UBC Social Ecological Economic Development Studies (SEEDS) Student Report

LIFE CYCLE ASSESSMENT OF THE FOREST SCIENCE CENTER lan Eddy University of British Columbia CIVL 498C November 18, 2013

Disclaimer: "UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report".

PROVISIO

This study has been completed by undergraduate students as part of their coursework at the University of British Columbia (UBC) and is also a contribution to a larger effort – the UBC LCA Project – which aims to support the development of the field of life cycle assessment (LCA).

The information and findings contained in this report have not been through a full critical review and should be considered preliminary.

If further information is required, please contact the course instructor Rob Sianchuk at rob.sianchuk@gmail.com

2013

CIVL498 C

Ian Eddy

LIFE CYCLE ASSESSMENT OF THE FOREST SCIENCE CENTER

Completed November 18th, 2013 as part of a continuing study, the UBC LCA Project

Executive Summary

This study used Life Cycle Assessment (LCA) to assess the environmental performance of the University of British Columbia's Forest Science Centre. The LCA was part of a larger continuing project that seeks to quantify the environmental performance of the buildings at UBC. A previous model of the FSC was reviewed, improved, and reclassified to fit the Canadian Institute of Quantity Surveyors' classification format in order to promote integration of LCA into the existing template used during building design for cost management.

Architectural and structural drawings of the building were coupled with the software programs Athena Impact Estimator for Buildings and Onscreen Takeoff to model the potential impacts created through the production and construction of the building. The material and energy flows from these systems were characterized with the TRACI impact assessment methodology to produce a comprehensive evaluation of the potential environmental impacts.

The greatest environmental impacts were discerned to occur from the suspended concrete slabs that form the upper floors of the building. The results of all studies were used to create a benchmark against which buildings could be evaluated. The FSC was found to have a lower impact than the benchmark in 6 of the 7 impact categories, though the range varied considerably.

Recommendations are proposed to further operationalize LCA at UBC. They include an expansion of the system boundary to cover the operation and maintenance of buildings, and the normalization of impact categories to reflect the sustainable development policies pursued by UBC. Aspects of the building requiring further analysis are also identified so that the study may be improved by future students.

Contents

Executive Summary	.1
List of Figures	.3
List of Tables	.3
1.0 General Information on the Assessment	.4
Purpose of the assessment	.4
Identification of building	.4
2.0 General Information on the Object of Assessment	.5
Functional Equivalent	.5
Reference Study Period	.6
Object of Assessment Scope	.6
3.0 Statement of Boundaries and Scenarios Used in the Assessment	.8
System Boundary	.8
Production Stage	.8
Construction stage	.8
4.0 Environmental Data	9
Data Sources	.9
Data Sources Data Adjustments and Substitutions	.9 .9
Data Sources Data Adjustments and Substitutions Data Quality	9 9 10
Data Sources	9 9 10 12
Data Sources	9 9 10 12 13
Data Sources	9 9 10 12 13 19
Data Sources	9 9 10 12 13 19
Data Sources Data Adjustments and Substitutions Data Quality	9 9 10 12 13 19 19 22
Data Sources	9 9 10 12 13 19 19 22 22
Data Sources	9 9 10 12 13 19 19 22 22 22

Annex B - Recommendations for LCA Use	26
Annex C - Author Reflection	27
Annex D – Impact Estimator Inputs and Assumptions	30
References	45

List of Figures

Figure 1: Fossil Fuel Consumption, Global Warming Potential, Acidification Potential, and Human	
Health Particulate Potential LCIA results by CIQS level 3 element of the FSC.	20
Figure 2: Ozone Depletion Potential, Smog Potential, and Eutrophication Potential LCIA results by	
CIQS Level 3 elements of the FSC	21
Figure 3: FSC LCIA results against the Oct. 31 2013 benchmark for the entire building	23
Figure 4: FSC LCIA results as the % difference from the Oct. 31 2013 benchmark by level 3 CIQS	
element	24
Figure 5: GWP and cost of institutional buildings at UBC	25
Figure 6: GWP and cost per square meter of institutional building at UBC	25

List of Tables

Table 1: Details of Assessment	5
Table 2: Characteristics of the object of assessment	6
Table 3: Modified CIQS Level 3 Elements used to classify inputs	7
Table 4: Bill of Materials for A11 Foundations (4357 m ²)	.15
Table 5: Bill of Materials for A21 Lowest Floor (4357 m ²)	. 15
Table 6: Bill of Materials for A22 Upper Floors (11187 m²)	. 15
Table 7: Bill of Materials for A23 Roof Construction (3387 m ²)	. 16
Table 8: Bill of Materials for A31 Walls Below Grade (2497 m ²)	. 17
Table 9: Bill of Materials for A32 Walls Above Grade (9564 m ²)	. 17
Table 10: Bill of Materials for B11 Partitions (21,434 m²)	. 18
Table 11: Demonstrated CEAB attributes	29

1.0 General Information on the Assessment

Purpose of the assessment

Life Cycle Assessment (LCA) is a method of quantifying the environmental performance of a product throughout its life cycle by characterizing the material and energy flows entering and exiting a product system by their potential environmental impact.¹ This LCA of an institutional building was completed as a requirement of CIVL 498C and is intended to provide a reference base for the evaluation of environmental impacts from buildings. The intended audience is those involved in development at UBC, including the UBC Sustainability Office given their mandate to promote green building construction², and the UBC Board of Governors due to their policy of sustainable development³, as well as future students of CIVL 498C. It is intended for comparative assertions but only by serving as a benchmark by which the future performance of buildings can be measured, specifically institutional buildings at UBC. Despite a strong commitment to be as accurate as possible, the magnitude and timeframe of the project nonetheless necessitated several assumptions that should be considered during interpretation of results.

Identification of building

The Forest Sciences Centre (FSC) is located at 2424 Main Mall at Agronomy Rd, Vancouver. Designed by Dalla-Lanna/Griffin Architects and built in 1998 at a cost of \$47 million (\$66.58 million in 2012 dollars), the building contains 2 lecture theaters, 11 classrooms, 230 offices, 36 labs, 25 mechanical and electrical rooms, as well as several storage rooms and washrooms.⁴ Massive parallam beams and columns and the extensive use of wood for the interior finishing were included to advertise the use of wood construction materials and add to the ambiance of the building. An important feature is the L-shaped atrium that defines the entrance and study area, while each additional floor hosts a faculty department: Forest Resources Management on the second floor, Forest and Conservation Science on the third, the department of Wood Science on the fourth floor. Joined to the

¹ (O'Connor & Meil, 2012) ² (UBC, 2013) ³ (UBC, 2005)

⁴ (UBC Library, 2008)

building is the Center for Advanced Wood Products, which was not included in this assessment.

Table	1:	Details	of	Assessment
-------	----	----------------	----	------------

Client for Assessment	Completed as coursework in Civil Engineering technical
	elective course at the University of British Columbia.
Name and qualification of the assessor	Ian Eddy, B. Sc. Michael Morris and Chu Lin are
	contributing authors
Impact Assessment method	TRACI v. 2.1
Point of Assessment	15 years
Period of Validity	5 years
Date of Assessment	Completed in December 2013.
Verifier	Student work, study not verified.

2.0 General Information on the Object of Assessment

Functional Equivalent

Functional units are the quantified performance of a product system and are used as a reference unit.⁵ Functional units allow for comparisons of the inventory analysis and impact assessment between equivalent product systems.⁶ A critical requirement of the ISO standards for Life Cycle Assessment is that product systems must be functionally equivalent for comparisons to be valid, meaning each system should be defined so that an equal amount of product or service is used for the basis of comparison. In terms of building life cycle assessments, the FSC should only be compared against functionally equivalent buildings (Table 2). While the functional unit of the entire building was square meters of floor space, separate functional units were used at the level of the individual CIQS building elements (Table 3).

⁵ (ISO, 2006)

⁶ (ISO, 2006b)

Aspect of Object of Assessment	Description
Building Type	Institutional
Technical and functional	Lecture theaters, classrooms, conference rooms, restaurant,
requirements	offices, and study are
Pattern of use	Weekday use 07:00-18:00 with weekend-use by Forestry
	students
Required service life	Assumed to be 60 years

Table 2: Characteristics of the object of assessment

Reference Study Period

While life cycle assessments of buildings should include the required service life of the building and the end-of-life in the system boundary⁷, the system boundary of this LCA was cradle-to-gate, meaning only the production and construction stages were modelled. This was to preserve the accuracy of the assessment; the modelling was derived almost entirely from structural and architectural drawings that provided little information relevant to the building's operational and end-of-life impacts. In addition, the Impact Estimator does not currently have the capability to model these stages beyond general assumptions that are based on the service life and location of the building.⁸ In order to circumvent these assumptions, the reference study period deviated from EN 15978 by assuming a service life of 1 year. However, the assumed service life of the FSC is actually 60 years.

Object of Assessment Scope

The lowest floor of the FSC is the basement, hosting several research labs and a storage space. Supporting the basement are several concrete footings and pads. An intermediate basement is also formed by a split level lecture theater capable of hosting over 300 people. The ground floor is the site of the large L-shaped atrium, as well as several classrooms and the Tim Horton's restaurant. An expansive atrium skylight is supported by parallam beams and columns that span the ground to the ceiling. The second, third and fourth floors contain research labs, department offices, and conference rooms, and each has a concrete bridge spanning the atrium. The second floor also hosts a student study area sheltered by a curved

⁷ (EN 15978, 2010) ⁸ (ASMI, 2013a)

curtain wall. The interior walls are steel studded, with a wood veneer on those surrounding the atrium, while the exterior walls are cast in place concrete with brick cladding. Concrete arches stand outside the southeast and southwest entrances. Enclosing the skylight is a concrete and steel roof.

The black box structure, rigidity, and limited data availability of the Athena LCI databases restricts the inclusion of materials beyond the structure and envelope of the building. Consequently the assessment was again forced to deviate from EN 15978 in the interest of maintaining an accurate assessment. In order to complement the CIQS elements used for costing, a modified version of the CIQS level 3 elements was adopted to classify the inputs (Table 3). The functional units were calculated as follows: A11 and A21 – the total area of the slab-on-grade; A22 – total area of all upper floors; A23 – total area of the roof(s); A31 – total area of the walls below grade; A32- total area of the walls above grade; A33- total area of the interior walls.

CIVI	L 498C	Description	Quantity	Units
Level	3 Elements		(Amount)	
A11	Foundations	Strip and spread footings & concrete pads	4357	m ²
A21	Lowest Floor Construction	150 mm concrete slab on grade	4357	m ²
A22	Upper Floor Construction	Suspended concrete slabs with supporting columns and staircases	11187	m ²
A23	Roof Construction	Steel, concrete, and skylight roofs with supporting columns and beams	3387	m ²
A31	Walls Below Grade	Cast-in-place concrete walls	2497	m^2
A32	Walls Above Grade	Cast-in-place concrete walls	9564	m ²
B11	Partitions	Steel stud walls with gypsum sideboard	21434	m^2

Table 3: Modified CIQS Level 3 Elements used to classify inputs

3.0 Statement of Boundaries and Scenarios Used in the Assessment

System Boundary

The system boundary of the assessment included only two life cycle modules, production and construction. During production, raw materials are extracted, transported to the production site, and manufactured into construction materials. In the construction module, the products are transported to the construction site and used in building construction. Both modules may also include ancillary materials and waste management processes that may not be reflected in the final Bill of Materials, for example the production and disposal of plastic wrapping. The Use and Demolition modules were excluded due to a lack of data and time constraints. However, the consequences of this exclusion must be considered during the interpretation of the results, as the impacts from the operation of a building are typically significantly larger than the other modules.⁹

Production Stage

Process information in the production stage is obtained from the US LCI and Athena LCI databases. When a material is specified in the Impact Estimator, the material's LCI profile is selected from the Athena LCI database. The profile contains data regarding the raw materials and energy used to create the product, the waste generated from its production, and the packaging materials and other ancillary materials used, collected from surveys of manufacturers in accordance with ISO 14040 standards and continuously updated to remain representative of current building practices.¹⁰ The Impact Estimator uses the location of the building to estimate modes of transportation, distance traveled, and the likely supplier of each material. Although Athena conducts market share analyses to determine the origin of products for each region, all products are nonetheless assumed to originate from North America. This assumption is likely correct for some materials (e.g. concrete) but question for others (e.g steel).

Construction stage

Process information in the construction stage is handled similarly to the production stage.

⁹ (Bayer, Gamble, Gentry, & Joshi, 2010)

¹⁰ (ASMI, 2013a)

Again, the Impact Estimator uses the specified location of the building to make several assumptions. For example, the average number of days below freezing is used to determine whether concrete will require additional heating for curing, while the regional emissions profile is used when estimating impacts from grid electricity use. The Impact Estimator also makes several 'unseen' assumptions, such as a 5% addition to the known volume of concrete to account for onsite waste.¹¹ Throughout the entire LCA, the unit process impacts are not distinguishable, as the database is proprietary to the Athena Sustainable Materials Institute. Instead, all impacts are aggregated, separated only by module and whether the impacts originate from transportation.

4.0 Environmental Data

Data Sources

The Athena LCI database was used for material process data, while LCI data for electricity generation and transportation was provided by the US LCI database. The Athena LCI database is a private database administered by the Athena Sustainable Materials Institute. The database is of high quality and regionally sensitive, compiled from over 150 process based LCI and LCA studies. It is continuously updated, with the oldest data of 1997 vintage. The US LCI Database is a public and private research partnership that was developed to provide transparent and publicly available LCI data representative of North America. It was created in 2001 and is owned and updated by the National Renewable Energy Library, with regular contributions from the Athena Institute.¹²

Data Adjustments and Substitutions

One material inaccuracy found in the Impact Estimator model is the use of 20 MPa concrete in the slab-on-grade as opposed to the actual 25 MPa. In the absence of reliable 25 MPa LCI data, the average of the LCIA results for 20 and 30 MPa concrete was used. For the LCIA results of the A21 Lowest Floor element, this led to a 1-6% increase across all impact

¹¹ (ASMI, 2013a) ¹² (Trusty & Deru, 2005)

categories from the original 20 MPa, but the increase was insignificant for the building as a whole. In calculating the bill of materials, the original 20 MPa concrete was used.

Data Quality

No LCA is without uncertainty. This uncertainty may be defined in several ways, including but not limited to the following:

- Data uncertainty, including uncertainty over inaccurate or missing inventory analysis data as well as the manner in which the data was collected or allocated. Data uncertainty with the impact assessment methodology comprises uncertainty over the fate and dispersion or travel potential of substances. Examples of data uncertainty in the study include the 25 MPa concrete used in the building that was modelled as 20 or 30 MPa.
- Model uncertainty represents uncertainty of the characterization factors used by the impact assessment methodology and also the nature of the relationships of the inventory data. LCA typically assumes linear relationships exist between inputs and outputs to the product system, though economies of scale contradict this assumption. Many characterization factors undergo constant revision as new information becomes available. An example of model uncertainty from the study is the characterization factors used for global warming potential, which are under constant revision.¹³
- Uncertainty due to temporal variability represents uncertainty over data vintage, seasonal effects on emissions and impacts, and how impacts are interpreted over time. Data vintage is particularly a problem with buildings given their long lifetimes. Production and construction processes are constantly evolving and therefore the processes that are modeled may not be accurate for the time at which the building was constructed. Seasonal conditions may affect the inventory analysis in several ways, including the addition of products necessary to protect materials from the elements. The same seasonal conditions have a consequence on the fate and dispersion of substances, e.g. rainy conditions may reduce respiratory exposure to

¹³ (Shine, 2009)

particulate matter. An example of temporal variability from this study is the concrete used during the building construction in 1998 may not be representative of the steel production data used by the Athena LCI, which has been updated partially to reflect significant changes in the technology and relative contribution of operations that occurred in British Columbia since 1998.¹⁴

- Uncertainty due to spatial variability is the uncertainty over regional differences that may exist in environmental sensitivity (e.g. air pollution is strongly influenced by local geography), the spatial variation of the emissions, and the regional differences that may exist between factories. An example of uncertainty due to spatial variability is the Impact Estimator automatically models seismic conditions in Seattle to the structural calculations for the building despite its location in Vancouver.¹⁵
- Variability between sources refers to the uncertainty that exists due to the source of LCI data, which may be an average of several factories or even technologies and therefore only an approximation of the actual processes used. It also includes uncertainty over the different human exposure patterns to substances. An example from the study is again concrete, which can be produced using several different kiln technologies.16

The location of the building in Vancouver (one of the cities modeled by the Impact Estimator) and its relatively recent construction in 1998 greatly reduces the spatial and temporal uncertainty. Data uncertainty was occasionally an issue, as some envelope materials could not be included (e.g. plywood veneer), but the issues of uncertainty encountered within the assessment generally stemmed from the software and interpretation of the drawings, not the inventory data.

¹⁴ (ASMI, 2005) ¹⁵ (ASMI, 2013)

¹⁶ (ASMI, 2005)

5.0 List of Indicators Used for Assessment and Expression of Results

The study used the TRACI impact assessment methodology developed by the US EPA.¹⁷ TRACI uses 12 impact categories, with characterization factors representative of the United States developed at the midpoint level. However, only 8 of the 12 impact categories are used in the Impact Estimator: global warming potential, acidification potential, human health particulates, fossil fuel consumption, eutrophication potential, ozone depletion potential, smog formation potential, and total primary energy consumption. A brief description of the impact categories is provided below

Acidification potential (AP): An impact category that is more locally relevant than globally, acidification potential refers to the potential of a substance to acidify the air or water and uses equivalent ions of hydrogen (H^+) as the category indicator. Possible endpoint impacts include soil and vegetation damage and building corrosion.

Eutrophication potential (EP): this impact category refers to the ability of a substance to fertilize a water body, creating excessive plant growth that leads to oxygen depletion during the decomposition of the plant matter. The category indicator is mass of nitrogen (N) equivalents and a possible endpoint impact is loss of biodiversity.

Fossil Fuel Consumption (FFC): fossil fuel consumption uses megajoules (MJ) as the category indicator and includes all non-renewable energy used directly or indirectly in the modelled processes. A possible endpoint impact is increased costs of fossil fuels.

Global Warming Potential (GWP): this impact category measures the `greenhouse` potential of a substance, or its ability to trap heat in the atmosphere. It can be expressed with multiple time horizons; TRACI uses the 100-year time horizon. It is measured in mass equivalents of carbon dioxide (CO₂) and a possible endpoint impact is sea level rise.

Human Health Criteria Air Particulate (HHP): this impact category measures the fine particulate matter that is emitted throughout a product's life cycle and their potential inhalation. Different sizes of particulates are associated with different respiratory problems.

¹⁷ (Bare, 2002)

The Athena IE uses equivalents of PM_{10} as the category indicator. Disability Adjusted Life Years are a potential endpoint impact.

Ozone Depletion Potential (ODP): This impact category accounts for impacts resulting in a reduction of the ozone layer within the stratosphere. The ozone layer shields the earth from ultraviolet radiation emitted by the sun. The impact category uses mass equivalents of trichlorofluoromethane (CFC-11) as the impact indicator and a possible endpoint is disability adjusted life years.

Smog Potential (SP): This impact category occurs at a local scale and includes substances that, when trapped near ground level, result in the formation of smog. Smog can have several human health consequences, thus a possible endpoint impact is disability adjusted life years. The Smog Potential impact category uses the impact indicator mass equivalents of ozone (O_3) .

6.0 Model Development

Generally, each level 3 element was modeled according to the same approach. The OnScreen Takeoffs of the drawings from the 2009 model were reviewed and verified to be consistent with the 2009 Impact Estimator inputs. If differences were found, the corresponding input was located in the Inputs and Assumptions document to determine if the difference was due to a modelling issue in Athena (e.g. a maximum floor span necessitated certain manipulation of the inputs) or an error (e.g. the Excel inputs document was not consistent with the Athena inputs), in which case the appropriate document was corrected. Several of the original Impact Estimator inputs did not have takeoffs and were estimated by the authors. However as no basis was provided to show how the figures were arrived at, thus they were recalculated. Lastly, the 2009 and 2010 Excel inputs documents were compared, though without the 2010 takeoffs this was not as useful a strategy as it might have otherwise been. This resulted in an updated 2013 Excel Inputs document (Annex D). Effort was focused on improving the take offs in addition to the model in order to make the entire LCA more transparent for future use. Some of the CIQS elements had distinct issues associated with their modeling (Annex D). The parallam columns and beams included in the A23 Roof element lacked takeoffs and therefore the height and width of one column was estimated with OnScreen Takeoff as well as analog measurement and multiplied by the number of beams. The crossbeams were estimated in the same manner. The skylight was modeled as a curtain roof as no skylight option currently exists in the Impact Estimator. The concrete columns were divided according to the takeoffs to separate the length of column supporting the roof from the columns supporting the floors. The original dimensions of the columns remained unchanged; this is recognized as an area of improvement for future iterations of the FSC LCA. The supported areas of the various columns are not assumed to be correct, however manipulating them did not significantly affect the results. Lastly, the area of the skylight was modeled twice in the 2009 model, and this redundancy was removed.

Improvements with A32 included adjustments to the dimensions of the curtain walls after the addition of the takeoffs, which were missing from the 2009 drawings. 3 mil polyethylene vapour barriers and Batt fiberglass insulation were added to the concrete walls. The most significant improvement was the recalculation of wall area using linear takeoffs as opposed to area take-offs. The original area takeoffs were limited to the area of wall with brick cladding, underestimating the total area by approximately 20%.

The A22 Upper Floors element was improved through the separation of the floor inputs. Originally all floors were compiled as a single input. However, the 2009 model separated the concrete bridge spanning the atrium throughout floors 2-4 as a separate input. This was not reincorporated into the floor space due to time constraints. The mass of steel required for the staircases was estimated using Lin's 2010 figure but increased by a factor of 1000 to correct for an arithmetic error. This decreased the quantity of galvanized decking from 270 tons to 7.95 tons.

The B11 Partitions element was improved by changing the assembly component from wood to steel studs, adding insulation (Lin's assumption of 89 mm Batt fiberglass was used) and recalculating the number of doors. Adjustments were made to the length of the walls as well. Window area of the steel stud wall was conservatively estimated to be 200 m^2 , a tentative figure but an improvement from zero. The other elements were left unchanged

from the 2009 model, though in the calculation of the slab-on-grade the area of the ground floor slab resting on grade was subtracted from upper floors and added to the lowest floor element.

Reference flows are defined as the outputs from processes that are required to achieve the functions expressed by a functional unit.¹⁸ In the case of a building, reference flows represent the materials used in the construction of the building. The Impact Estimator automatically generates a list of reference flows based on the specified inputs. Table 4Table 10 list the reference flows for the FSC for each CIQS element. Concrete was typically the largest contributor by mass, except in B11 where plywood used in the steel stud walls was greater.

Table 4: Bill of Materials for A11 Foundations (4357 m²)

Material	Quantity	Unit
Concrete 30 MPa (flyash av)	4561.074	tonnes
Rebar, Rod, Light Sections	6.628	tonnes

Table 5: Bill of Materials for A21 Lowest Floor (4357 m²)

Material	Quantity	Unit
Concrete 20 MPa (flyash av)	666.477	tonnes
Concrete 30 MPa (flyash av)	619.379	tonnes
Welded Wire Mesh / Ladder Wire	4.760	tonnes

Table 6: Bill of Materials for A22 Upper Floors (11187 m²)

Material	Quantity	Unit
Concrete 30 MPa (flyash av)	10054.144	tonnes
Rebar, Rod, Light Sections	386.480	tonnes
Wide Flange Sections	103.194	tonnes
1/2" Regular Gypsum Board	62.836	tonnes

18 (ISO, 2006b)

Screws Nuts & Bolts	8.454	tonnes
Galvanized Decking	8.030	tonnes
Joint Compound	7.781	tonnes
Paper Tape	0.089	tonnes
Nails	0.073	tonnes

Table 7: Bill of Materials for A23 Roof Construction (3387 m²)

Material	Quantity	Unit
Concrete 20 MPa (flyash av)	1625.715	tonnes
Concrete 30 MPa (flyash av)	240.300	tonnes
Ballast (aggregate stone)	209.292	tonnes
Parallel Strand Lumber	89.453	tonnes
Rebar, Rod, Light Sections	79.062	tonnes
Wide Flange Sections	41.600	tonnes
Glazing Panel	29.748	tonnes
Softwood Plywood	29.198	tonnes
Blown Cellulose	29.026	tonnes
Galvanized Decking	16.090	tonnes
Open Web Joists	15.429	tonnes
Aluminum	10.630	tonnes
Small Dimension Softwood	5.208	tonnes
Lumber, kiln-dried		
PVC Membrane 48 mil	4.989	tonnes
FG Batt R11-15	4.629	tonnes
Screws Nuts & Bolts	3.385	tonnes
Galvanized Sheet	1.394	tonnes
6 mil Polyethylene	0.508	tonnes
Nails	0.395	tonnes
EPDM membrane (black, 60 mil)	0.141	tonnes
3 mil Polyethylene	0.129	tonnes

Table 8: Bill of Materials for A31 Walls Below Grade (2497 m²)

Material	Quantity	Unit
Concrete 20 MPa (flyash av)	1801.722	tonnes
Concrete Brick	640.515	tonnes
Mortar	66.187	tonnes
Rebar, Rod, Light Sections	22.258	tonnes
FG Batt R11-15	11.801	tonnes
Galvanized Sheet	0.743	tonnes
Cold Rolled Sheet	0.536	tonnes
Nails	0.187	tonnes
Solvent Based Alkyd Paint	0.003	tonnes

Table 9: Bill of Materials for A32 Walls Above Grade (9564 m²)

Material	Quantity	Unit
Concrete 20 MPa (flyash av)	1635.753	tonnes
Split-faced Concrete Block	1547.810	tonnes
Mortar	366.013	tonnes
Double Glazed Hard Coated Air	60.010	tonnes
Rebar, Rod, Light Sections	24.891	tonnes
Double Glazed No Coating Air	18.905	Tonnes
Aluminum	16.531	tonnes
Glazing Panel	16.157	tonnes
FG Batt R50	10.226	tonnes
Modified Bitumen membrane	6.039	tonnes
FG Batt R11-15	5.081	tonnes
Galvanized Sheet	1.149	tonnes
Nails	0.854	tonnes
EPDM membrane (black, 60 mil)	0.812	tonnes
Cold Rolled Sheet	0.677	tonnes
3 mil Polyethylene	0.267	tonnes
Screws Nuts & Bolts	0.201	tonnes

Table 10: Bill of Materials for B11 Partitions (21,434 m²)

Material	Quantity	Unit
Softwood Plywood	10473.085	tonnes
Concrete 20 MPa (flyash av)	1337.922	tonnes
Concrete Brick	369.330	tonnes
1/2" Regular Gypsum Board	138.033	tonnes
FG Batt R11-15	77.241	tonnes
Galvanized Studs	66.852	tonnes
Mortar	38.164	tonnes
5/8" Regular Gypsum Board	37.583	tonnes
Double Glazed Hard Coated Air	37.310	tonnes
Galvanized Sheet	33.360	tonnes
Rebar, Rod, Light Sections	29.745	tonnes
Small Dimension Softwood Lumber, kiln-dried	25.194	tonnes
Joint Compound	20.737	tonnes
Aluminum	5.148	tonnes
Nails	2.503	tonnes
Screws Nuts & Bolts	2.073	tonnes
3 mil Polyethylene	1.381	tonnes
EPDM membrane (black, 60 mil)	0.352	tonnes
Cold Rolled Sheet	0.309	tonnes
Paper Tape	0.238	tonnes
Water Based Latex Paint	0.236	tonnes
Solvent Based Alkyd Paint	0.007	tonnes

7.0 Communication of Assessment Results

Life Cycle Results

The LCIA results followed the same general pattern across all impact categories: the A22 Upper Floors element was found to have the greatest potential environmental impacts, followed by the upper floors and roof elements, then the foundation and partition walls, and lastly the walls below grade and slab-on-grade (Figure 1 Figure 2). This trend can be partially predicted by the mass of the reference flows for each element (tables 4-10). However, the HHP and SP impacts did not follow the trend as closely as other impact categories. SP impacts were more strongly influenced by the mass of concrete used in the element than other impact categories, while hotspots in the HHP category were the curtain walls and roof, and the walls with the most windows, likely due to the addition of aluminum. GWP hotspots originated from the inputs with the most concrete. The large parallam columns and beams of the FSC, designed mainly for aesthetic purposes, did not appear to significantly influence the LCIA results.

Figure 1: Fossil Fuel Consumption, Global Warming Potential, Acidification Potential, and Human Health Particulate Potential LCIA results by CIQS level 3 element of the FSC.

Figure 2: Ozone Depletion Potential, Smog Potential, and Eutrophication Potential LCIA results by CIQS Level 3 elements of the FSC

Annexes A-D of this report are included below in order to add more depth to the interpretation of the results. In Annex A the results of the FSC are evaluated against a benchmark representing the average of all buildings evaluated in the 2013 CIVL 498C class. The age of these buildings spanned a considerable range, from 1 year old in the case of the Pharmacy building to 88 years for the Geography building. However, all buildings were modeled as having been constructed in 2012. The details of the benchmark are further discussed in Annex A. Annex B contains reflection on the implementation of LCA for buildings, as well as how LCA might be more effectively used at UBC. Annex C contains the personal reflections of the author upon the project, intended to add some context for future students who may use this data, while Annex D lists the full Microsoft Excel Inputs and Assumptions document.

Annex A - Interpretation of Assessment Results

Benchmark Development

By comparing the LCI and LCIA results of a building against a benchmark, the building's environmental performance is put in context. Benchmarking also allows for tracking improvements in the LCA results over time. There are several methods of benchmarking, including comparisons between past and present performance, against industry averages, and against the best in the building class.¹⁹ However, as benchmarking entails comparative assertion, it requires buildings to be functionally equivalent. The building and the benchmark must share a common goal and scope, given the considerable influence that the various components of the goal and scope have on assessment results (system boundaries, assumptions, impact assessment methodologies, etc.) This assessment compared the performance of the FSC against a benchmark representing the average of all the buildings assessed at UBC. While it is difficult to establish complete functional equivalence in the building industry²⁰, the benchmark includes only institutional buildings (no residential buildings were included), modeled using the same general methodology, and is sufficiently similar to allow for some basic assertions.

UBC Academic Building Benchmark

The FSC performed strongly in comparison with the benchmark, with the building as a whole between 65-80% of the benchmark impact score across all impact categories except ODP (Figure 3). At the scale of the level 3 CIQS element, the LCIA results were less consistent (Figure 4). Partition walls and upper floors were found to have significantly less of an impact in every category, a decrease of ~35% for the upper floors and ~75% for the partitions. A31 Walls Below Grade was the only element to have a greater impact than the benchmark in every impact category. The foundation and lowest floor were very similar to the benchmark, while the LCIA results for the upper floors and roof were mixed. Further analysis is required to identify the exact materials responsible for the greater ODP impact of the FSC; however it is hypothesized by the author to be the result of aluminum window

¹⁹ (Bayer et al., 2010)

²⁰ (Bayer et al., 2010)

frames. Overall, the FSC LCIA results were unexpectedly low in comparison to the benchmark for two reasons. The considerable use of concrete in the exterior walls of the FSC was expected to result in greater environmental impact scores²¹, while the large atrium results in a less efficient floor-to-wall ratio, leading to less overall floor space than might be expected in a similar sized building with no atrium.

Figure 3: FSC LCIA results against the Oct. 31 2013 benchmark for the entire building.

²¹ (Bayer et al., 2010)

Figure 4: FSC LCIA results as the % difference from the Oct. 31 2013 benchmark by level 3 CIQS element. 0% represents no change from the benchmark.

Global Warming Potential and Cost Comparisons

The construction cost of the buildings, expressed in 2012 \$CAD, and their GWP were compared using two methods. First the overall construction costs and GWP of buildings was assessed (Figure 5). This did not control for building size. Additionally, at the time of writing, some of the costs were suspected to have not been converted into 2012 dollars. The new UBC Pharmacy building proved to be a significant outlier, built at a cost of \$150 million. For these reasons, the building cost per square meter was compared with the GWP per square meter, while excluding buildings with a cost per square meter not yet converted to 2012 dollars (Figure 6). However, no trend was evident. This is promising, as it suggests that buildings can be built using environmentally friendly materials and methods without an escalation in cost, though the small sample size restricts much extrapolation. Among the buildings studied, the FSC was found to have a greater GWP per square meter, contradicting the earlier findings. This is explained by the different sample size, as only 12 and 8 buildings were included in figures Figure 5Figure 6, respectively.

Figure 6: Global warming potential and cost per square meter of institutional building at UBC. The FSC is shown in red.

Annex B - Recommendations for LCA Use

Several considerations are suggested for LCA to achieve its full potential in providing transparent, accurate estimations of the environmental performance of buildings as well as identify where gains are most feasible. First, it is critical that the full life cycle of the building be assessed, beyond the production and construction modules. Not only is the use and maintenance module typically regarded as having a considerably greater impact than other modules,²² but without its inclusion in the LCA it is impossible to determine whether material substitutions in the production and construction stages actually lead to lesser impacts overall. For example, the addition of an insulating material may lead to greater production and construction impacts, but reduce the energy used for heating and cooling, which can be considerable over the lifetime of a building. The daily, monthly, and yearly energy performance of many buildings at UBC is already known and tracked in real time²³, and could be incorporated into the CIVL 498C project.

Secondly, LCA should be applied during the design stage if it is to be most efficient. A common conception is that the most significant decisions regarding a building's environmental performance are made during the design stage.²⁴ The initial design of a building determines the baseline from which it begins its operational life²⁵. LCA provides the capability to model the construction and operational impacts before any design choices become permanent, ensuring avoidable impacts are kept to a minimum. Retrofitting a building is significantly more costly than initially substituting a different material, therefore development that is both financially and environmentally sustainable begins during building design.

However, both of these suggestions depend upon the underlying assumption of high quality data with minimal uncertainty. This can be especially challenging in the building construction industry; the long lifetimes of buildings add considerable uncertainty to models, as accurately predicting 60 years into the future is difficult. In addition, buildings

²² (Bayer et al., 2010)
²³ The University of British Columbia (UBC) and Pulse Energy 2013

²⁴ (Malin, 2005)

²⁵ (Scheuer, Keoleian, & Reppe, 2003)

are complex products, utilizing hundreds of materials, each potentially associated with several upstream processes. Regarding the CIVL 498C project, no other buildings exist with exactly the same material properties and environmental conditions as those modeled in the class, making external comparisons difficult. Therefore, more detailed descriptions of the materials than what is often provided in the architectural drawings are needed, while software such as Athena must be either exhaustive in the materials they include or transparent enough to be easily manipulated. Lastly, the results of an LCA must matter to the audience it seeks to reach. There is little value in accurately modeling the smog formation potential of a building if it is of no concern to the builders, owners, or occupants. A survey was conducted in the 2013 CIVL 498C class to examine whether all environmental impacts were of equal concern to the students (they were not) and this is probably indicative of the general population as well. Surveys such as this are necessary for LCA to accurately reflect the notion of sustainable design that is currently sought by so many.

The following suggestions are meant to take this into account in order to improve the application of LCA at UBC:

1) Modeling of the operational and maintenance phase of buildings to achieve more meaningful LCA results, even if at the expense of modeling fewer buildings.

2) More consultation between experienced building designers and LCA practitioners to improve the accuracy of the models.

3) Impact aversion surveys be applied to a larger segment of the UBC population than the CIVL 498C students to better qualify the idea of sustainable development at UBC.

Annex C - Author Reflection

Prior to enrolling in CIVL 498C, I acquired some experience with LCA while working as a Teaching Assistant in CONS 452. I was tasked with compiling an introductory LCA exercise under the supervision of Dr. Paul MacFarlane. The course introduced LCA terminology and explored the topics of uncertainty, comparative life cycle assessments, and limitations of LCA. However, the focus of the case studies was primarily on agricultural

products and electricity generation, using more simplistic models in terms of upstream and downstream processes than used in CIVL 498C. In addition this experience, I have a B. Sc. in natural resource conservation, so I am familiar with many of the impact categories used in the course.

My interest in the course stemmed from my desire to solidify my understanding of the finer details of LCA, develop my modelling abilities, and practice with LCA software. I have found knowledge of LCA software is a requisite skill to progress in the field of LCA. It is critical to understand how the vast datasets used in LCA are manipulated and interpreted, and this begins with understanding the software. The largest challenge I faced this course came from my lack of a civil engineering background. While the LCA terminology may have been new to some, I was completely unfamiliar with the building and construction terminology, and the architectural drawings. In addition, I received Excel and Athena Impact Estimator files that corresponded to different building reports for the FSC, and a corrupted OST file; this caused considerable confusion throughout the course.

Table 11: Demonstrated CEAB attributes

	Name	Content	Comments on demonstrated CEAB attributes
		Code	
1	Knowledge Base	Α	Though not math intensive, comparing buildings
			against benchmark and between elements required
2	Problem Analysis	A	The interpretation of complex results was required.
3	Investigation	IDA	Analysis and improvement of previous models was
			emphasized, as well as interpretation of results.
4	Design	IDA	Though the focus was specifically environmental, the
			course presented a novel solution for designing
			sustainable systems.
5	Use of Engineering	IDA	Introduced several software tools and how to
	Tools		manipulate them when dealing with complex data
6	Individual and Team	D	The course promoted group and individual work.
	Work		
7	Communication	D	Guest lectures, class discussions, and presentations
			were instrumental to the class, developing
			communicational skills.
8	Professionalism	N/A	N/A
9	Impact of Engineering	IDA	The class had a strong focus on sustainable design and
	on Society and the		environmental stewardship, and introduced many
	Environment		environmental issues. The topic of uncertainty was
			equally well discussed.
10	Ethics and Equity	N/A	
10	Earles and Equity		
11	Economics and Project	Ι	Introduced the concept of life cycle costing as well as
	Management		quantity surveying.
12	Life-long Learning	IDA	Introduced resources for further learning and
			expounded on advances at the forefront of LCA science

Annex D – Impact Estimator Inputs and Assumptions

Impact Estimator Inputs

Note: the 2009 model inputs were in imperial units and have not all been adjusted to metric.

Element	Quantity	Unit	Assembly Type				
A11	4357.01	m2	1.1 Concrete Footing				
Foundation				1.1.1 F1			
					Length (ft)	4.592	4.592
					Width (ft)	3.28	3.28
					Thickness (ft)	0.656	0.656
					Concrete (psi)	3600	2900
					Concrete flyash %	AVERAGE	AVERAGE
					Rebar	10M	10M
				1.1.2 F2	-		
					Length (ft)	4.92	24.6
					Width (ft)	4.92	4.92
					Thickness (ft)	1.148	1.148
					Concrete (psi)	3600	2900
					Concrete flyash %	AVERAGE	AVERAGE
					Rebar	15M	15M
				1.1.3 F3	1		
					Length (ft)	7.872	23.616
					Width (ft)	7.872	7.872
					Thickness (ft)	1.476	1.476
					Concrete (psi)	3600	2900
					Concrete flyash %	AVERAGE	AVERAGE
					Rebar	20M	20M
				1.1.4 F4	1		
					Length (ft)	6.56	13.12
					Width (ft)	6.56	6.56
					Thickness (ft)	1.312	1.312
					Concrete (psi)	3600	2900
					Concrete flyash %	AVERAGE	AVERAGE

	Rebar	20M	20M
	1.1.5 F5		
	Length (ft)	7,216	21.648
	Width (ft)	7 216	7 216
		7.210	7.210
	Thickness (ft)	1.476	1.476
	Concrete (nei)	2600	2000
		3000	2900
	Concrete flyash %	AVERAGE	AVERAGE
	Rebar	20M	20M
	1.1.6 F6		
	Length (ft)	5.576	16.728
	Width (ft)	5.576	5.576
	Thickness (ft)	0.984	0.984
	Concrete (psi)	3600	2900
	Concrete flyash %	AVERAGE	AVERAGE
	Rebar	20M	20M
	1.1.7 F7		
	Length (ft)	5.904	47.232
	Width (ft)	5.904	5.904
	Thickness (ft)	1.312	1.31
	Concrete (psi)	3600	290
	Concrete flyash %	AVERAGE	AVERAG
	Rebar	20M	20M
	1.1.8 F8		
	Length (ft)	9.184	110.208
	Width (ft)	9.184	9.184
			_
	Thickness (ft)	1.804	0.90
	Concrete (psi)	3600	2900
	Concrete flyash %	AVERAGE	AVERAGE
	Rebar	25M	20M
1	l.1.9 F9		
	Length (ft)	5.904	41.328
	Width (ft)	6.232	6.232
	Thickness (ft)	1,148	1.148
		1.110	1.1 10
	Concrete (psi)	3600	2900

	Concrete flyash %	AVERAGE	
	Rebar	20M	
:	L.1.10 F10	I	
	Length (ft)	5.904	
	Width (ft)	5.904	
	Thickness (ft)	1.148	
	Concrete (psi)	3600	
	Concrete flyash %	AVERAGE	
	Rebar	20M	
1.1.11 F	11		
	Length (ft)	4.92	
	Width (ft)	4.92	
	Thickness (ft)	1.968	
	Concrete (psi)	3600	
	Concrete flyash %	AVERAGE	
	Rebar	20M	
1.1.	12 F12		
	Length (ft)	6.888	
	Width (ft)	3.936	
	Thickness (ft)	0.82	
	Concrete (psi)	3600	
	Concrete flyash %	AVERAGE	
	Rebar	10M	
1.1.13 F	13		
	Length (ft)	3.936	
	Width (ft)	3.936	
	Thickness (ft)	1.312	
c	Concrete (psi)	3600	
	neroto flyach %		
	ohor	AVERAGE	
1 1 14 514	ibai	12101	
1.1.14114	oth (ft)	12 702	
	idth (ft)	5.904	
	- \/		
Thi	ickness (ft)	1.312	

		1
	Concrete (psi)	3600
	Concrete flyzch %	
	Rebar	15M
	1.1.15 F15	13101
	Length (ft)	11.808
	Width (ft)	3.936
	Thickness (ft)	2.296
	Concrete (psi)	3600
	Concrete flyash %	AVERAGE
	Rebar	15M
	1.1.16 F16	
	Length (ft)	10.168
	Width (ft)	3.28
	Thickness (ft)	2.624
	Concrete (psi)	3600
	Concrete flyash %	AVERAGE
	Rebar	25M
	1.1.17 F20	- 1
	Length (ft)	29.52
	Width (ft)	29.52
	Thickness (ft)	3.28
	Concrete (psi)	3600
	Concrete fluench %	
	Concrete Tiyash %	AVEKAGE
	1.1.18 F21	2010
	Length (ft)	39.032
	Width (ft)	39.032
	× 7	
	Thickness (ft)	3.28
	Concrete (psi)	3600
	Concrete flyash %	AVERAGE
	Rebar	25M
1.1.	19 F22	
	Length (ft)	22.96
	Width (ft)	22.96

Thickness (ft)	3.28	1.6
Concrete (psi)	3600	290
Concrete flyash %	AVERAGE	AVERAG
Rebar	25M	201
1.1.20 F23		
Length (ft)	36.08	72.
Width (ft)	19.68	19
Thickness (ft)	2.952	1.4
Concrete (psi)	3600	29
Concrete flyash %	AVERAGE	AVER/
Rebar	25M	2
1.1.21 F24		
Length (ft)	29.192	58.
Width (ft)	29.192	29
Thickness (ft)	3.28	
Concrete (psi)	3600	2
Concrete flyash %	AVERAGE	AVER
Rebar	25M	:
1.1.22 F25		
Length (ft)	132.512	265
Width (ft)	66.256	66
Thickness (ft)	3.28	1
Concrete (psi)	3600	2
Concrete flyash %	AVERAGE	AVERA
Rebar	25M	
1.1.23 F27		
Length (ft)	29.192	58
Width (ft)	29.192	29
Thickness (ft)	3.28	
Concrete (psi)	3600	29
Concrete flyash %	AVERAGE	AVERA
Rebar	25M	2
1.1.24 F28		

	Length (ft) 31.16	
	Width (ft) 31.16	
	Thickness (ft) 3.28	
F		
ŀ	Concrete (psi) 3600	
ŀ	Concrete flyash % AVERAGE	AVE
	Rebar 25M	
Т		
╞	Length (ft) 13.12	<u> </u>
-	Width (ft) 42.64	
	Thickness (ft) 3.936	ļ
_	Concrete (psi) 3600	
	Concrete flyash % AVERAGE	A
	Rebar 25M	
-		
	Length (ft) 28.864	
v	Vidth (ft) 28.864	
-	Thisles are (ft)	
T	hickness (ft) 3.28	
_	Concrete (psi) 3600	
_	Concrete flyash % AVERAGE	A۷
	Rebar 25M	
	Length (ft) 22.96	
ſ	Width (ft) 22.96	
	Thickness (ft) 3 28	
	5.20	
	Concrete (psi) 3600	
,	Concrete flyash % AVERAGE	A
	Rebar 25M	
_		
	Length (ft) 45.92	
W	/idth (ft) 13.12	
_	Thiskness (ft)	
	3.28	
Со	ncrete (psi) 3600	
Co	ncrete flyash % AVERAGE	AV

			2514	2014
		Rebar	25M	20M
	1.2.29 CF1			
		Length (ft)	7.872	23.616
		Width (ft)	7.872	7.872
		Thickness (ft)	3.936	1.312
		Concrete (psi)	3600	2900
		Concrete flyash %	AVERAGE	AVERAGE
		Rebar	25M	20M
	1.2.30 CF2		1	
		Length (ft)	5.904	11.808
		Width (ft)	2.952	2.952
		Thickness (ft)	2.952	1.476
		Concrete (psi)	3600	2900
		Concrete flyash %	AVERAGE	AVERAGE
		Rebar	15M	15M
1.3 Concrete Strip Footin	g			
	1.3.1 F30	T	1 1	
		Length (ft)	262.4	262.4
		Width (ft)	6.56	6.56
		Thickness (ft)	1.968	1.968
		Concrete (psi)	3600	3600
		Concrete flyash %	AVERAGE	AVERAGE
		Rebar	20M	20M
	1.3.2 SF1	T		
		Length (ft)	49.2	49.2
		Width (ft)	3.28	3.28
		Thickness (ft)	0.984	0.984
		Concrete (psi)	3600	3600
		Concrete flyash %	AVERAGE	AVERAGE
		Rebar	20M	20M
	1.3.3 SF2		1 1	
		Length (ft)	557.6	557.6
		Width (ft)	2.296	2.296
		Thickness (ft)	0.984	0.984

]				
					Concrete (psi)	3600	3600
					Concrete flvash %	AVERAGE	AVERAGE
					Rebar	15M	15M
				1.3.4 SF3			
					Length (ft)	32.8	32.8
					Width (ft)	3.936	3.936
					Thickness (ft)	0.984	0.984
					Concrete (psi)	3600	3600
					Concrete flyash %	AVERAGE	AVERAGE
					Rebar	20M	20M
			1.4 Slab on Grade Concret	te Pad			
				1.4.1 CP1			
					Length (ft)	44.28	44.28
					Width (ft)	44.28	44.28
					Thickness (ft)	0.328	0.328
					Concrete (psi)	3600	3600
					Concrete flyash %	AVERAGE	AVERAGE
A21 Lowest	4357.01	m2	2.1 Slab on Grade				
Floor				2.1.1 Concre	te Slab on Grade (basement)		
					Length (m)	42.66	52.25
					Width (m)	42.66	52.25
					Thickness (mm)	150	100
					Concrete (MPa)	25	20
							20
					Concrete flyash %	AVERAGE	AVERAGE
					Length (m)	50.37	50.37
					Width (m)	50.37	50.37
					thickness (mm)	100 mm	100 mm
					Concrete (Mpa)	-	30
					Concrete flyash %	Average	Average
A22 Upper	11186.91	m2	3.1 Suspended Concrete S	labs	T		
Floor				3.1.1 FL1		1	r
					Width (m)	42.66	186.67
					Length (m)	42.66	9.75

			I	
		Concrete (MPa)	-	30
		Concrete flyash %	-	average
		Live Load	-	2.4 kPa
		Category	-	Gypsum board
		Туре	-	regular 1/2''
	3.1.2 FL2			
		Width (m)	57.741	341.95
		Length (m)	57.741	9.75
		Concrete (MPa)	-	30
		Concrete flyash %	-	average
		Live Load	-	2.4 kPa
		Colores		Constant la suit
		Category	-	Gypsum board
		Туре	-	regular 1/2''
	3.1.3 FL3			
		Width (m)	54.5	304.82
		Length (m)	54.5	9.75
		Concrete (MPa)	-	30
		Concrete flyash %	-	average
		Live Load	-	2.4 kPa
		Category	-	Gypsum board
		Тупе	_	regular 1/2"
	3.1.4 FL4	Туре	-	
		Width (m)	50.872	265.43
		Length (m)	50.872	9.75
		Concrete (MPa)	-	30
		Concrete flyash %	-	average
		Live Load	-	2.4 kPa
		Category	-	Gypsum board
		Туре	-	regular 1/2''
	3.1.5 Bridge			
		Width (m)	21.79	51.96
		Length (m)	21.79	9.144

	1			
		Concrete (MPa)	3600	3600
		Concrete flyash %		2007200
			-	average
		Category	-	Gypsum board
		Туре	-	Regular 1/2"
3.2 Extra Materials				
	3.2.1 Galvar	nized decking		
		Steel Staircase (Tons)	-	7.95
3.3 Concrete Column/Be	eams			
	3.3.1 C1			
		Number of bays per row	0	o
		Number of bays per row	8	8
		Number of rows	2	2
		Floor to floor height (ft)	13.94	13.94
		Bay sizes (ft)	14.76	14.76
		Supported span (ft)	19.68	19.68
		Live load (psi)	0.7	0.7
	3.3.2 C2	· · · ·	- -	
		Number of bays per row	9	9
		Number of rows	3	3
		Floor to floor height (ft)	21.4512	21.4512
		Bay sizes (ft)	10.824	10.824
		Supported span (ft)	27 88	27 82
			27.00	27.00
		Live load (psi)	0.7	0.7
	3.3.3 C3			
		Nuclear		_
		Number of bays per row	7	7
		Number of rows	1	1
		Floor to floor height (ft)	7.9376	7.9376
		Bay sizes (ft)	17.056	17.056

1		1	1	1			
					Supported span (ft)	25.584	25.584
					Live load (psi)	0.7	0.7
				3.3.4 C4			
					Number of bays per row	12	12
					Number of rows	13	13
					Floor to floor height (ft)	31.242	31.242
					Bay sizes (ft)	15.5144	15.5144
					Supported span (ft)	17.876	17.876
					6	6206	6206
					Supported area (m2)	6306	6306
					Live load (psi)	0.35	0.35
				3.3.5 C5			
					Number of bays per row	12	12
					Number of rows	12	12
					Floor to floor height (ft)	15.621	15.621
					Bay sizes (ft)	15.5144	15.5144
					Supported span (ft)	17.88	17.88
					Supported area (m2)	2588	2588
A23 Roof	3387.109832	m2	4.1 Roof		Live load (kPa)	2.4	2.4
				4.1.1 R1	1		
					Width (ft)	667	667
					Span (ft)	26	26
					Live load (psi)	0.5	0.5
					PVC Roofing Membrane (in)	-	13
					Vapour Barrier	-	1/8"
				4.1.2 R3	1		
					Width (ft)	135.136	608.7
					Length (ft)	135.136	30

1		I		٦	1	1	
					Concrete (psi)	3600	3600
					Concrete flyash %	AVERAGE	AVERAGE
					Thickness (ft)	0.492	0.492
					Rebar	20M	20M
					PVC Roofing Membrane (in)	-	13
			4.2 Extra Materials				
				4.2.1 Parallar	m		
						122.5 (including beams, crossbeams, columns)	
					Parallam Columns (m3)		122.5
			4.3 Concrete Column/Bea	ims			
				4.3.5 C5			
					Number of bays per row	12	12
					Number of rows	12	12
					Floor to floor height (ft)	15.621	15.621
					Bay sizes (ft)	15.5144	15.5144
					Supported span (ft)	17.88	17.88
					Live load (psi)	0.35	0.35
			4.4 Curtain Roof	1			
				4.4.1 MP1	T		
					Wall type	Curtain	20.25
					Length (ft)	29.25	29.25
					Height	29.25	29.25
				Openings	Total opening area	0	U
					Doors	0	0
					Windows	0	0
					Material		Fiberglass
					Туре		hatt
					Thickness(mm)		189
	2407 224						
A31 Walls Below grade	2497.234	mz	5.1 Concrete Block wall				
BCIOW BIAUC				5.1.1 W1	1		
				1	Wall Type	Basement	Basement

	1	i.		-			
					Length (m)	275	275
					Height (m)	4.25	4.25
					Total opening area (ft^2)	0	0
					Doors	39.36	39.36
				Openings	Category	-	Cladding
					Material	-	Brick
							(metric)
					Туре	-	Modular
				5.1.2 W2			
					Wall Type	Basement	Basement
					Length (m)	115	115
					Height (m)	6.54	6.54
					Total opening area (ft^2)	0	0
					Doors	13.12	13.12
				Openings	Category	_	Cladding
					Material	_	Brick
							(metric)
					Туре	-	Modular
				5.1.3 W3			
					Wall Type	Basement	Basement
					Length (m)	237	237
					Height (m)	2.432	2.432
					Total opening area (ft^2)	0	0
				0	Doors	0	0
				Openings	Category	-	Cladding
					Material	-	Brick
							(metric)
Δ32 \\/alls	956/ 19	m2			Туре	-	Modular
Above Grade	5504.15	1112	6.1 Cast-in-place				
				6.1.1 W4			
					Wall Type	Ground Floor	Ground Floor
					Length (m)	267	267
					Height (m)	5	5
						257	257
				Openings		Aluminum	Aluminum
				Openings		Aunmun	Aidininulli
					Glazing Type	Double Glazed	Double Glazed
					Doors	15	15

	l	i	1		7	1	1
					Category	-	Cladding
					Matarial		
					Catatan	-	Brick-split faced
				Envelope	Catetory	-	Insulation
				Linvelope	material	-	Fibreglass batt
					Category	-	Vapour barrier
					Material		mil
				6.1.2 W6			
					Wall Tupo	Second - Fourth	Second - Fourth
					Longth (m)	1922.69	1922.69
					Leight (m)	1823.08	1823.08
						4.25	4.25
					Total opening area (m2)	-	800
				Openings	Frame Type	Aluminum	Aluminum
					Glazing Type	Double Glazed	Double Glazed
					Doors	0	0
						-	Cladding
							enddanig
					Material	-	Brick-split faced
					Catetory	-	Insulation
				Envelope	matarial		Fibraglass batt
					material	-	FIDREglass Datt
					Category	-	Vapour barrier
							Polyethylene 3
					Material		mii
			6.2 Curtain Walls	6 2 1 W9 (Cu	rtain Wall)		
				0.2.1 115 (64		74.25	74.25
					Length (m)	74.35	74.35
					Height (m)	4.25	4.25
				6 2 2 W10 (C	Unitain Wall 2)	/	1
				0.2.2 1010 (0			
					Length (m)	38.25	38.25
					Height (m)	4.25	4.25
B11	21/13/1 25	m2			Doors	1	1
Partitions	21734.23	1112	7.1 Steel stud walls				
				7.1.1 W8			
						Second - Fourth	Second - Fourth
					Wall Type	(Inside)	(Inside)
					Length (m)	3553	3553

				Height (M)	4.25	4.25
			Openings	Total opening area (ft^2)	0	0
				Doors	381	381
				Category	-	Insulation
				Material	-	Fiberglass
			Door Opening	Туре	-	batt
			Envelope	Thickness	-	140
				Category	_	Vanour barrier
			Window opening envelope			
			7.1.2 W5	1		
				Wall Type	Second - Fourth (Inside)	Second - Fourth (Inside)
				Length (m)	368	368
				Height (m)	4.25	4.25
				Total opening area (ft^2)	0	0
				Doors	20	20
			Openings	Category	-	Cladding
				Material	-	Brick
				Туре	-	(metric) Modular
			7.1.3 W7			
				Wall Type	Ground Floor	Ground Floor
				Length (m)	708	708
				Height (m)	5	5
			Openings			
				Total opening area (m^2)	-	103.5
				Doors	69	69
			Envelope			
				Catagony		Insulation
				Matorial		Eiborglass
					-	i inei Rigioss
			<u> </u>	Thickness	-	140
		7.2 Cast-in-place concrete	2	THICKIC33	-	140
			7.2.1W11			
	1	1	1			

			Wall Type	Ground Floor	Ground Floor
			Length (m)	246	246
			Height (m)	5	5
		Openings	T-+		16 5
			Decar	-	16.5
			Doors	11	11
			Category	-	Insulation
		Envelope	Material	-	Fiberglass
		Linvelope	Туре	-	batt
			Thickness	-	140

Impact Estimator Input Assumptions

1 Foundation	This building element was left unchanged from the 2009 model
	including the following description: the foundation was broken down
	into footings, strip footings, and slab on grade concrete pads. The
	concrete footings and strip footings were named the same as the
	architectural drawings (i.e. F1, F2). Any concrete footings not listed
	in the structural legend were named CF1, CF2, and so on, while any
	strip footings not listed were named SF1, SF2, and so on. The footings
	were calculated using the count feature in OnScreen, and the length of
	the footing was then multiplied by the amount of footings of each type.
	The impact estimator restricted the height of the footings. If a footing
	was larger than the allowed height, it was divided by two while the
	length was multiplied by two. Rebar presented a problem if the
	reinforcing was greater than 20M bars. The impact estimator only
	allowed for 10M, 15M, and 20M bars in the footings. Therefore,
	anything larger than 20M was considered 20M while anything smaller
	than 10M was considered 10M.
	The concrete pads were not slabs. They were similar to the concrete
	footings. However, they were only 100mm thick. They were named
	CP1, CP2, and so on. The concrete was assumed to be 20MPa as no
	information was given. Fly ash was assumed to be "average", which is
	an option when entering concrete data in the impact estimator.

1.1 Concr	ete Footing	2
	1.1.1 F1	
	1.1.2 F2	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 5.
		L=(Cited Length)*(# of Footings of That Kind)
		L=(4.92ft)*5
	·	L=24.6ft
	1.1.3 F3	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 3.
		Similar to 1.2.2 F2
	1.1.4 F4	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 2.
	·	Similar to 1.2.2 F2
	1.1.5 F5	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 3.
		Similar to 1.2.2 F2

	1.1.6 F6	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 3.
		Similar to 1.2.2 F2
	1.1.7 F7	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained
		however the length was multiplied by 8
		Similar to 1.2.2.E2
		Similar to 1.2.2 F2
	1.1.8 F8	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 12.
		Similar to 1.2.2 F2
	1.1.9 F9	
		The length of this footing was adjusted to account
		for the multiple footings of this type. The
		measured width and thickness were maintained,
		however the length was multiplied by 7.
		Similar to 1.2.2 F2

1.1.10 F1	0		
1.1.11 F1	1.1.11 F11		
	The length of thi	s footing was adjusted t	o account
	for the multiple f	ootings of this type, and	d/or
	because the thick	mess of the footing did	not fall
	within the limits	of the EIE. The measur	ed width
	was maintained,	however the length was	;
	multiplied by 5 a	nd again by 2 to accour	nt for the
	thickness being r	educed by a division of	2.
	L=(Cited Length)*(# of Footings of Tha	t
	Kind)*(# Thickn	ess Divided By)	
	L=(4.92ft)*8*2	Note: T = 1.968ft/2	
		= 0.984ft	
	L=78.72ft		
1.1.12 F1	2		
	The length of thi	s footing was adjusted t	o account
	for the multiple f	ootings of this type. Th	e
	measured width	and thickness were main	ntained,
	however the leng	th was multiplied by 8.	
	Similar to 1.2.2 I	F2	
1.1.13 F1	3		
	The length of thi	s footing was adjusted t	o account
	for the multiple f	ootings of this type. Th	e
	measured width a	and thickness were main	ntained,
	however the leng	th was multiplied by 2.	
	Similar to 1.2.2 I	72	
1.1.14 F1	4		
1.1.15 F1	5		
	The length of thi	s footing was adjusted t	o account

for the multiple footings of this type, and/or
because the thickness of the footing did not fall
within the limits of the EIE. The measured width
was maintained, however the length was
multiplied by 2 to account for the thickness being
reduced by a division of 2.
Similar to 1.2.11 F11
1.1.16 F16
The length of this footing was adjusted to account
for the multiple footings of this type, and/or
because the thickness of the footing did not fall
within the limits of the EIE. The measured width
was maintained, however the length was
multiplied by 2 to account for the thickness being
reduced by a division of 2.
Similar to 1.2.11 F11
1.1.17 F20
1.1.18 F21
The length of this footing was adjusted to account
for the multiple footings of this type, and/or
because the thickness of the footing did not fall
within the limits of the EIE. The measured width
was maintained, however the length was
multiplied by 2 to account for the thickness being
reduced by a division of 2.
Similar to 1.2.11 F11
1.1.19 F22
The length of this footing was adjusted to account
for the multiple footings of this type, and/or
because the thickness of the footing did not fall

	within the limits of the EIE. The measured width
	was maintained, however the length was
	multiplied by 2 to account for the thickness being
	reduced by a division of 2.
	Similar to 1.2.11 F11
1.1.20 F	23
	The length of this footing was adjusted to account
	for the multiple footings of this type, and/or
	because the thickness of the footing did not fall
	within the limits of the EIE. The measured width
	was maintained, however the length was
	multiplied by 2 to account for the thickness being
	reduced by a division of 2.
	Similar to 1.2.11 F11
1.1.21 F	24
	The length of this footing was adjusted to account
	for the multiple footings of this type, and/or
	because the thickness of the footing did not fall
	within the limits of the EIE. The measured width
	was maintained, however the length was
	multiplied by 2 to account for the thickness being
	reduced by a division of 2.
	Similar to 1.2.11 F11
1.1.22 F	25
	The length of this footing was adjusted to account
	for the multiple footings of this type, and/or
	because the thickness of the footing did not fall
	within the limits of the EIE. The measured width
	was maintained, however the length was
	multiplied by 2 to account for the thickness being

re	duced by a division of 2.
Si	milar to 1.2.11 F11
1.1.23 F27	
TI	he length of this footing was adjusted to account
fo	r the multiple footings of this type, and/or
be	ecause the thickness of the footing did not fall
W	ithin the limits of the EIE. The measured width
W	as maintained, however the length was
m	ultiplied by 2 to account for the thickness being
re	duced by a division of 2.
Si	milar to 1.2.11 F11
1.1.24 F28	
TI	he length of this footing was adjusted to account
fo	r the multiple footings of this type, and/or
be	ecause the thickness of the footing did not fall
W	ithin the limits of the EIE. The measured width
w	as maintained, however the length was
m	ultiplied by 2 to account for the thickness being
re	duced by a division of 2.
Si	milar to 1.2.11 F11
1.1.25 F29	
TI	he length of this footing was adjusted to account
fo	r the multiple footings of this type, and/or
be	ecause the thickness of the footing did not fall
W	ithin the limits of the EIE. The measured width
W	as maintained, however the length was
m	ultiplied by 3 to account for the thickness being
re	duced by a division of 3.
Si	milar to 1.2.11 F11

1.1.26 F31
The length of this footing was adjusted to account
for the multiple footings of this type, and/or
because the thickness of the footing did not fall
within the limits of the EIE. The measured width
was maintained, however the length was
multiplied by 2 to account for the thickness being
reduced by a division of 2.
Similar to 1.2.11 F11
1.1.27 F32
The length of this footing was adjusted to account
for the multiple footings of this type, and/or
because the thickness of the footing did not fall
within the limits of the EIE. The measured width
was maintained, however the length was
multiplied by 2 to account for the thickness being
reduced by a division of 2.
Similar to 1.2.11 F11
1.1.28 F33
The length of this footing was adjusted to account
for the multiple footings of this type, and/or
because the thickness of the footing did not fall
within the limits of the EIE. The measured width
was maintained, however the length was
multiplied by 2 to account for the thickness being
reduced by a division of 2.
Similar to 1.2.11 F11
1.2.29 CF1
The length of this footing was adjusted to account
for the multiple footings of this type, and/or

			because the thickness of the footing did not fall
			within the limits of the EIE. The measured width
			was maintained, however the length was
			multiplied by 3 to account for the thickness being
			reduced by a division of 3.
			Similar to 1.2.11 F11
		1.2.30 CF	[F2
			The length of this footing was adjusted to account
			for the multiple footings of this type, and/or
			because the thickness of the footing did not fall
			within the limits of the EIE. The measured width
			was maintained, however the length was
			multiplied by 2 to account for the thickness being
			reduced by a division of 2.
			Similar to 1.2.11 F11
	1.3 Concr	ete Strip F	ooting
		1.3.1	
		F30	
		1.3.2	
		SF1	
		1.3.3	
		SF2	
		1.3.4	
		SF3	
	1.4 Slab o	on Grade C	Concrete Pad
		1.4.1 CP1	1
Lowest Floor	2.1.1 Slat	on Grade	
	As the 15	0 mm thick	kness is not an option in the Impact Estimator, the
	total area of the slab on grade was multiplied by 1.5 and the		
	dimensions entered as a 100 mm slab. As the area 'on grade' is actually		
	the basem	ent and pa	rt of the ground floor, the suspended area of the

	ground floor was subtracted and modeled as a separate floor. The			
	remainder was included in the A21 element. However, the IE model for			
	the whole building combined the two floors again.			
3Floors	Five upper floors were modeled, the ground to fourth floors, and the			
	bridge spanning the atrium. The bridge was modeled separately as an			
	artifact of the 2009 model. The building envelope data was not			
	available for the floors, and therefore average industry standards were			
	assumed. Stairs were assumed to be steel and an area was determined			
	from Lin's 2010 estimate and the unit weight of rolled steel was used			
	(7850 kg/m3).			
	The floors were measured using area conditions. Much like in column			
	and beams, the Impact Estimator calculated the thickness of the			
	material based on some basic variables regarding the assembly. These			
	include; floor width, span, concrete strength, concrete flyash content			
	and live load. Another assumption that had to be made in this assembly			
	group was setting the concrete strength to 20 MPa, instead of the			
	specified 25 MPa. This was due to the IE's limitation to model only 20			
	MPa, 30 MPa or 60 MPa concrete strengths. Spans were also limited to			
	no more than 10 meters. If a span was greater than 10 meters, the total			
	area was then divided by 10 meters to determine the resulting length. A			
	suggested improvement is to model the floors as 20 MPa and 30 MPa			
	and take the average assuming no better LCI is found.			
	6.1 Extra Materials			
	Galvanized Sheet decking			
	Used Lin's estimates of 1.2*0.25*0.02m by 169			
	m of staircase, at 7850 kg steel/m3			
3 Mixed Columns	All columns were named C followed by the number in which they were			
& Beams	entered (i.e. the first column is C1). The method used to measure			
	column sizing was completely depended upon the metrics built into the			
	Impact Estimator. That is, the Impact Estimator calculates the sizing of			
	beams and columns based on the following inputs; number of beams,			
	number of columns, floor to floor height, bay size, supported span and			
	live load. A grid system of columns had to be assumed even though it			

did not necessari	ly exist An area that appeared to have a slight order to		
	ing ember i in area anat appearea to nave a singht order to		
the column distribution was squared off and averaged for span between			
columns. For example, the foundation columns were broken into three			
areas. The main	atrium in the FSC is an L-shape. The eight columns in		
the atrium were a	assumed to be one long line of columns with the		
spacing between	them averaged as the span and the distance to the		
surrounding wall	ls averaged as the bay size.		
3.1 Concrete Col	lumn/Beams		
3.1.1	C1		
	Because of the variability of bay and span sizes,		
	the column bay and span size was estimated		
	using multiple grid systems throughout the FSC.		
3.1.2	C2		
	Because of the variability of bay and span sizes,		
	the column bay and span size was estimated		
	using multiple grid systems throughout the FSC.		
3.1.3	C3		
	Because of the variability of bay and span sizes,		
	the column bay and span size was estimated		
	using multiple grid systems throughout the FSC.		
3.1.4	C4		
	Because of the variability of bay and span sizes,		
	the column bay and span size was estimated		
	using multiple grid systems throughout the FSC.		
3.1.5	C5		
	Because of the variability of bay and span sizes,		
	the column bay and span size was estimated		
	using multiple grid systems throughout the FSC.		
	the column distriction of the columns. For example, areas. The main the atrium were a spacing between surrounding wall 3.1 Concrete Column $3.1.1$ $3.1.2$ $3.1.2$ $3.1.3$ $3.1.3$ $3.1.3$ $3.1.3$ $3.1.3$ $3.1.4$ $3.1.4$		

4 Walls	Walls we	re either co	ncrete block, wood, or concrete brick. However,	
	each wall	was labele	d W followed by the number in which it was	
	entered (i	.e. the first	wall was called W1). They were linear	
	measurem	heasurements, with the height measured from the profile drawings. loors two through four were the same height, and so walls continuing mough these three floors were considered one wall with a height three mes the single floor height. Openings included windows and doors. hterior walls were assumed to have 400 m2 of window area. Exterior valls were measured by using one meter strips. OnScreen will measure he length of wall accounted for while using a line thickness equal to		
	Floors tw			
	through the			
	times the			
	Interior w			
	walls wer			
	the length			
	one meter	. For exam	ple a 10 meter high wall 5 meters long would have	
	a wall are	a of 50 me	ters squared.	
	Area cond	ditions wer	e utilized to calculate the percent glazing area for	
	the curtain	n walls, as	well as the areas of the window openings.	
	Windows	Windows were not counted directly, but instead the area of openings		
	for windo	or windows was determined using the area function, and then divided		
	by an ave	an average exterior window size. These assumptions were made so at a reasonable estimate could be made within the timeframe given.		
	that a reas			
	Some oth	er assumpt	ions and calculations were made in order to	
	complete	modeling of	of the walls for the FSC building, such as affecting	
	the length	e length of the concrete cast-in-place walls to accommodate the wall		
	thickness	hickness limitation in the IE, and the assumption that interior steel		
	stud walls	tud walls were heavy gauge (25Ga).		
	2.1 Conce	ete Block	Wall	
		2.1.1 W1		
		2.1.2 W2		
		2.1.3 W3		
		2.1.4 W4		
	2 2 Steel	L.1.4 W4		
	2.2 Steel			
		2.2.1 WO		
			Since this was an interior wall, 89mm thick	
			Fiberglass Batt was assumed. It is also assumed	

			that it is steel stu	ds throughout the interior walls.
			No gypsum boar	d was assumed to be present.
	2.3 Conre	te Brick W	alls	
		2.3.1		
		W6		
	2.4 Steel	Stud Walls		
		2.4.1 W7		
			Since this was an	n interior wall, 89mm thick
			Fiberglass Batt v	vas assumed. It is also assumed
			that it is steel stu	ds throughout the interior walls.
		2.4.2 W8	(w/ Veneered Fac	e)
			Since this was an	n interior wall, 89mm thick
			Fiberglass Batt v	vas assumed. It is also assumed
			that it is steel stu	ds throughout the interior walls.
		2.4.3 W9	(Curtain Wall)	
			The total length	of the curtain walls were
			measured linearl	y from the floor plans. The
			average height o	f the FSC was then multiplied by
			the length to dete	ermine an average area. It was
			assumed that onl	y one door for the east entrance
			is present.	
		W10	Measured using	Onscreen and entered as total
		(Curtain	length over the f	loors by 4.25 m
		Wall)		
5 Roof	The roof	was model	ed using area cond	litions. The roof of the FSC was
	divided in	to three in	puts, a suspended	slab for the main roof, an open
	web steel	joist syster	m, and glazing for	the large skylight. Once again
	the concre	ete strength	n was set to 20 MP	a instead of the specified 25
	MPa. The skylight was modeled as a curtain wall as there is no skylight			
	option in	the IE. The	e steel roof assume	ed the standard commercial
	option.			
	5.1 Roof			
		5.1.1 R1		

			Because of the limitations of the Impact
			Estimator, spans were reduced to 30 ft. This was
			done by maintaining the same roof area, but
			reducing the span to 30 ft and increasing the
			length to account for the reduction.
			Similar to 4.1.1 FL1
		5.1.2 R2	
			Because of the limitations of the Impact
			Estimator, spans were reduced to 30 ft. This was
			done by maintaining the same roof area, but
			reducing the span to 30 ft and increasing the
			length to account for the reduction.
			Similar to 4.1.1 FL1
6 Extra Materials	The large	Parallam c	columns within the FSC are not supporting any
	significan	nt load save	e the additional beams. Their main purpose is
	aesthetics only. When entering the Parallam column grid into the EIE,		
	the loads that the columns are calculated to take would be greatly		
	exaggerated. Since the Parallam columns are not used for structural		
	support, they were added to extra base material. The length calculator		
	in OnScre	een was use	ed and the columns were then multiplied by their
	average th	hickness. T	o account for uncertainty, an additional 5% was
	added.		
	6.1 Extra	Materials	

References

- Athena Sustainable Materials Institute (ASMI). (2005). *Cement and Structural Concrete Products: Life Cycle Inventory Update #2*. Ottawa, Ontario.
- Athena Sustainable Materials Institute (ASMI). (2013a). Impact Estimator for Buildings. Retrieved November 11, 2013, from http://www.athenasmi.org/our-softwaredata/impact-estimator/

- Athena Sustainable Materials Institute (ASMI). (2013b). *Athena Impact Estimator for Buildings V 4*. 2 *Software and Database Overview* (pp. 1–22). Ottawa, Canada.
- Bare, J. C. (2002). *Developing a Consistent Decision-Making Framework by Using the U.S. EPA's TRACI*. Cincinnati, OH.
- Bayer, C., Gamble, M., Gentry, R., & Joshi, S. (2010). *Guide to Building Life Cycle* Assessment in Practice. American Institute of Architects (pp. 1–193). Washington, D.C.
- EN 15978. (2010). Sustainability of construction works- assessment of environmental performance of buildings -calculation method. Brussels: European Committee for Standardization (CEN).
- International Organization for Standardization (ISO). (2006a). ISO 14040: Environmental management Life cycle assessment Principles and framework.
- International Organization for Standardization (ISO). (2006b). ISO 14044: Environmental management Life cycle assessment Requirements and guidelines.
- Malin, N. (2005). Life Cycle Assessments for Whole Buildings: Seeking the Holy Grail. In *Building Design and Construction: Life Cycle Assessment and Sustainability* (pp. 6–11).
- O'Connor, J., & Meil, J. (2012). *LCA in construction: status , impact , and limitations*. Ottawa, Ontario.
- Scheuer, C., Keoleian, G. a, & Reppe, P. (2003). Life cycle energy and environmental performance of a new university building: modeling challenges and design implications. *Energy and Buildings*, 35(10), 1049–1064. doi:10.1016/S0378-7788(03)00066-5
- Shine, K. P. (2009). The global warming potential—the need for an interdisciplinary retrial. *Climatic Change*, *96*(4), 467–472. doi:10.1007/s10584-009-9647-6
- The University of British Columbia (UBC). (2013). Green Buildings.
- The University of British Columbia (UBC), & Pulse Energy. (2013). UBC Energy Dashboard. Retrieved November 18, 2013, from https://ubc.pulseenergy.com/#/overview
- The University of British Columbia Board of Governors (UBC). (2005). Sustainability Policy No. 5: Sustainable Development. Vancouver, BC.
- Trusty, W., & Deru, M. (2005). The U.S. LCI Database Project and Its Role in Life Cycle Assessment. In *Building Design and Construction: Life Cycle Assessment and Sustainability* (pp. 26–29).

UBC Library. (2008). Forest Science Center. Retrieved November 14, 2013, from http://www.library.ubc.ca/archives/bldgs/forestscicentre.htm