
- Temp of 15–20°C
- Moisture (60–90%)
- Acidity (pH 6.8–7.5)
- Low vibrations
- Carbon: Nitrogen (20-30:1)
- Avoid: meat, dairy, oil, salt, flour, bread, pasta, rice
- Pest prevention

METHODOLOGY

- Execution: Mid-Scale
 - Set–up
 - Observation
 - Data collection
 - Assessment
 - Training Manual
- Research and Review
 - Phase I, Context
 - Literature, Interviews
- Analysis
 - Waste, Cost

EXECUTION – TIMELINE

- April/May review project, literature, familiarize with SUB, VC, staff, goals
- May/June explore carbon options, arrange purchase of VC
- June/July project meetings, estimate labour/time, carbon sourced
- July compare carbon sources, delivery and set up of unit, light bulb, labour discussion, data collection charts
- August/Sept organize food collection (staff), carbon collection, engage staff Oct-Dec – maintenance, data, research

FINDINGS – EXECUTION

Preparation

Anticipate delays (summer)

Set-up

- 3 hours, 2–3 people
- Materials
 - Pallet

 Bedding (newspaper, cardboard, paper, wood shavings etc.)

- Worms and Bin
- Light bulb stand

have materials ready in advance

FINDINGS – EXECUTION

Maintenance

- 1 hour/week
- Dustpan (no broom)
- Stabilization (2–3 months)
- Carbon source
- Storage bins (carbon & food)
- Storage space in fridge
- Storage space for carbon
 Ave materials ready in advance, 1" newspaper
 storage space in fridge

FINDINGS - EXECUTION

- Staff Engagement
- Support vs Resistance
- Pest Prevention
- Social Acceptance
- prep staff to sort food waste into separate bins
 hire student to feed worms weekly
 signage and training to prevent contamination
 fridge space, wheels

RECOMMENDATIONS – STAFF

STAFF QUALITIES

- Cares about the project
- Cares about sustainability
- Understanding of ecology
- Observant, Pro-active
- · Fast, but tidy, can chart
- Deals well with labour, muck, worms
- **STAFF NEEDS**
- Storage locker, protective wear (gloves, coat/apron)

ANALYSIS – WASTE STREAM

Where does waste produced by SUB operations end up?? (Based on AMS Waste Audit and Waste Management Plan, 2009)

25% is recycled

49% goes to the Landfill (88 000 kg/year)

26% is composted at South Campus (in-vessel unit)

ANALYSIS – WASTE STREAM

- Metro Vancouver
 - Businesses must reduce waste by 70% by 2015
 - Home waste 44% can be diverted to compost
- SUB Waste Audit (2009)
 - Goal: divert waste from landfill -> reduce footprint

SUB Landfill Waste (88 000 kg)

ANALYSIS – WASTE STREAM

ALL food waste COULD be composted at UBC

17% landfill

Pre-consumer via VC/worms (on site @ SUB)

Pre-consumer waste can be diverted from in-vessel by increasing VC

Post-consumer via in-vessel (on campus, UBC)

FINDINGS – COMPARE TIP FEES

IN-VESSEL

LANDFILL

46 750 kg/year 899 kg/week TIPPING FEE: \$340/week COST: \$0.378/kg

14 728 kg/year 203 kg/week TIPPING FEE: \$107/tonne COST: \$0.107/kg

FINDINGS – ADDITIONAL COSTS

IN-VESSEL

LANDFILL

Installation

- Unit & replacement
 Operational
- Transport, labour, time, fuel, electricity, service/repair
 Environmental
- Some GHGs

Installation

- None (except trucks)
 Operational
- Transport, labour, time, fuel, service/repair
 Environmental
- UBC GHGs
- Metro Van
- Landfill gas

FINDINGS – COST COMPARISON

WIGWAM (WORMS)

IN-VESSEL

LANDFILL

Landfill waste: → 8 wigwams In-vessel waste: → 23 wigwams

Inst: \$32 984 Op: \$7176 C/Yr:\$10 474.40 [10 year lifespan]

\$0.170/kg

\$0.378/kg

\$0.107/kg

FINDINGS – COMPARE

	WORM WIGWAM	IN-VESSEL	LANDFILL
Environmental Impacts	Plastic Potential for mismanaging	Materials Some GHGs	A lot of GHGs
Additional Costs	Building space	Transp. Fuel Labour Time Land space Electricity	Transp. Fuel Labour Time Land space Metro Van energy
Benefits	On site Less GHGs, energy, fertilizer Compost	On campus Fewer GHGs, Less fertilizer Compost	Cheap Not our backyard

FINDINGS – WIGWAM SAVES \$\$

DIVERT TO WORMS FROM IN-VESSEL

WIGWAM COSTS: \$350.88/yr (2064 kg/yr X \$0.170/kg)

IN-VESSEL COSTS: \$780.19/yr (2064 kg/yr X \$0.378/kg)

DIVERTING FROM IN-VESSEL SAVES: \$429.31/year/bin PAYOFF: 2.48 years

23 BINS SAVES: \$9 874.13 (in tipping fees only, no extras)

divert pre consumer waste
 (where possible)
 to wigwams
 # consider
 larger worm bin

FINDINGS – INST'TL SIZE BIN

DIVERT TO WORMS ALL PRE-CONSUMER

TOTAL WASTE: 61 478 kg

INDSTL. WORM BIN: 181.4 kg/day

\$15021 + \$1600 + \$7176 X 10 TOTAL COST \$8 838.1/yr

COST: \$0.143/kg/yr

DIVERTING ALL PRE-CONSUMER SAVES: \$7 304.25/year/bin PAYOFF: 2.28 years

SPACE CONSIDERATION

8 X Wigwams Need 5' each → 40' X 5' TOTAL: 200 square feet 1 INDSTL Bin Need 8' X 32' TOTAL: 256 square feet

RECOMMENDATIONS – SUMMARY

- prep staff to sort food waste into separate bins
 hire student to feed worms weekly
- **\$** signage and training to prevent contamination
- ☆ fridge space, wheels
- A when scaling up, determine materials necessary and have ready in advance, storage space
- # divert pre-consumer waste (where possible) to wigwams
 # consider larger worm bin (institutional size)

CONCLUSION

Vermicomposting can:

- Reduce costs
- Reduce transp., energy, GHGs
- Help meet sustainability targets
- Reduces ecological footprint
- Establish AMS as leader
- Produces closed loop system
- Helps Metro Van achieve targets
 Vermicomposting needs:
- Planning and organization
- Staff engagement (training etc.
- Larger (institutional) bin

SPECIAL THANKS TO:

DS Supervisor, Professor Emeritus, Art Bomke **SEEDS Coordinator, Liska Richer AMS Sustainability, Justin Ritchie** AMS Catering staff, Bryan Goodman Undergraduate (Phase I), Hillary Topps Earthworks Composting, Robert Crofton-Sleigh UBC Building Ops. Sindi Sohi, Darren Duff **AMS Facilities Management, Jeffrey Smith** AMS Food and Beverage, Tom Coleman UBC Wood Science, Vincent Leung

QUESTIONS ?

On-Site Composting in the NEW SUB

EMME LEE AMS COMPOST COORDINATOR

OCTOBER 30, 2013

Drivers for On-Site

- Less GHGs
- Connects to Local Food
- Educational Value
- Engagement Opportunities
- Diversity of Systems
- Quality Control
- Re-sale Value
- Green Economy/Jobs
- Shift in Culture

Blakeway, 2013

Last time...

Space 3-phase Electric Tech Review

Big Hanna

"Big Hanna" composter models

"BIG HAMMAN BICCEL T40 Filled watte capacity: up to 200 (bid wheek No. or households: 25-05 No. of measis part day: 100-140

"BID HARMA" NODEL Too Filled warts sapacity: up to 550 tau week No. of nouseholds: 55.70 No. of release paralay, 200-000

"BIG HADBAC MODEL T75 Fallet wards capacity: up to 700 ibut when No. of neuromoties: 70.00 No. of meals pat day: 220-470

THO HANNA" MODEL TIDD

Fault wards- capacity: up to 1100 ibn/ week No. or nouceholds: 90-125 No. of readic pet day: 400-715

"BIO HANNA" MODEL T24) Fixed made explority up to 2500 lbs" meek No. of households: 130-300 No. of meak part day: 970-1715

THO HAVE AN MODEL TABO

T wait watte separate up to 6300 Haf week No. of househol (±275-850 No. of meab per kay 1105-3500

ODOR DESTROVER

Find has odor-dubroret, patiented ander the NORATY'S TEMP hartemate, Based en a rombined satalysis reactive for ministative et guinteroux molecular.

BIOFILTER "BIO HANNA"

Oder beatment of romanshing pares. See "Big Hanna" birther provider a natural spices back and engeme subdion to comparing oder beatment

General Process

- □ Staff → Schaefer
- □ Schaefer → LB
- □ Bin Lifter → Pulverizer
- □ Mini-Bin → Big Hanna
- Bin Wash

$\Box \text{ Collect Compost} \rightarrow \text{Screen} \rightarrow \text{Store} \rightarrow \text{Use}$

Case Studies in Canada

Mount Allison University (Sackville, NB)

- Inside machine for 6-8 weeks, no windrows
- Other machines cheaper, shorter processing
- BUT: more mature compost, 20yr lifespan
- Use a pulper, cutlery magnet
- o 9yr payback
- McGill (Montreal) <u>News Clip</u>

Cost Estimates

T120	\$49 000	T240	\$79 000	
Pulverizer	\$7 900	Pulverizer		
Biofilter	\$3 700	Biofilter	\$3 700	
Odour System	\$3 700	Odour System	\$3 700	
Bin Lifter 000	\$11	Bin Lifter 000	\$11	
Shipping		Shipping		
Installation		Installation		
Mechanical		Mechanical		
Electrical		Electrical		
TOTAL \$89 313.15		TOTAL \$114 5	510.15	

Drivers for AMS

Leadership Less GHGs Connects to Local Food Educational Value Engagement Opportunities Diversity of Systems Quality Control Re-sale Value Green Economy/Jobs Shift in Culture

Blakeway, 2013

Integrating Vermicomposting into AMS SUB **Kitchen Operations A UBC SEEDS Project By: Emme Lee**

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

WE WANT TO CHANGE THE WORLD social equity ecological health economic prosperity
OVERVIEW

Objective Uvermicomposting Methodology **□**Findings **Comparison D**Recommendations

OBJECTIVE

Explore Feasibility of :

Integrating Vermicomposting into AMS SUB Kitchen Operations

Challenges Benefits Logistics

Vermicomposting Using worms to break down organic waste into recycled nutrient sources for plants

CLOSED ENERGY LOOP ~SUSTAINABLE~

BENEFITS OF VERMICOMPOST

IMPROVES: aeration, porosity, drainage

- PREVENTS: compaction, erosion, nutrient leaching
- **INCREASES**: permeability, H₂O retention, nutrient availability, cation exchange capacity, organic material, production of humus
- ACTS AS: nutrient recycler, soil conditioner

$\frac{\text{RESULTS IN}}{\text{QUALITY} \rightarrow \text{HEALTHIER PLANTS}}$

REQUIREMENTS

- Use red wigglers
- Temp. (15–20°C)
- Acidity (pH 6.8–7.5)
- Moisture (60–90%)
- Low vibrations
- Aeration (O₂ present)
- Carbon: Nitrogen (25:1)
- <u>Avoid</u>: meat, dairy, oil, salt, dressings, sauces
- Prevent & Manage Pests
- Maintenance, Training

METHODOLOGY

Execution: Mid-Scale

- ✓ Set–up ✓ Observation \checkmark Data collection ✓ Assessment ✓ Training Manual **Research and Review** ✓ Phase I, Context ✓ Literature, Interview **Analysis** ✓ Waste
 - ✓ Cost

WORM WIGWAM

FRESH WASTE →

OLDER WASTE →

OLDEST WASTE →

COMPOST →

EXECUTION

Review: project, literature Learn: SUB operations, staff, goal, vermicomposting Source: carbon, tools, materials Engage: meetings, staff **Estimate:** labour requirements **<u>Collect</u>**: data, equipment **<u>Conduct</u>**: bin maintenance, food collection, staff participation, research, analysis

CURRENT SUB •40+ YEARS OLD •TOO SMALL (<45 000)

A New Student Union Building for UBC

NEW SUB •SUSTAINABLE DESIGN •LEED PLATINUM+ (HIGHEST RATING FOR GREEN BUILDINGS) •LARGER (>45 000) •VERMICOMPOSTING •ROOFTOP GARDEN

FINDINGS – EXECUTION

 SET-UP REQUIREMENTS
 MATERIALS LIST (ACQUIRE IN ADVANCE)

FINDINGS – EXECUTION

MINIMIZE COSTS

STORAGE SPACE FOR FOOD WASTE, CARBON SOURCE, WORM BIN

FINDINGS – EXECUTION

*** ENGAGE STAFF CHANGE ATTITUDES & BEHAVIOURS SPECIFIC FOOD WASTE BINS** FOR WORMS **A TRAINING & SUPPORT SIGNAGE**

or http://HIMT/recycle

COMPOST ONLY

Fruit & Vegetable Waste **Coffee Grounds & Filters** Tea Bags

ANALYSIS – WASTE STREAM

Where does waste produced by SUB operations end up??

(Based on AMS Waste Audit and Waste Management Plan, 2009)

25% is recycled

26% is composted at South Campus (in-vessel unit)

49% goes to the Landfill (88 000 kg/year)

POST-CONSUMER

FINDINGS – COST COMPARISON

WIGWAM (WORMS)

Start: \$32 984 Oper: \$ 7 176 C/Yr: \$10 474.40 Based on: 10 year lifespan, student labour rate

\$0.170/kg

IN-VESSEL

\$0.378/kg

LANDFILL

\$0.107/kg

	WIGWAM	IN-VESSEL	LANDFILL
EXTERN- ALITIES	Manufacturing of plastic (fossil fuels)	Materials Some GHGs (driving)	A lot of GHGs (driving, Landfill gas) MV's energy
MISSING COSTS	Building space (opp. cost of lost lease) Fix/repair Electricity	Tip Fee includes: fuel, energy, labour, lost land lease	UBC pays transp., fuel, labour, time, land lease
BENEFITS	On site, Less: GHGs, energy, fertilizer; closed-loop, 'green', sustainable, cost- recovery, sell compost, worms, education	On campus Fewer GHGs, Less fertilizer Usable compost	Not on-site, No mgmt required Seems cheap and simple

RECOMMENDATION

COMPOST ALL FOOD WASTE

Vermicompost pre-consumer (on-site @ SUB)

In-vessel post-consumer (@ South Campus)

FINDINGS – COMPARE SYSTEMS

31 X WIGWAMS

INST'TL SIZE BIN

COST: \$10 877.28/year

\$0.170/kg

FOOTPRINT: 5' X 5' (each) = 775 square feet COST: \$8 838.10/year

\$0.143/kg

FOOTPRINT: 8' X 32' = 256 square feet

RE-CAP

- Feasible IF:
- Prepare in advance (materials, storage)
- Streamline processes
 Engage, inspire staff
 Training and Support

ECOLOGICAL BENEFITS SOCIAL BENEFITS AFFORDABLE!

SPECIAL THANKS TO:

DS Supervisor, Professor Emeritus, Art Bomke SEEDS Coordinator, Liska Richer AMS Sustainability, Justin Ritchie AMS Catering staff, Bryan Goodman **UBC** Chemical Engineering, Kevin Reilly Undergraduate (Phase I), Hillary Topps Earthworks Composting, Robert Crofton-Sleigh UBC Building Ops. Sindi Sohi, Darren Duff AMS Facilities Management, Jeffrey Smith AMS Food and Beverage, Tom Coleman **UBC Wood Science**, Vincent Leung

"Individually, we are one drop. Together, we are an ocean." ~ Ryunosuke Satoro ~

Unless someone like you cares a whole awful lot, nothing is going to get better. It's not. ~ Dr. Seuss ~

Worm Composting in AMS SUB **Kitchen Operations A UBC SEEDS Project By: Emme Lee** a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

WHY WE SHOULD COMPOST WITH WORMS

Benefits Costs Less Opportunity

Objective:

Explore Feasibility of Worm Composting in AMS SUB Kitchens Challenges, Benefits, Logistics

Worm Composting Using worms to break down organic waste into recycled nutrient sources for plants

CLOSED ENERGY LOOP ~SUSTAINABLE~

EDIBLE PLANTS

FOOD WASTE

CLOSED NUTRIENT LOOP

VERMICAST

BENEFITS TO GROWING

IMPROVES: aeration, porosity, drainage

PREVENTS: compaction, erosion, nutrient leaching

INCREASES: permeability, H₂O retention, nutrient availability, cation exchange capacity, organic material, humus production

ACTS AS: nutrient recycler, soil conditioner

 $\rightarrow \text{IMPROVED SOIL QUALITY}$ $\rightarrow \text{HEALTHIER PLANTS}$

SUB's WASTE STREAM

Where does waste produced by SUB operations end up??

(Based on AMS Waste Audit and Waste Management Plan, 2009)

25% is recycled

26% is composted at South Campus (in-vessel unit)

49% goes to the Landfill (88 000 kg/year)

COSTS LESS MONEY

WIGWAM (WORMS)

Start: \$32 984 Oper: \$ 7 176 C/Yr: \$10 474.40 Based on: 10 year lifespan, student labour rate

\$0.170/kg

IN-VESSEL

\$0.505/kg

\$0.205/kg

LANDFILL

ZERO WASTE CHALLENGE

- Metro Vancouver
- Businesses reduce waste by 70% by 2015
- Tipping fee increases (50% in 3 years)

SUB Waste → Landfill

RECOMMENDATION COMPOST ALL FOOD WASTE

WORM Compost PRE-CONSUMER (on-site @ SUB)

IN-VESSEL/ OTHER POST-CONSUMER (on-campus)

FLOW-THROUGH

FRESH WASTE →

OLDER WASTE →

OLDEST WASTE →

COMPOST →

WORMS NEED...

- Use red wigglers
- Temp. (15–20°C)
- Acidity (pH 6.8–7.5)
- Moisture (60–90%)
- Salinity (<5mg/g)
- Low vibrations
- Aeration (O₂ present)
- Carbon: Nitrogen (25:1)
- Pre-consumer food waste (fruits, veggies)
- Management, training

FEASIBILITY CONSIDERATIONS

☆ SPACE (food waste, bins)
☆ MATERIALS (bedding etc.)
☆ STREAMLINE → LOW-COST
☆ WORK WITH STAFF
☆ TRAINING & SUPPORT
☆ FOLLOW THROUGH

or http://HPdf/recycle

If in doubt, threw it out

UPSCALING

31 X WIGWAMS

INST'TL SIZE BIN

COST: \$10 877.28/year

\$0.170/kg

FOOTPRINT: 5' X 5' (each) = 775 square feet COST: \$8 838.10/year

\$0.143/kg

FOOTPRINT: 8' X 32' = 256 square feet

SUSTAINABILITY POTENTIAL

- LIVING LAB
- LEARNING OPPORTUNITIES
- COMMUNITY HUB
- DEMONSTRATE

CAMPUS–WIDE

 SUSTAINABILITY LEADER

Unless someone like you cares a whole awful lot, nothing is going to get better. It's not. ~ Dr. Seuss ~

Vermicomposting in Campus Kitchen Operations **A UBC SEEDS Project By: Emme Lee BSc. Global Resource Systems '13** Faculty of Land and Food Systems

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

UBC, Vancouver, Canada

•48 000 students
•14 000 employed
•Small city

UBC SEEDS Program

- → Campus & Community Planning
 - \rightarrow Campus Sustainability
 - \rightarrow Campus as a Living Lab
 - →SEEDS: Social Ecological Economic Development Studies

OVERVIEW

- •FOOD WASTE CONTEXT
- VERMICOMPOSTING
- **•OUR PROJECT**
- **•OUR LEARNINGS**
- •POTENTIAL FOR FUTURE PROJECTS

FOOD WASTE PROBLEM Social Equitable Bearable **Profit** Sustainable Economic Environment Viable

Food waste in Canada

\$27 Billion/Year

Food waste in Canada

Total GDP of world's 32 poorest countries

\$27 Billion/Year
of malnourished (world): 860 M

Food waste in Canada

Total GDP of world's 32 poorest countries

\$27 Billion/Yr (Canada)
\$165.6 Billion/Yr (USA)

 Consumer & Retail 70%

- Field 9%
- Processing 18%
- Transport 3%

\$27 B/Yr (Ca) \$165 B/Yr (USA)

Vermicomposting Using worms to break down organic waste into recycled nutrient sources for plants

CLOSED NUTRIENT LOOP ~SUSTAINABLE~

IMPROVES SOIL & PLANT GROWTH

IMPROVES Aeration Porosity Drainage

PREVENTS

Compaction Erosion Nutrient leaching INCREASES Permeability H₂O retention Nutrient availability Cation exchange capacity Organic content Humus

<u>ACTS AS</u> Nutrient recycler Soil conditioner

REQUIREMENTS

- **▼Temp. (15–20°C)**
- ***Acidity (pH 6.8–7.5)**
- **Moisture (60–90%)**
- **Aeration (O₂ present)**
- Carbon: Nitrogen (25:1)
- Avoid: meat, dairy, oil, salt, dressings, sauces

Food Recovery Hierarchy

START SMALL

SMALL

→ MEDIUM

 \rightarrow

LARGE

Student Union Building (SUB)

CURRENT SUB

- Busy, Central
- Food & beverages
 - Services

NEW SUB

- Increased capacity
- More food outlets
 - More food waste

AUDIT – WASTE STREAM

Where does waste produced by SUB operations end up??

(Based on AMS Waste Audit and Waste Management Plan, 2010)

25% is recycled

49% goes to the Landfill (88 000 kg/year)

26% is composted at South Campus (in-vessel unit)

AUDIT – WASTE STREAM

AUDIT – WASTE STREAM

Pre-consumer

Post-consumer

FOOD WASTE AT UBC

COST IN-VESSEL

IN-VESSEL

TIPPING FEES \$0.378/kg Purchase + Operational Running at cost-recovery?

COST IN-VESSEL

IN-VESSEL

TIPPING FEES \$0.378/kg Purchase + Operational Running at cost-recovery?

COST LANDFILL

LANDFILL

LANDFILL FEES \$107/T → \$182/T

TIPPING FEES \$0.107/kg UBC must pay Operational

COST LANDFILL

LANDFILL

Greenhouse gases from: 1) Vehicles 2) Landfill gas (CH₄ CO₂)

TIPPING FEES \$0.107/kg UBC must pay Operational

LANDFILL GAS

METHANE HAS 23X MORE GLOBAL WARMING POTENTIAL

CONTRIBUTION FROM LANDFILL TO CANADA'S TOTAL METHANE: 38%

REVIEW USING 3-Ps

REVIEW OPTIONS

IN-VESSEL

LANDFILL

WORMS

PEOPLE:

- O/S O/M X
- Green jobs √
 PLANET:
- All food, C √
- Recycles V
- Compost ok
- Overall v
- PROFIT:
- Higher cost X
- Cost-recovery ?
 \$0.378/kg

PEOPLE:

- O/S O/M X
- Green jobs X
 <u>PLANET</u>:
- All food, C X
- Recycles X
- Compost X
- Overall X PROFIT:
- Rising cost X
- Cost-recovery ?
 \$0.107/kg ↑

PEOPLE:

- Engaging V
- Green jobs V
 PLANET:
- Pre-C, C/paper ok
- Recycles V
- Compost V
- Overall VV
 <u>PROFIT</u>:
- Lower cost v
- Cost-recovery ?
 \$0.143/kg

COST WORM COMPOSTING

WORM COMPOSTING

Purchase:\$16 621Operations:\$71 760C/Yr:\$ 8 838

Assume: 10 year lifespan, and student wage rate

\$0.143/kg LANDFILL: \$0.107/kg IN-VESSEL:\$0.378/kg

MAJOR STEPS

•Small bin \rightarrow Medium bin \rightarrow Large/Institutional •New support (staff, managers) Created 1 green job •Student, staff, faculty engagement, learning

CURRENT STEPS

<u>Business plan</u>

- Financial feasibility
- Profit or cost-recovery

<u>Testing</u>

- Production/diversion
- •Quality

Literacy

Writers, videography

- PeoplePlanet
- **Profit**

SUMMARY

- Worm composting in kitchen operations
- •Small \rightarrow Medium \rightarrow Large
- Environmental benefits
- •Supplement in-vessel as waste mgmt option
- •Minimizes landfill disposal
- •Engages people
- Creates high-quality, valuable product
- Reduces costs

SPECIAL THANKS TO:

DS Supervisor, Professor Emeritus, Art Bomke SEEDS Coordinator, Liska Richer AMS Sustainability, Justin Ritchie AMS Catering staff, Bryan Goodman **UBC** Chemical Engineering, Kevin Reilly Undergraduate (Phase I), Hillary Topps Earthworks Composting, Robert Crofton-Sleigh UBC Building Ops. Sindi Sohi, Darren Duff **AMS Facilities Management, Jeffrey Smith** AMS Food and Beverage, Nancy Toogood **UBC Wood Science**, Vincent Leung

Unless someone like you cares a whole awful lot, nothing is going to get better. It's not. ~ Dr. Seuss ~

On-site Composting of Food Waste in the NEW SUB

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

WHY WE SHOULD COMPOST **Decological Benefits** Less GHGs, landfill gas, driving Better quality compost Less fertilizer **UVolume Reduction Opportunities** (leadership, cost-recovery) **Community Engagement**

SEEDS Project in 2011

Feasibility of Worm Composting in the AMS Prep Kitchen Challenges, Benefits, Logistics

COSTS LESS MONEY

WORMS

IN-VESSEL

LANDFILL

\$0.143/kg

\$0.505/kg

\$0.205/kg

NEW SUB APPROVAL in 2012 for TWO LARGE WORM BINS

Upfront Capital Cost: \$17 000
COST: \$8 838.10/year (includes labour)

INSTITUTIONAL SIZE BIN

TWO 1.5m X 5m

Yellow = space already reserved for worm composting

RECOMMENDATION

COMPOST ALL FOOD WASTE

ON-SITE MACHINE ALL FOOD TYPES

WHY ON-SITE? Drivers for Small-Scale

(Blakeway, 2013) **Less GHGs Connects to Local Food DEducational Value DEngagement Opportunities Diversity of Systems Quality Control QRe-sale Value Green Economy/Jobs Shift in Culture**

HOW DOES IT WORK?

- Automated, programmable systems
- Temperature, moisture, heating
- Indoors/outdoors
- Small footprint, volume reduction
- Carbon sources vary
- Odour control (vents, biofilters)
- Require care
- All wastes accepted
- Contamination

Image courtesy of http://www.vertal.ca/

Criteria for On-Site Machine

- Environmental Effectiveness
 Cost-Effective
 Proven technology
 Feasible

 Footprint
 Hook-ups (electrical, venting)
 High Quality Product
- Connects to Local Food
 Educational Value
 Engagement Opportunities
 Green Economy/Jobs
 Shift in Culture

Preliminary Tech Review

Tech Unit	Capacity	Cost	Size	Time	Energy Cost	Add'l Notes
Eco Hero 350 (UK)	55T/yr 150kg/day	\$40 000	L: 2.5m W: 1.5m H: 1.8m	Mgmt: 30 minutes per week		Has shredder No paper coats/crdbrd Fertilizer pellets
Rocket A900 Dewaterer	46T/yr	\$46 000 \$15 000	L: 4.0m W: 1.0m H: 1.6m	Processing: 14 days Curing: 30 days	\$175/yr	Data Logger Software Ventilation Finished Compost
Green Good 50 (S Korea)	40-50T/yr 110-137 kg/day	\$38 000 * Lifespan 10-15 years	L: 1.87m W: 1.0m H: 1.3m	Mgmt: 30 minutes per week		Has deodorizer
Big Hanna T240 (Sweden) Biofilter Bin Lifter Dewaterer	42-122T/yr	\$80 000 *Lifespan 20 years \$3 400 \$11 000 \$20 000	L: 5.3m W: 1.4m H: 1.8m	Mgmt: 30 minutes per week Processing: 8- 10 weeks Curing 2-3	\$52/yr	Finished Compost
Biovator 430 (Manitoba, Canada)	116T/yr	\$83 000	L: 12.65m W: 1.22m H: 1.5,	30 minutes per week		

• Mendeley, zoterro (firefox), pages, evernote