UBC Social Ecological Economic Development Studies (SEEDS) Sustainability Program

Student Research Report

UBC Stormwater Detention: Detention Facility for Centre for Comparative Medicine (CCM)

 $\mathbf{E}' \ \mathbf{8} \ \mathbf{8} = \mathbf{h}' \ \mathbf{O}^{\dagger} - \mathbf{V}^{\dagger} \ \mathbf{E}'$

University of British Columbia

CIVL 446

Themes: Water, Climate, Land

April 8, 2019

Disclaimer: "UBC SEEDS Sustainability Program provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student research project/report and is not an official document of UBC. Furthermore, readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Sustainability Program representative about the current status of the subject matter of a project/report".

DESIGN FINAL REPORT Detention Facility for UBC CCM

University of British Columbia - UBC SEEDS Sustainability Program

April 8th, 2019

<u>Group 12</u>

Guan Xinyan(STU#58708132) Wang ZhenNing(STU#33482150) Peng Harry(STU#23525141) Yang YaXing(STU#13538153) Wang YanLi(STU#50564146)

Exuective Summary

The TTG Consulting Ltd. has been contracted with UBC Social Ecological Economic Development Studies (SEEDS) Sustainability Program to design a detention facility for UBC Center for Comparative Medicine (CCM). By following the requirements of the client and the Integrated Stormwater Management Plan (ISMP), a detention facility will be developed adjacent to the UBC CCM. The purpose of building this facility is to minimize the erosion of the surrounding cliffs, eliminate the flooding concerns due to large storms, and improve the quality of stormwater leaving campus. The final design includes a 100m*50m*4.5m detention pond and a 3-story multi-functional green building.

This report summarizes the design progress and critical outcomes after the preliminary design. Some of the highlights are as follows: the detention pond storage capacity is 20700 m^3; the 100-year pre-development rainfall flow rate is 1579 L/s; the walls of the building will be constructed of large panels of glass; the building's first floor is designed to be completely submerged underwater; there is a 265.25-m^2 transparent solar panel installed onto the building; the total retainable floor area of the building is 1162.25 m^2. More details can be found in the attached report.

The total cost estimation of the whole project is \$4.4 million which includes \$0.4 million of environmental protection and permitting cost, \$1.6 million of detention pond system construction, \$1.3 million of building structure construction and \$1.1 million of

i

operation and maintenance cost combined with contingency cost as well as GST and PST in BC. The project will be constructed on May 1^{st} , 2019, and the substantial completion will be achieved on May 11^{th} , 2020, with the full operation coming up on Aug 6^{th} , 2020.

Table of Content

Ex	Executive Summaryi		
Lis	st of Tablevi		
Lis	st of Figurevi		
1.	Introduction1		
	1.1 Project Objective1		
	1.2 Site Overview2		
	1.3 Scope of Work2		
	1.4 Task Distribution3		
2.	Design Criteria and Constraints4		
	2.1 Design Capacity5		
	2.2 Economic		
	2.3 Environmental Consideration6		
	2.4 Sustainability Approach8		
	2.5 Stakeholder Engagement8		
3.	Detention Pond Design Overview10		
	3.1 Methodology10		
	3.1.1 Software Used for Design10		
	3.1.2 Key Components of Design11		
	3.1.3 Technical Considerations12		
	3.2 Construction Plan of Detention Pond12		

4.	Building	g Structure Design Overview14	•
	4.1 Metho	odology14	
	4.1.1	Software Used for Design14	Ļ
	4.1.2	Key Components of Design15	5
	4.1.3	Technical Consideration19)
	4.2 Struct	ural Design of the Buidling19	1
	4.2.1	Vertical Dead Load19	
	4.2.2	Vertical Live Load20)
	4.2.3	Snow Load20)
	4.2.4	Wind Load20)
	4.2.5	Load Combination Analysis20)
	4.3 Buildi	ng Enclosure Design21	
	4.3.1	Water Control21	
	4.3.2	Hear Control21	
	4.3.3	Vapour and Air Control22	•
	4.3.4	Materials and Damage Functions22	
	4.3.5	Assembly22	
	4.4 Const	ruction Plan of the Building23	
5.	Maintena	ance Specification and Plans24	
	5.1 Plann	ing and Design Phase24	
	5.2 Const	ruction Phase24	
	5.3 Life-C	cycle Operation and Maintenance24	

6.	Cost Estimation26
	6.1 capital Cost Estimation27
	6.2 Operation & Maintenance Cost Estimation
7.	Construction Schedule29
8.	Conclusion
Ap	opendix A Construction Drawings31
	Appendix A-1 Architectural Drawings32
	Appendix A-2 Structural Drawings45
Ap	opendix B Class B Cost Estimation57
Ap	opendix C Project Schedule60
Ap	opendix D Sample Calculations64
	Appendix D-1 Pump Design65
	Appendix D-2 Sedimentation Pond Design66
	Appendix D–3 Foundation Design67
	Appendix D–4 Load Analysis68
	Appendix D–5 Beam Design70
	Appendix D–6 Slab Design73
	Appendix D-7 Column Design75
	Appendix D–8 Dynamic Analysis79

List of Table

Table 1: Team List & Task Distribution	3
Table 2: Life-Cycle Cost Estimation	26
Table 3: Detention Pond Cost Estimation	.27
Table 4: Building Structural Cost Estimation	.27
Table 5: Operation & Maintenance Cost Estimation	28

List of Figure

Figure 1: Construction Site (Google Earth)	2
Figure 2: Slab Specifications	.16
Figure 3: Longitudinal Beam Layout	.16
Figure 4: Beam Cross-section	.16
Figure 5: Column Layout	17
Figure 6: Footing Layout	.18

1. Introduction

The final report is prepared on behalf of the TTG Consulting Ltd. and will present the detailed final design of a detention facility adjacent to UBC CCM. The report will begin with an introduction to the project and followed by detailed information of design components, design criteria, design specifications, construction specifications and a draft plan of construction work. Detailed construction drawings, cost estimate, schedule and sample calculations will be attached in the Appendixes.

1. 1 Project Overview

The major objective of the multi-use stormwater detention facility adjacent to UBC CCM is to imitate a complete detention pod to control the water flowing leaving and improve the stormwater quality. The major concerns of this project include the erosion of the surrounding cliffs in Point Grey, potential flooding due to large storms, and the quality of water leaving campus. As a result, the designed detention pond will mainly focus on solving these problems. In the creative part, a multi-purpose green building will be developed in the middle of the detention pond, integrating with the detention pond to provide an opened public community to nearby people.

TTG Consulting team develop the design based on many constraints and criteria, including existing infrastructure, soil geology, standards, cost, community impact, environmental protection and sustainability. The final design report aims at developing structural details design based on the technical design criteria.

1. 2 Site Overview

The construction will span around 5,000 square meters at its intersection of South West Marine Drive and Wesbrook Mall. UBC CCM is adjacent and UBC Farm is at the Northwest where is 200 meters away to the proposed site. The following figure shows the detailed project construction site.

Figure 1: Construction Site (Google Earth)

1.3 Scope of Work

The project scope as presented in the report includes the following:

- Review the technical and non-techincal design constrains
- Detailed design of the detention pond and building structure
- Structural loading conditions and design of the whole detention facility
- A construction plan highlighting the construction timeline and key tasks
- A maintenance plan over the design life
- An uploaded cost estimate and construction schedule
- Detailed structural drawings issued for construction

1. 4 Task Distribution

The following table indicate each team members' contributions to this final design.

Team Member	Report Contribution
Guan XinYan	Executive Summary Introduction Foundation Design Construction Plan Updated Schedule Proof Reading Formatting
Wang YanLi	Design Criteria and Constraints Pump Design Slab Design Proof Reading
Wang ZhenNing	Buidling Enclosure Design
Peng Harry	Detention Pond Design Overview Building Structure Design Overview Detention Pond Design Beam Design Updated Cost Estimate(Detention Pond) Proof Reading
Yang YaXing	Construction Plan Maintenance Specification and Plans Updated Cost Estimate (Building Structure) Detailed Drawings Proof Reading

2. Design Criteria and Constraints

The project is developed under the regulations of UBC SEEDS Sustainability Program, and each phase during the project follows all rules set by the UBC Infrastructure and Serving Planning. The location of the project is selected by UBC Campus and Community Planning. Minimum requirements of infrastructure design in the Nation Building Code of Canada (NBCC), British Columbia Building Code and British Columbia Master Municipal Construction Documents (MMCD) are used and adhered throughout the entire design. In consideration of the local geotechnical and climatic conditions, British Columbia Building Code and City of Vancouver Bylaws are also consulted. In addition, the minimum requirements of Metro Vancouver should be reached for all design criteria and construction methods of water mains. The resistance force of structural components of slabs, beams, columns and foundations will be checked according to the CSA code of concrete.

A detention pond is designed surrounding the central building structure; since the collected stormwater will be used to provide potable water for the building, the water, after filtration phase, should meet the requirements of BC Water Quality Guidelines: Drinking Water Sources. The redundant water will be discharged to the UBC Management network, thus, the quality of water should reach the standards of Fisheries Act in Canada, Canadian Environmental Protection Act, Water Act and Environmental Management Act that are required by UBC Integrated Stormwater Management Plan (ISMP).

Some constraints are included which mainly come from the underground and overground infrastructures associating with the entire project. Sewer, water and gas

networks exist below the ground, therefore, any further excavation work should minimize the impact on the underground treatment system. In addition, UBC Farm, numerous trees, buildings and pathways are located near to the proposed construction site, so avoiding reposition of these structures and cutting the minimum number of trees are important in this project. Some other site restrictions such as land availability, dimensions, local precipitation and accessibilities are also included and will be addressed as well.

2.1 Design Capacity

The proposed detention pond in UBC is used for water management during the stormwater events and to provide a space for temporary storage of rainwater runoff. Taking account of the design criteria shown above, the detention facility is designed to serve for 75 years and should have the ability to store the water throughout 100-year storm conditions. The building structure design is based on the design load which contains design moment, design shear and design column axial load. All loads are determined by SAP2000; after analysis, the slab and beam of design moment are 157.9 kN*m and 308.2 kN*m respectively, the slab and beam of shear force are 31.7 kN/m and 128.8 kN/m, and the total sustained load of column axial load is calculated as 23,416.0 kN.

2.2 Economic

Economic analysis for is necessary for the outlook and performance of a project. The primary goal for the detention pond construction is sustainability, which includes non waste, construction practicability as well as economic efficiency so that the project can acquire adequate investment, and the owners will accept the design. Both of the construction and maintenance sectors are considered, thus, a long-term economic analysis is more effective and appropriate. The larger volume of the structure, the more construction cost is incurred in terms of the foundation excavation and the material use. Typical costs that should be considered include as follows:

- Initial Costs: purchase, acquisition, design and installation of equipment
- Energy Costs: for any product that consumes energy, fuel rates and equipment efficiencies
- Operation, Maintenance and Repair Costs: for the incorporated material and system
- Replacement Costs: for any product which have a life span shorter than the construction design life
- Residual Values: similar with the resale or salvage value for products with remaining life expectancy
- Financial Variables: project-related interest expenses and inflation rates

A water reuse system is included, in order to provide the daily use of water in the building, and the usage of generators, turbines at the end of the pond, as well as solar panels on the roof of building, can significantly fulfill the building's daily power needs. In addition, the traditional rectangular-shaped pond is used, and this is relatively cheap and will require fewer labour hours.

2.3 Environemntal Considerations

The construction undergoing usually has a significant impact on the environment, both on local and global issues. Therefore, fully understanding of the construction impacts becomes important, in order to measure the potential influence on the

environment and to provide possible solutions for minimizing the adverse impacts. Some possible environmental effects are considered as follows:

- Energy Efficiency: during the construction process, using old machines or lowefficiency equipment can largely reduce the productivity and requires more energy consumption to complete the work. One of the better ways to improve energy efficiency is to use high-efficiency machines which have the regular repair and update.
- Construction Materials: the wasted construction materials have become one of the major environmental issues caused by construction. Using green material instead of traditional one can be a viable solution since the green material can be recycled and degraded easily.
- Material Wastes: The wastes will be delivered from the construction site regularly, and a detailed waste management plan will be provided before the construction begins.
- Dust and Diesel Emission: a large amount of dust and diesel can be produced, during the construction phase, which significantly impact the local air quality and climate change. Thus, the related construction rules should be followed, and the wind fencing or a fence filter may be installed in order to control the dust and diesel emission.
- Construction Noise: the increased traffic and construction operation will cause noise pollution to the local stakeholders as well as the surrounding wildlife. Thus, the Noise Control Bylaw specifying the hours and days that can make construction-related noise should be followed.

- Soils: in this project, a large part of the structure will be constructed underground. The uncertainties include soil composition, contaminated soil in the existing conditions and soil transportation.

2. 4 Sustainability Approach

The primary goal of this project is sustainability which represents that the environmental, financial and social impacts should meet the requirements and needs for sustainable development in Vancouver. The detention pond combined with a unique structure should comply with the green building standards as an open public community; a green roof will be added to the building, multiple accessories will be provided to the building to ensure the self-sufficient, and a layer of greenery will be designed along the outer edge of the detention pond. In addition, the on-site construction will use more of the natural, recyclable and less waste produced materials, such as wood, recycled plastic and bamboo.

Waste disposal on-site is also a significant issue for the sustainable requirement; the construction waste includes insulation, nails and the waste from site preparation phase, including tree stumps, dredging materials and rubble. A new construction can create five percent of all construction and demolition material in total, so the waste management for recycling and disposing those wastes is necessary. A detailed waste management plan should be provided before the project starting.

2.5 Stakeholder Engagement

TTG Design Team will collaborate with involved stakeholders to ensure the success of this project, and all of the stakeholders are listed as follows:

- SEEDS Sustainability Program (Social Ecological Economic Development Studies): a program with the aim of advancing campus sustainability strategies and projects, and this is the main client of the project
- Musqueam First Nation: the traditional territory is occupied in Vancouver and the surrounding areas
- UBC AMS (Alma Mater Society): the student-led and nonprofit organization at UBC
- UBC Staff: including all staff working in UBC
- CCM: the University of British Columbia Center for Comparative Medicine where is near to UBC campus and will be directly influenced by the project
- the Public: including the nearby residence, pedestrians and the Minister of Community who are responsible for long-range planning of the project design, and needs to manage sustainability, land use and community building programs.
- UBC Farm: near to the construction

A stakeholder engagement is the key for the entire project accomplishment, and the strategies must be held and followed during the project proceeding. The design should consider the satisfaction and requirements from all of the stakeholders. The engagements will be performed by being open-minded, cooperative and willing to listen to the public. Moreover, substantive discussion and reasonable changes for the design needs to be considered in order to accommodate the requests and concerns from the involved stakeholders.

3. Detention Pond Design Overview

TTG designed the detention pond based on the EPA SWMM model developed to sustain 100-year storm events. The dimension of the detention pond is 100 x 60 x 4.5 m, with a total storage capacity of 21,000 cubic meters even in the event of 100% valve blockage.

3.1 Methodology

To design the detention pond, TTG used the following methods. Firstly, an EPA SWMM model is developed from the GIS data to obtain the hydrographs and the maximum flow rates. After this step, the detention pond is then sized in excel after exporting all tables. The size and depth of the detention pond is determined in this step. The final step to ensure that the sizing of the detention pond is sufficient is by adding a detention pond into the SWMM model and set the designed parameters. The model is then analyzed to ensure that the water will not overflow.

3.1.1 Software Used for Design

The software used within TTG's detention pond design are EPA SWMM, Autodesk Revit Architecture, Autodesk Revit Structure, Sap2000, Navisworks, and Microsoft Project.

EPA SWMM

EPA SWMM is used to generate a model for the entire study area. The model is then analyzed to obtain the 100-year maximum flow rates as well as the hydrographs. After obtaining the previous information, the detention pond and the orifice could then be sized.

Autodesk Revit Architecture & Structure

The two Autodesk Revit software are used in modeling the detention pond with sizing obtained from EPA SWMM. The architecture drawings exported from Autodesk Revit Architecture as well as the detailed structural drawings exported from Autodesk Revit Structure are combined to obtain a final model.

Sap2000

Sap2000 is used by TTG to analyze the detention pond in the case of earthquake loading. The detention pond is considered as a one-story building.

Navisworks & Microsoft Project

TTG uses Microsoft Project to construct a detailed schedule for the construction of the detention pond. Then Navisworks is used to animate and analyze the entire construction process.

3.1.2 Key Components of Design

The key components of TTG's detention pond design are the inner four walls of the detention pond, the outer sedimentation basin that surrounds the interior storage pond, and a pump that discharges water in the case of valve blockage.

Interior Walls of the Detention Pond

The interior storage pond walls are designed based on the NBCC. The width of the storage pond is consisted of two walls of 60 m x 4.5 m with a thickness of 300 mm. The cover is 45mm, the longitudinal and horizontal rebars are 20M @ 400mm spacing. The confinements are 10M @ 600 mm.

Sedimentation Pond

Team TTG incorporated a sedimentation pond into the surrounding of the interior detention pond. The total length of the sedimentation pond is 328 meters with a

width of 6 meters. The height of water is kept as 1.2 meters. Therefore, with a discharge of 1.53 m³/s, the flow time is 1543.5 seconds, and the settling percentage is 100%.

Pump

The pump used by TTG in the detention pond to discharge water in the event of valve blockage. The pump has an inner diameter of 410 mm and a wall thickness of 3.6 mm. It provides a maximum flow of 25.5 L/min and is only activated in when valve blockage is detected.

3.1.3 Technical Considerations

To prevent the water within the pond from freezing during low temperature seasons, heating pads is to be added at the bottom of the detention pond. These heating pads will cause the water to stay above 0 degree Celsius.

Also, to prevent the concrete from freezing during setting, TTG uses low slump, airentraining concrete. Similarly, accelerators will be added as well to decrease the setting time.

3.2 Construction Plan of Detention Pond

The main sections for the construction of the detention pond are site excavation, installation of soil anchors, underground piping, concrete forming, concrete pouring, and backfill & compacting. Following chronological order, the detention pond excavation takes a total of 35 days, starting on May 10th, 2019 and ends on June 27th, 2019. The installation of the soil anchors occurs at the same time as the excavation and lasts 35 days in total. The forming of the detention pond is scheduled to happen the day after the excavation completes and takes a total of 30 days,

starting from June 28th, 2019 and ending on August 8th, 2019. On the day that the forming finishes, the pouring of concrete starts, and lasts for a total of 35 days, from August 8th, 2019 to September 25th, 2019. The final construction step for the detention pond is backing filling and compacting, which lasts for a total of 15 days, starting on September 26th, 2019 and ending on October 16th, 2019.

4. Building Structure Design Overview

The building structure in the middle of the detention pond is partially submerged underwater. The building is of 25 m in length and 16 m in width. It is a three-story building and has an overall height of 11.5 m measured from the datum at the bottom of the detention pond.

4.1 Methodology

To design the building structure, TTG used the following methods. At the start of the design process, a basic conceptual building design was created, along with simple drawings. Then, TTG built a first model in Autodesk Revit Architecture. After obtaining the favorable exterior design and dimensions, TTG started working on the structural designs. TTG designed four main sections for the structure of the building. Firstly, TTG designed the reinforced concrete slabs for each of the three stories. Then, TTG moved on to designing the reinforced concrete beams after obtaining the weight of the slabs. The columns that supports the beams are designed next, from the top floor down. Finally, after designing the columns on the first floor, the foundation of the building is designed. After designing all these components in Autodesk Revit Structural, the finalized construction drawings are extracted, and is provided in Appendix A of this report.

4.1.1 Software Used for Design

Similar to the detention pond design, the TTG also uses the same software to design the building structure. The software that the TTG used are within the design of the building (Sub-Mizu) are Autodesk Revit Architecture, Autodesk Revit Structure, Sap2000, Navisworks, and Microsoft Project.

Autodesk Revit Architecture & Structure

Similar to the detention pond, the design of the building uses the programs Autodesk Revit Architecture and Structure in the same way. First, a fully architecture model is developed. Then, a fully structural model is developed. Finally, the two models are combined to generate the final model that is included in the Appendix.

Sap2000

Compared to the detention pond, Sap2000 is used more thoroughly in the design of the building. First a simple 3D three-story model is created in Sap2000 to represent our building. Then, the model is analyzed using Linear-Modal, SRSS from the first mode to the third mode.

Navisworks & Microsoft Project

Similar to the design of the detention pond, TTG uses Microsoft Project to construct a detailed schedule for the construction of the building structure. Then Navisworks is used to animate and analyze the entire construction process.

4.1.2 Key Components of Design

The key components of design for the building Sub-Mizu are the interior slabs, beams, columns, and foundation. All designs are based on the NBCC and CSA Codes.

Interior Slab Design

The slab system for this building is consisted of only one type of one-way slab. The slab is of 240 mm thick and has tension reinforcement of 15M@200 mm to withstand a maximum moment of 63.36 kN.m. The thermal and shrinkage reinforcements are

of 15M@400mm. There is no need for shear reinforcements due to the fact that the concrete shear strength is higher than the maximum shear loading.

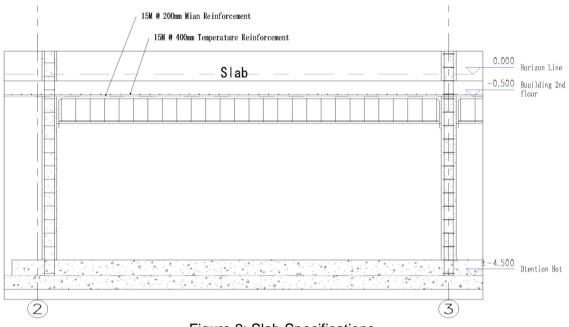
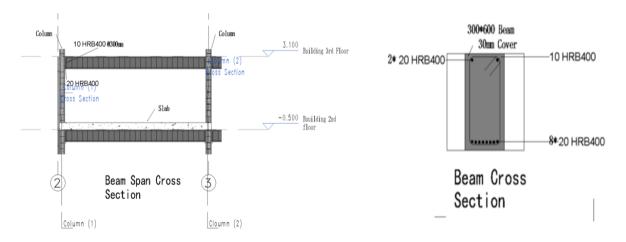



Figure 2: Slab Specifications

Interior Beam Design

TTG designed a one size fits all beam for this building. The size of the beam is 600 x 300 mm. The longitudinal reinforcements for tension are 8-20M in a two-layer layout. The shear reinforcement specification for this beam is 2-legged 10M@300mm spacing with 2-135-degree hooks at the top. The maximum moment this beam can withstand is 343.0 kN.m and the maximum shear force this beam can withstand is 235.9 kN.

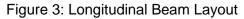


Figure 4: Beam Cross-section

Interior Column Design

TTG designed three types of columns for the building structure. The following figure shows the column layout. Columns 1, 2, 3, and 4 are Type I, columns 5, 6, 7, 8, 9, and 10 are Type II, and columns 11, and 12 are Type III.

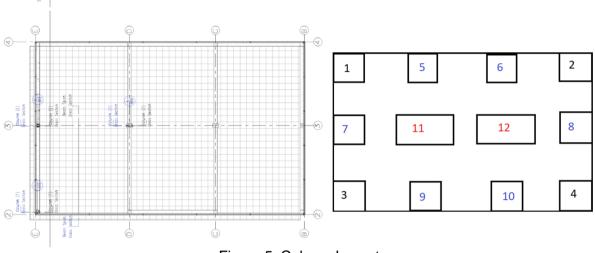


Figure 5: Column Layout

Type I Column: Type I columns have a size of 300 x 300 mm. The longitudinal steel reinforcements are 4-20M with stirrups of 10M@ 300 mm spacing. Type I columns can sustain a vertical load of 1057 kN.

Type II Column: Type II columns have a size of 300 x 300 mm. The longitudinal steel reinforcements are 6-35M with stirrups of 10M@ 300 mm spacing. Type II columns can sustain a vertical load of 2049 kN.

Type III Column: Type III columns have a size of 600 x 300 mm. The longitudinal steel reinforcements are 8-35M with stirrups of 10M@ 300 mm spacing. Type III columns can sustain a vertical load of 3923 kN.

Foundation Design

TTG designed four types of foundations for the building structure. The specification of each are given below.

Foundation I: Foundation I is to be connected to the bottom of columns 1,2,3 and 4. It has a size of $2.00 \times 2.00 \times 0.45$ m. The rebar reinforcement within this type of foundation is 6-20M at a spacing of 300 mm with a clear cover of 75mm.

Foundation II: Foundation II is to be connected to the bottom of columns 5,6,8 and 10. It has a size of $2.00 \times 2.00 \times 0.65$ m. The rebar reinforcement within this type of foundation is 6-25M at a spacing of 300 mm with a clear cover of 75mm.

Foundation III: Foundation III is to be connected to the bottom of columns 7 and 8. It has a size of $2.50 \times 2.50 \times 0.65$ m. The rebar reinforcement within this type of foundation is 5-20M at a spacing of 450mm with a clear cover of 75mm.

Foundation IV: Foundation IV is to be connected to the bottom of columns 11 and 12. It has a size of $3.00 \times 3.00 \times 0.90$ m. The rebar reinforcement within this type of foundation is 6-35M at a spacing of 450 mm with a clear cover of 75mm.

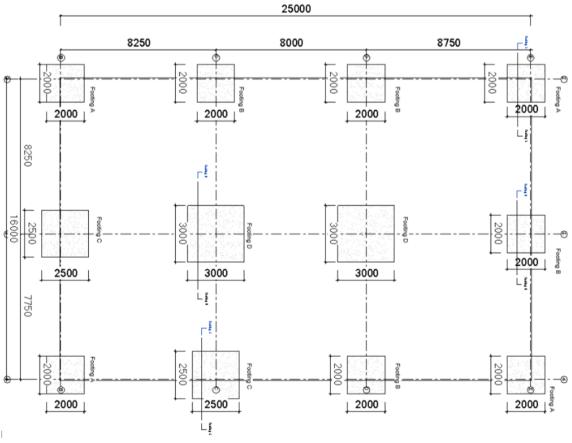


Figure 6: Footing Layout

4.1.3 Technical Considerations

To prevent the water within the pond from freezing during low temperature seasons and cause a high compressive stress at the first floor of the building, thermal pads are placed at the bottom of the detention pond.

At the same time, leakage prevention and monitoring on the first floor will be a continuing process, with sensors at the bottom of every glass window to detect any first signs of leakage.

4.2 Structural Design of the Building

The accuracy of load combination has a direct impact on the safety and economic efficiency of the structural design. So, it is important to reasonably select probable loads in this part. The load analysis in this project consists of vertical dead load, vertical live load, snow load, and wind load.

4.2.1 Vertical Dead Load

The vertical dead load mainly refers to the self-weight of the structure. Several assumptions are made in this part to obtain the estimated dead loads. Firstly, the main material used in the structural system in the Sub-Mizu building is concrete, and the density varies between 2400-3000 kg/m³. Therefore, the assumed concrete density in this project is the average of these numbers, which is 2700 kg/m³. Secondly, the slab thickness and column section are 250 mm and 300x300 mm respectively in this project. Finally, the beam section 300x600 mm is used in this project. After taking these assumptions into account, the dead load of the building Sub-Mizu is 11830.36 kN. Sample calculations are provided in Appendix D-4 Load Analysis.

4.2.2 Vertical Live Load

There are many types of vertical live loads, which includes all service loads. For this project, the vertical live load is estimated according to NBCC Table 4.5.1.3, specified uniformly distributed live loads on an area of floor or roof. By checking the museums' requirement, the live load is 4.8 KPa. Therefore, the total live load in the Sub-Mizu is 5578.8 kN. Sample calculations are provided in Appendix D-4 Load Analysis.

4.2.3 Snow Load

Snow load is a vertical load that acts upon roofs. According the NBCC 2010 4.1.6.2, the snow load is calculated from the equation: S=Is[Ss(CbCwCsCa)+Sr]. By checking NBCC, the importance factor Is=1, Ss=1.1 kPa, and Sr=0.2 kPa. Assuming all "C" factors are 1, the calculated snow load is 1.3 kPa.

4.2.4 Wind Load

Wind load is a lateral load mainly acting on the windward side of the building. The load equation is $P=Iw\cdot q\cdot Ce\cdot Cg\cdot Cp$ according to NBCC 2010 4.1.7.1. By checking the NBCC 2010 Table C-2, q=0.57 for 1/50 years. Assuming P=2.6q, so the calculated wind load is 1.482 kPa.

4.2.5 Load Combination Analysis

By checking the NBCC 2010 Table 4.1.3.2A, TTG calculated all cases to find the governing case. After calculation, the governing load combination is found to be 1.25D+1.5L+0.5S, and the factored total vertical load is 23416.15 kN.

4.3 Building Enclosure Design

The primary function of building enclosure is to physically separate the interior and exterior environments, providing a comfortable indoor living environment. Four control mechanisms are used to control the energy flows, including water, thermal, air and vapour control.

4.3.1 Water Control

Due to constant rainfall events in Vancouver, water control is the primary concern for both the building construction and operation. Inadequate design may cause serious damage to the wall, which reduces the service life of the whole building. The control mechanisms include deflection, drainage, drying and durable materials. Since curtain walls are used for the entire first floor, the glass can effectively control the water. For the second and third floors, sheet metal flashings are used to deflect the water around windows. Shingles are used on the cladding to act as the first layer to deflect water for the exterior wall. Two additional drainage planes are designed to avoid water penetration. The first plane is between the structure wall and the insulation layer, and the second plane is between the insulation layer and the cladding.

4.3.2 Heat Control

A proper heat control can minimize the energy losses and gains through the enclosure, which reduces the load on building space conditioning systems and reduces the capital cost of unnecessary heating and cooling. The insulation layer is put out of the vapour control layer to avoid the condensation in the wall. Several insulation materials are compared, including stone wool, fibreglass and polyurethane foam. Finally, the 2-pound high density closed-cell polyurethane foam is chosen for

this project because it has fairly higher thermal resistance, and it can be used for both wet and dry locations. It can also be used for both the attics below sheathing and the below-grade wall.

4.3.3 Vapour and Air Control

Due to the distinct nature of this project that the building is surrounded by a detention pond filled with water throughout the year, the temperature change will generate vapour which may intangibly diffuse into the wall. Several effective vapour barrier materials are compared, including polyethylene sheet, external paints and selfadhesive membranes. For this project, polyethylene sheet is chosen because it is not only a reliable material commonly used for similar projects, but it is also used as air barrier.

4.3.4 Materials and Damage Functions

During winter, the local temperature in Vancouver may sometimes drop below zero degree, so the damages caused by constant freeze-thaw cycles need to be prevented. Also, water with salts and minerals in the pond will evaporate, and the residual salts can cause the spalling of the foundation structure. Therefore, special treated brick and concrete are used to avoid being deteriorated. In addition, fasteners and any other steel components need to be coated with zinc to prevent corrosion.

4.3.5 Assembly

For the connections between the exterior cladding and the inner wall, isolated galvanized clips are used for this project because they have low thermal

conductance, which reduces the thermal bridging effect and saves a lot of heat energy. This roof for this project is a traditional low-slope roof with 2% slope to provide drainage. On top of the control layers, filter fabric and ballast are designed to protect the roof.

4.4 Construction Plan of the Buidling

The main sections for the construction of the building structure are slab construction, beam construction, column construction, wall construction, glass wall construction, roof construction, stair forming, and entrance connection construction. Following chronological order, the slab construction takes a total of 50 days, starting on October 21th, 2019 and ends on December 27th, 2019. The beam construction takes a total of 50 days, starting on October 21th, 2019 and ends on October 21th, 2019 and ends on December 27th, 2019. Similar to the slab and beams, the column construction takes a total of 50 days, starting on October 21th, 2019 and ends on December 27th, 2019. The concrete wall construction takes a total of 45 days, starting on December 30th, 2019 and ends on February 28th, 2019. The glass wall installation takes a total of 20 days, starting on December 30th, 2019 and ends on January 24th, 2020. The roof construction takes a total of 15 days, starting on May 11th, 2020 and ends on May 29th, 2020. Finally, the entrance connection construction takes a total of 40 days, starting on October 17th, 2020 and ends on December 11th, 2020.

5. Maintenance Specification and Plans

5.1 Planning and Design Phase

Operation and Maintenance (O&M) activities should start at the planning and design phase and continue through the building life cycle. During this stage, professional maintenance persons should get involved and identify maintenance requirements. For example, it is necessary to identify equipment access requirements, monitor construction conditions, and check electrical and mechanical connections. In addition, an independent (O&M) team should be involved, and the team can represent the project development team so that specific problems related to O&M can be delivered and fixed on time.

5.2 Construction Phase

For the purpose of ensuring efficient O&M, it is highly recommended that the O&M team develop official and accurate maintenance documentations related to the building and update in a timely manner. Furthermore, a detailed manufacturer manual should be established in order to install and maintain equipment accurately. The manual should be reviewed by the owner as well as the consultant team, and it should be updated in different construction phases.

5.3 Life-Cycle Operation and Maintenance

Due to the reason that the O&M includes structure elements of the building and detention pond, a knowledgeable and well-organized management team should be hired. Moreover, to maintain a specific equipment or structure element, well- trained and skilled workers are also needed. The purpose of the hired O&M team include operating, maintaining, and improving the equipment or facilities to achieve reliable, safe, and energy efficient performance. By doing this, the designated usage life can be accomplished. Additionally,

O&M management team should apply and manage day-to-day maintenance activities in order to keep the facilities running normally.

6. Cost Estimation

Based on the final design detailed in the previous section, a Class B(Substantive) cost estimate was prepared. The total cost of the project is comprised of the first costs, including permitting, project management, construction, contingency, PST, GST and the annual operating and maintenance fees. A breakdown of these costs is summarized in Table 2 below. A detailed list of cost estimation has been provided in Appendix B Class B Cost Estimation Detail

Cost Item	Contingency	Yearly Cash Flow	Total Cost 75-year lifecycle	
Captial Cost	Captial Cost			
Environmental Considerations	25%	N/A	\$25,000	
Permitting & Planning	20%	N/A	\$19,000	
Construction	15%	N/A	\$2,772,000	
Operation & Maintenance Cost				
Dentention Pond	25%	\$9,375	\$703,000	
Building Structure	25%	\$5,625	\$422,000	
Subtotal \$3,941,000				
GST(5%) \$197,000				
PST(7%) \$2,75,000			\$2,75,000	
Total Lifecycle Project Cost \$4,413,000			\$4,413,000	

Table 2:	Life-Cvle	Cost Estimation	ì
10010 21			•

6.1 Capital Cost Estimation

Table 3 and 4 summarize the contractor costs to fully implement the proposed design of the reservoir and distribution system. The costs are broken into majo divisions as per specified in the Master Municipal Construction Documents(MMCS). All estimates are exclusive of PST(7%), GST(5%).

Table 3: Detention Pond Cost Estimation

CSI Division	Estimated Cost
01 General Requirements	\$292,000
03 Concrete	\$104,000
31 Earthwork	\$1,135,000
33 Utilities	\$5,000
Subtotal	\$1,536,000

Table 4:Building Structural Cost Estimation

CSI Division	Estimated Cost
01 General Requirements	\$359,000
03 Concrete	\$46,000
05 Metals	\$2,000
12 Equipment	\$26,000
21 Fire Suppression	\$52,000
23 Heating Ventilating and Air Conditioning	\$100,000
26 Electrical	\$141,000
33 Utilities	\$554,000
Subtotal	\$1,280,000

6.2 Operation & Maintenance Cost Estimation

The lifespan of the project is anticipated to be 75 years. Therefore, the operating and maintenance costs are estimated based on the approximate costs on a one-year span. Table 5 lists the detailed estimates of each component including contingency, GST and PST.

ltem	Cost over 1-year		Cost over Lifecycle	
Detention Pond	\$	9,375	\$	703,125
Building Structure	\$	5,625	\$	421,875
Total Operation & Maintenance Cost:			\$	1,125,000

7. Construction Schedule

A final schedule has been developed for the entire project based on a start day on May 1st, 2019 and a work schedule of 5 days a week. The detailed project schedule is provided in Appendix C Project Schedule Detail

A summary of the construction milestone date is as follow:

- Starting May 1st, 2019, site preparation on
- Foundation excavation is estimated to be started on May 10th, 2019 and be finished in 114 workdays. This phase is expected to be finished on Oct 16th, 2019.
- Building construction is expected to be started on Oct 17th, 2019 and to finish in 162 workdays on May 29th,2020.
- Detention pond construction is expected to be started at the same time with building construction and finished construction within 40 workdays on Dec 16th, 2019.
- Finishing is estimated to be started after roof construction on May 11th, 2020 and to be finished in 63 workdays. The expected commission date is August 6th, 2020.

The schedule was made under the assumption that all the phases can start on time.

8. Conclusion

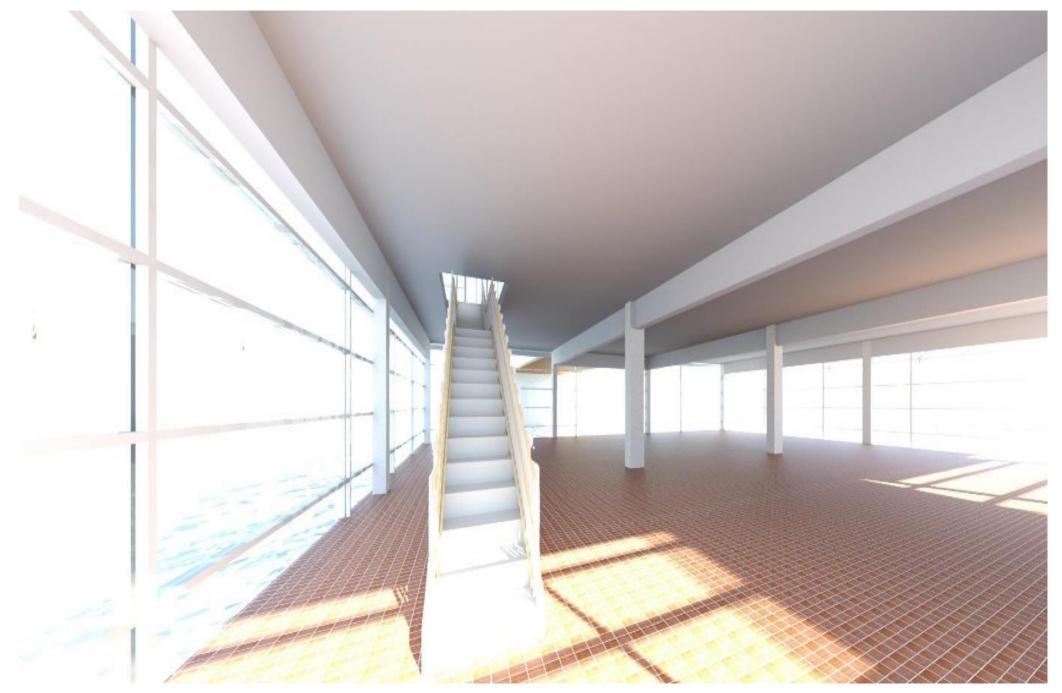
The primary goal of this design is to present a potential solution to the erosion of the UBC CCM surrounding cliffs, flooding caused by large storms, and the quality of stormwater leaving campus. The main objective of this project is to scope and design a multi-use detention facility for UBC Center for Creative Medicine. The design decision is made by doing a geotechnical investigation and data collection.

The final design is to build a detention pond with partially submerged green building. The total storage capacity is approximately 20700 m³ which are able to hold the entire 100-year storm event precipitation. The building is fully self-sufficient and always partially submerged under water.

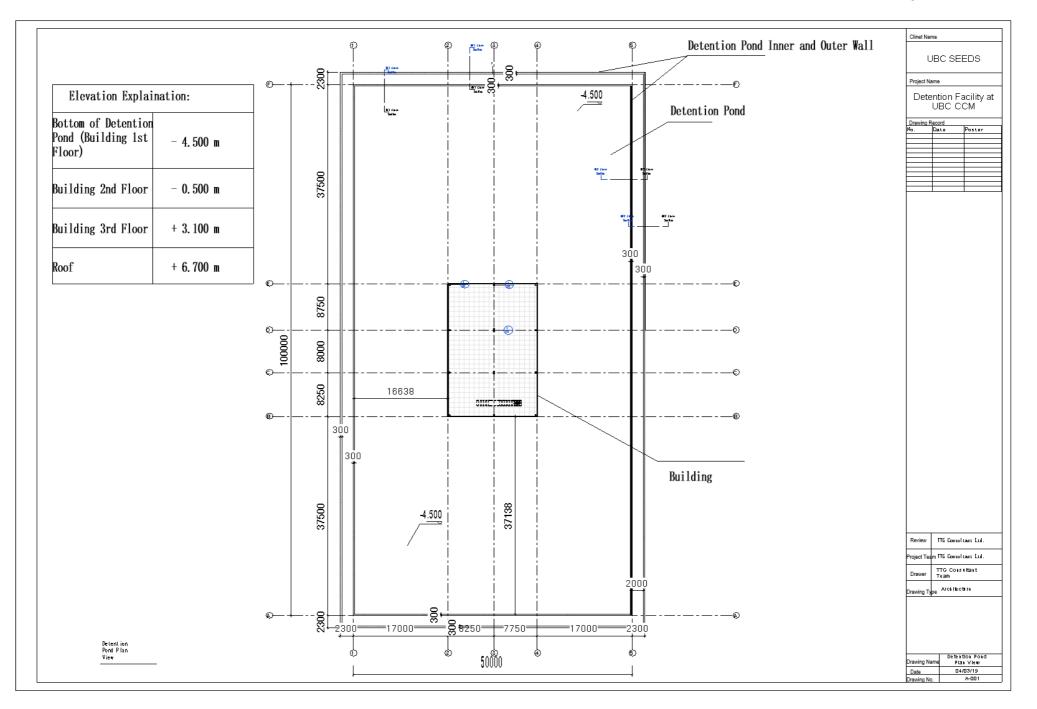
Computer software such as SWMM is used to develop the stormwater management; Revit and SAP2000 are used to develop models and run simulations during the design process to generate a better image of the future implementation.

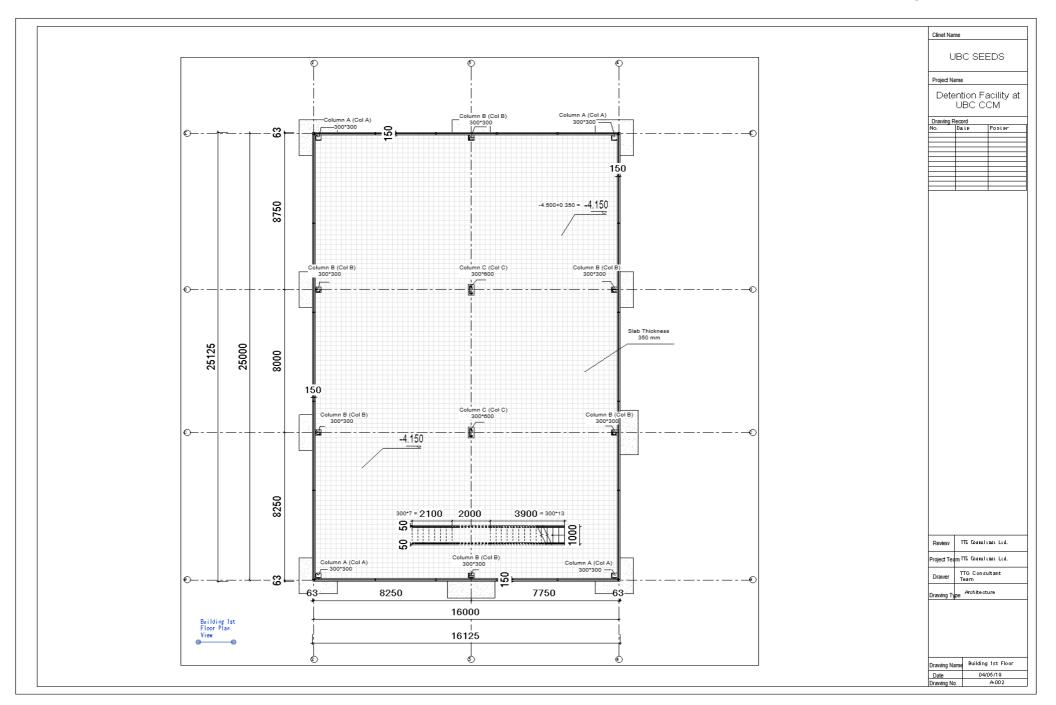
Furthermore, the total estimated span of this project construction is 15 months which is scheduled to start from May 1st, 2019 to August 6th, 2020. The life-cycle cost of the project is estimated to be \$4.4 million.

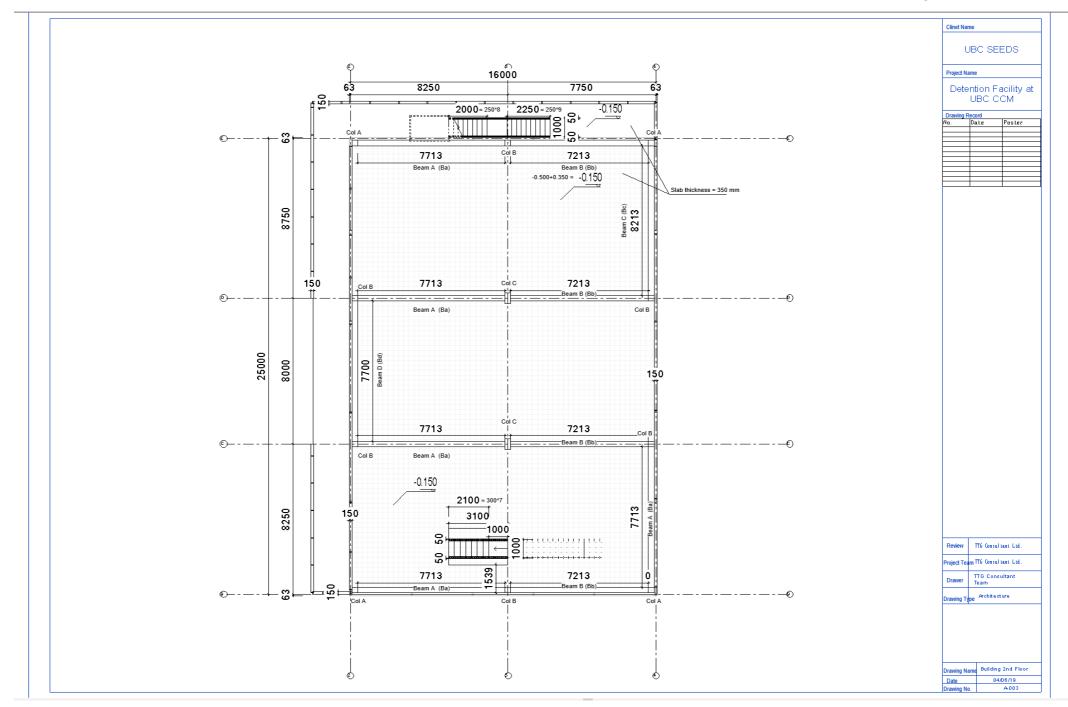
Appendix A Construction Drawings

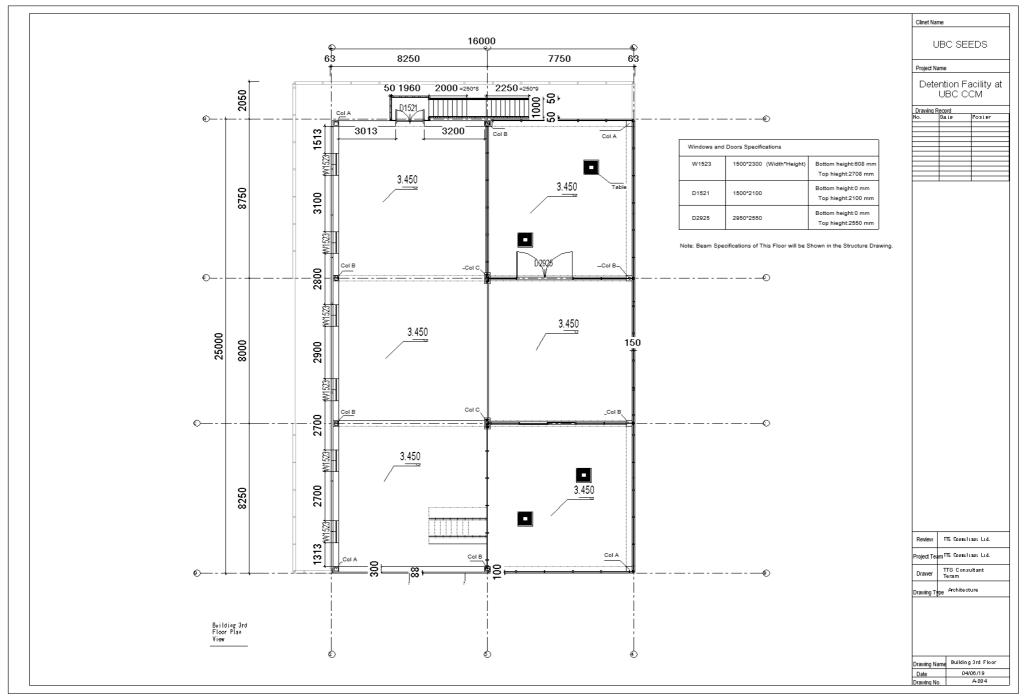

Appendix A Construction Drawings

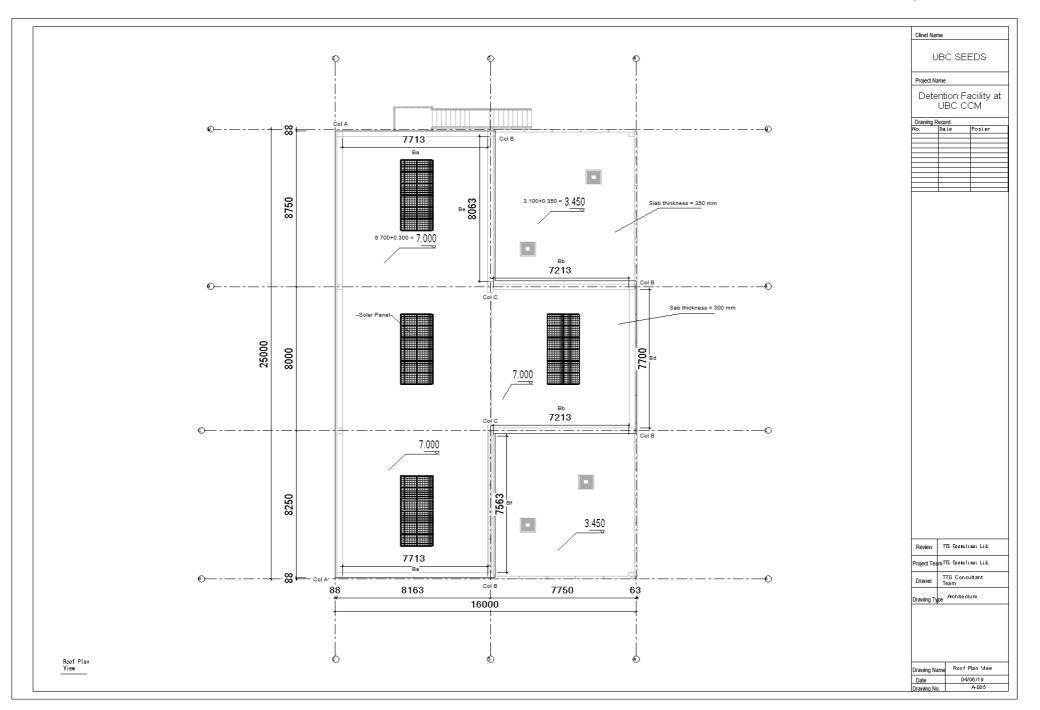
Appendix A-1 Architectural Drawings

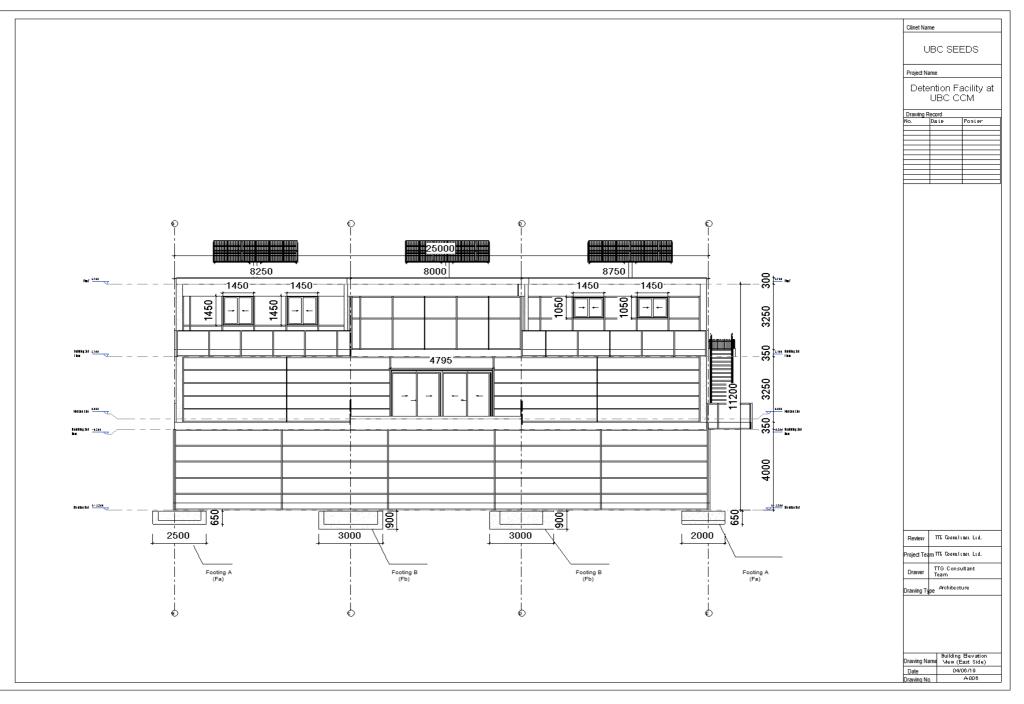


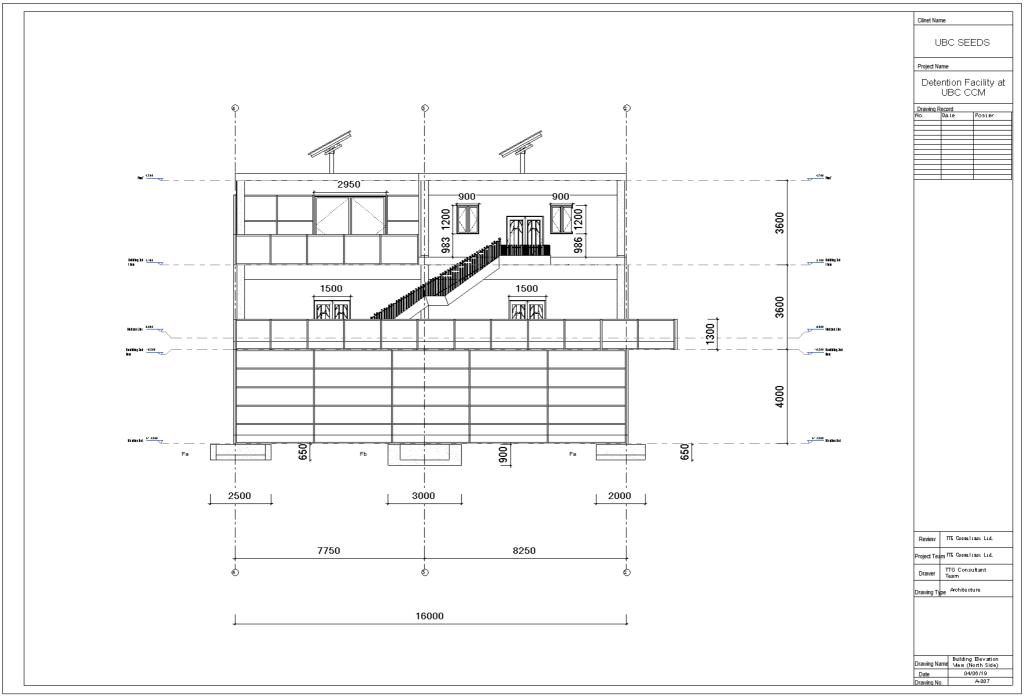


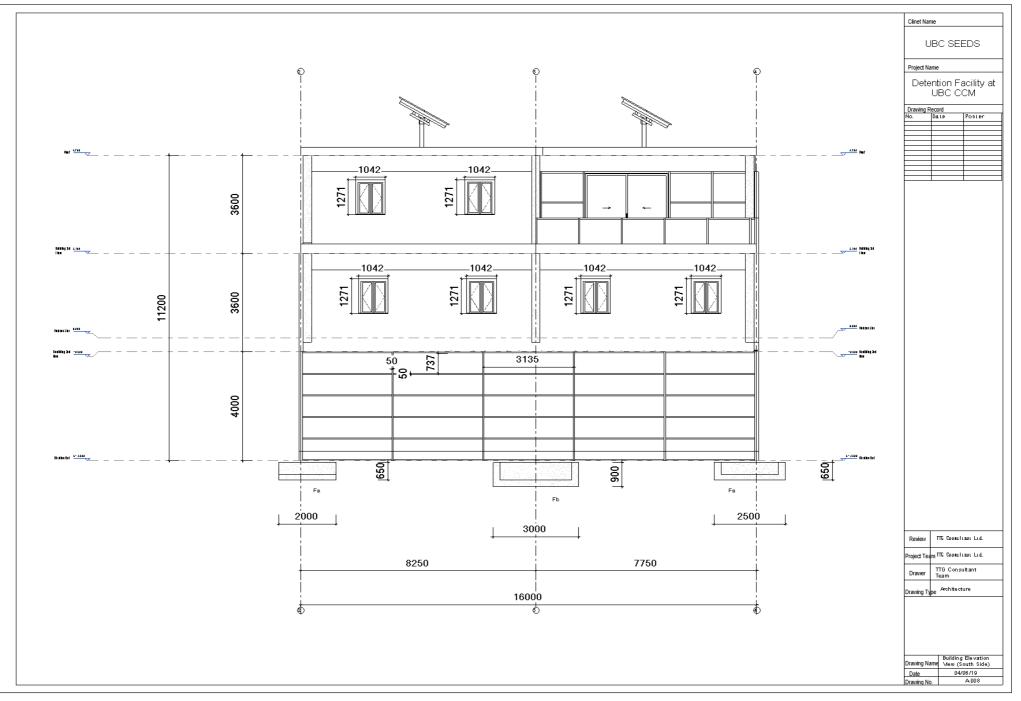

STTG

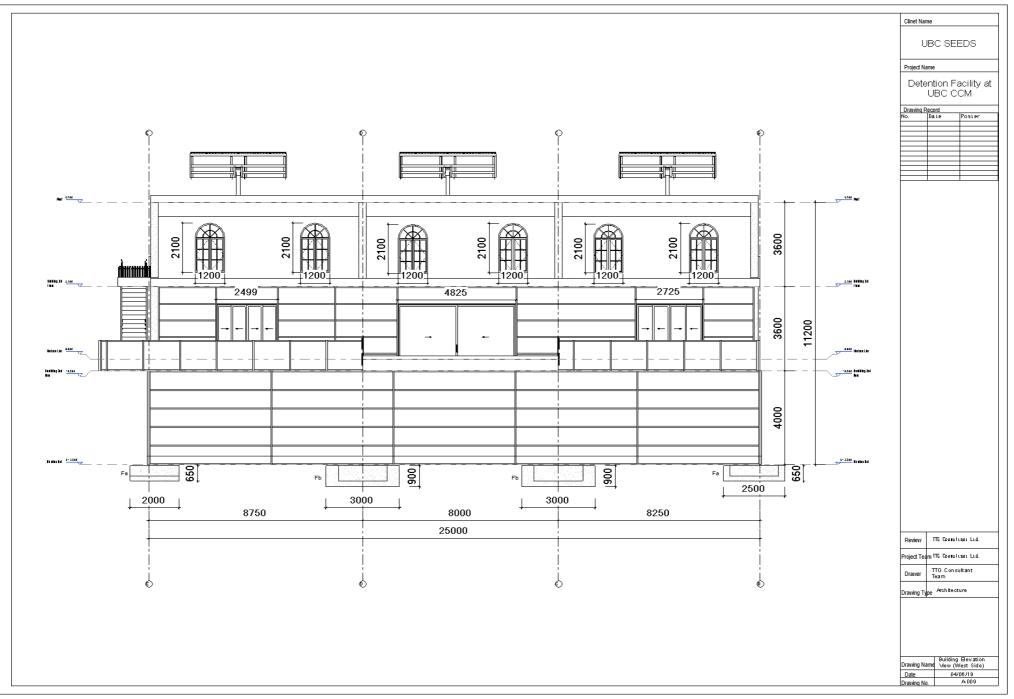

Detention Facility for UBC CCM

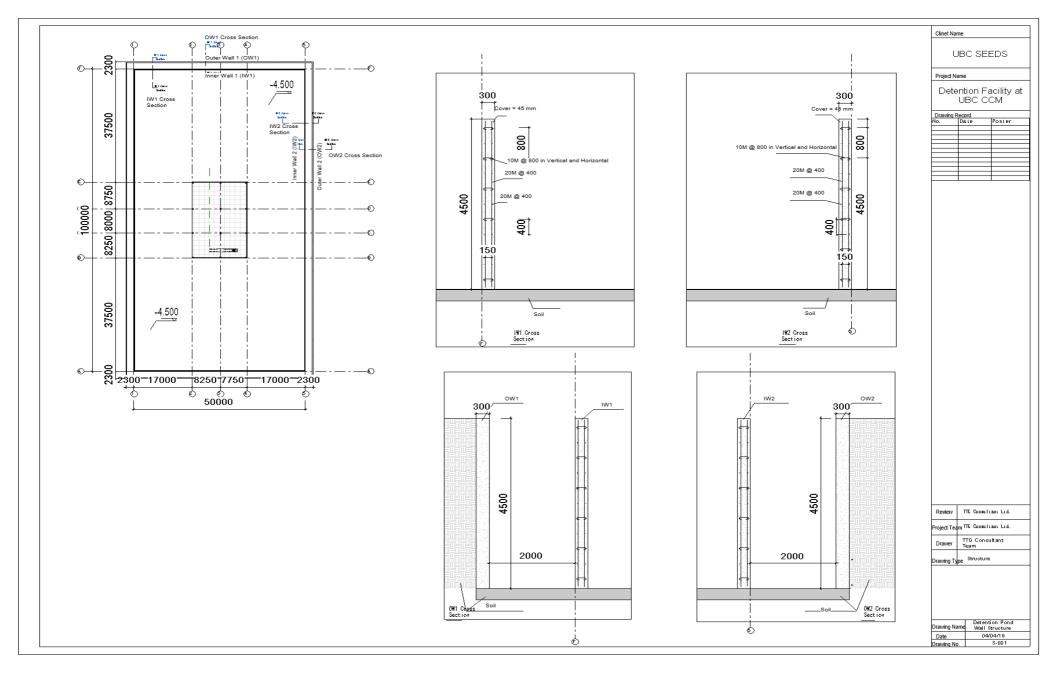

General Notes:	GENERAL MATERIALS:	6. CONCRETE PLACED UNDER WATER SHALL CONFIRM TO CAN/CSA-A23.1.	7. KEEP CONTINUOUSLY MOIST ALL EXPOSED NON-FORMED SURFACES FOR A	Clinet Name
	1. DELIVER MATERIALS TO JOB SITE IN DRY CONDITION. KEEP MATERIALS DRY AND CLEAN UNTIL USE.	7. FOOTINGS CAST DIRECTLY INTO EXCAVATIONS (WITHOUT SIDE FORMS) SHALL NOT BE LARGER THAN SHOWN BELOW:	MINIMUM OF SEVEN CONSECUTIVE DAYS AFTER PLACEMENT OF CONCRETE UNLESS NOTED OTHEREWISE. 8. ALL EXPOSED CONCRETE EDGES ARE TO	UBC SEEDS Project Name Detention Facility at
SPECIFICATIONS. 2. THE CONTRACTOR FOR ANY PORTION WORK SHALL VISIT THE SITE AND SHALL BE THOROUGHLY FAMILIAR WITH ALL THE PHICAL FEATURES THAT MAY AFFECT THE WORK IN ANY WAY.	2. ALL CEMENT TO BE PORTLAND BLAST FURNACE SLAG CEMENT TO CAN-A326 BLENDED HYDRAULIC CEMENTS CONSISTING 75% NORMAL TYPE 10 PORTLAND CEMENT AND 25% CEMENTITIOUS HYDRAULIC SLAG. 3. ALL REINFORCING STEEL TO BE GRADE 400 DEFORMED BARS TO CAN/CSA G30.18.		HAVE THREE-QUARTER (3/4") CHAMBER UNLESS NOTED OTHERWISE. 9. WHERE NEW CONCRETE IS TO BE PLACED AGAIST EXISTING CONCRETE, EXISTING CONCRETE MUST BE THOROUGHLY CLEANED TO REMOVE OIL, GREASE AND DIRTAND BE SURFACE 'CHIPPED' A MINIMUM OF ONE-HALF (1/2") INCH PRIOR TO PLACEMENT OF NEW	
TO SUIT EXISTING CONDITIONS.	4. DISPOSAL OF ALL EXCAVATED MATERIAL SHALL BE OFF-SITE OTHER THAN APPROVED BACKFILL.	CONCRETE:	CONCRETE UNLESS NOTED OTHERWISE ON DRAWINGS. APPLICATION OF AN APPROVED BONDING AGENT SHALL BE APPLIED AT ALL INTERFACES BETWEEN NEW AND OLD CONCRETE.	
THE STLE GLEAN OF ON COMPLETION OF	ABBREVIATIONS:	1. ALL CONCRETE SHALL CONFIRM TO CSA STANDARD A23.A (LATEST EDITION) HAVING A MINIMUM COMPRESSIVE STRENGTH AS SHOWN BELOW (UNLESS NOTED	10. PROVIDE HOT OR COLD WEATHER PROTECTION WHEN REQUIRED AS SPECIFIED IN CAN3-A23.1.	
5. CONSULTANT MUST APPROVE ALL DEVIATIONS FROM THE WORKING DRAWINGS.	BaBEAM A FaFOOTING A	OTHERWISE). 2. ALL CAST-IN-PLACE CONCRETE SHALL CONFIRM TO THE LATEST EDITION OF CSA	11. VIBRATE ALL CONCRETE. ENSURE ALL CONCRETE IS DENSE, FREE OF HONEY COMBINING, AND THAT NO SEGREGATION OCCURS.	
THE CONTRACTOR MUST KEEP AN ACCURATE RECORD OF ALL CHANGES FROM THE ORIGINAL INFORMATION SHOWN ON THE CONSTRUCTION DRAWINGS.	DDOOR	STANDARD A23.1, 'CONCRETE MATERIALS AND METHODS OF CONCRETE CONSTRUCTION'. 3. SUBMIT CONCRETE MIX DESIGN TO	12. ENSURE ALL REBAR IS CLEAN SECURELY HELD IN CORRECT LOCATION DURING PLACING.	
6. ALL CONSTRUCTION SHALL CONFIRM TO		ENGINEER PRIOR TO PRODUCTION. NO WATER SHALL BE ADDED TO THE CONCRETE	CONCRETE PROPERTIES	
THE LATEST EDITION OF THE FOLLOWING: OCCUPATIONAL HEALTH AND SAFETY ACT;	FOUNDATIONS:	AT THE SITE.	ELEMENT COMPRESSIVE STRENGTH (MPa) EXPOSURE 28 DAYS U.N.O. CLASS	
THE BC BUILDING CODE AND THE NATIONAL BUILDING CODE.	1. BEARING SURFACES MUST BE APPROVED BY THE SOILS ENGINEER IMMEDIATELY PRIOR	4. THE OWNER WILL EMPLOY A TESTING COMPANY TO CONDUCT STRENGTH, SLUMP,	FOOTINGS 30 MPa N SLAB-ON-GRADE 30 MPa N (INTERIOR)	
	TO CONSTRUCTION.	MATERIAL AND AIR ENTRAINED TESTS ONCE FOR EVERY DAY CONCRETE IS POURED. STRENGTH TEST SHALL INCLUDE THREE	INPLEXICAL SLAB-ON-GRADE (EXTERIOR) 30 MPa C-2	
CONTRAT ENGINEER FOR REVIEW AND	2. REFER TO FUNDATION SAMPLE CALCULATIONS FOR OTHER SPECIFIC DESIGN	CYLINDERS, ONE TESTED AT 7 DAYS AND TWO TESTED AT 28 DAYS IN ACCORDANCE	RETATINING/ FOUDATION 30 MPa F-2 WALLS	
	REQUIREMENTSFOR FOOTING, SOIL SLOPES, FROST PROTECTION, MINIMUM COVER, ETC.	WITH CAN3-A23.2. SLUMP AND AIR CONTENT TESTS SHALL CONSIST OF ONE SAMPLE EACH IN ACCORDANCE WITH CAN3-23.1 AND	GRADE BEAMS 30 MPa N	
	3. UNLESS OTHERWISE SHOWN, CENTER FOOTINGS BELOW COLUMNS AND WALLS.	CAN3-A23.2.	REINFORCING STEEL:	Review TTG Coosul taot Ltd.
9. DO NOT SCALE THESE DRAWINGS.	4. FOOTING ELEVATIONS, IF SHOWN, ARE FOR BIDDING PURPOSES ONLY, ARE NOT FINAL,	5. ALL CONCRETE THAT WILL BE EXPOSED TO WEATHER SHAA HAVE A 5 TO 7% AIR ENTRAINMENT AT TIME OF PLACING.	1. LAP ALL REINFORCING AS PER RSIO MANUAL, CLASS "B" TENSION LAP.	Project Team TTG Cossul Land Ltd. Drawer TTG Cossultant Team
	AND MAY VARY ACCORDING TO SITE CONDITIONS OR AS REQUIRED BY SERVICES. ALL FOOTINGS MUST BE TAKEN TO A BEARING LAYER APPROVED BY THE SOIL ENGINEER.	6. BULL FLOAT CONCRETE SURFACES AND PROVIDE A LIGHT THOWEL FINISH TO PRODUCE A SMOOTH NON-SLIP SURFACE FREE FROM RIDGES, VOIDS AND MACHINE MARKS. EXTERIOR CONCRETE WALKING SURFACES SHALL HAVE A LIGHT BROOM	2. INTERSECTING REBAR SHALL BE TIED TOGETHER USING NO.16 U.S. WIRE GAUGE OR HEAVIER ANNEALED WIRE OR AN APPROVED PATENTED TYING SYSTEM.	Drawing Type Streetere
	5. BEARING SURFACES MUST BE PROTECTED FROM FREEZING BEFORE AND AFTER FOOTINGS ARE POURED.	FINISH TO CONCRETE A NON-SLIP SURFACE. PROVIDE ROUGH SURFACE AT COLD JOINTS.		General Drawing Name Requirement Date D4/03/19 Drawing No. 000

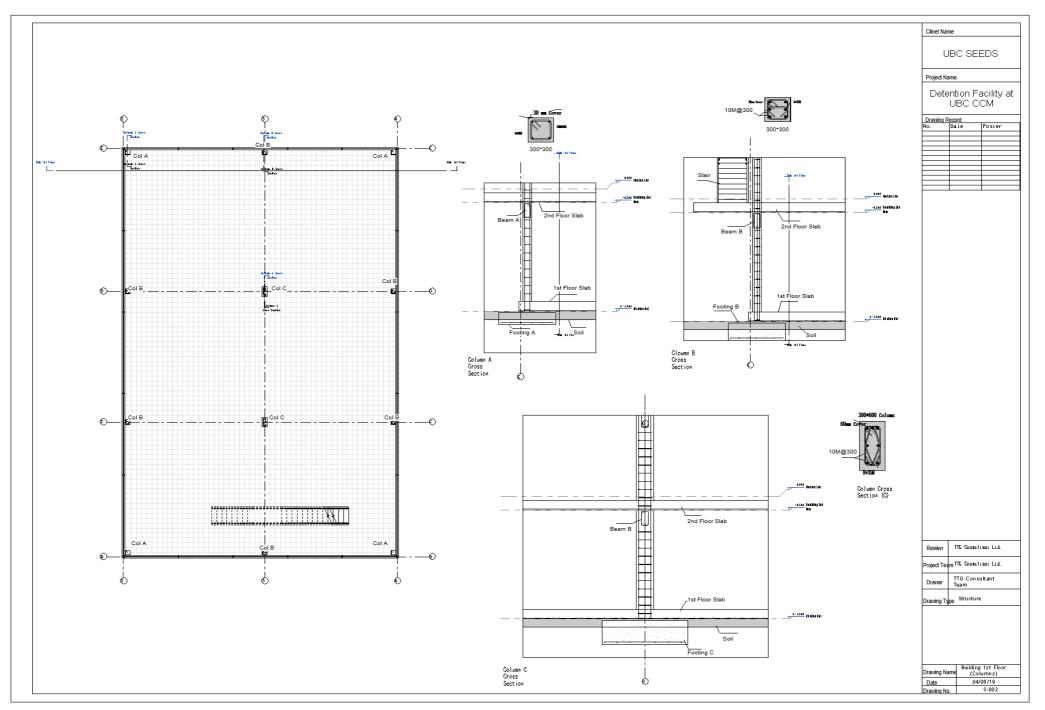


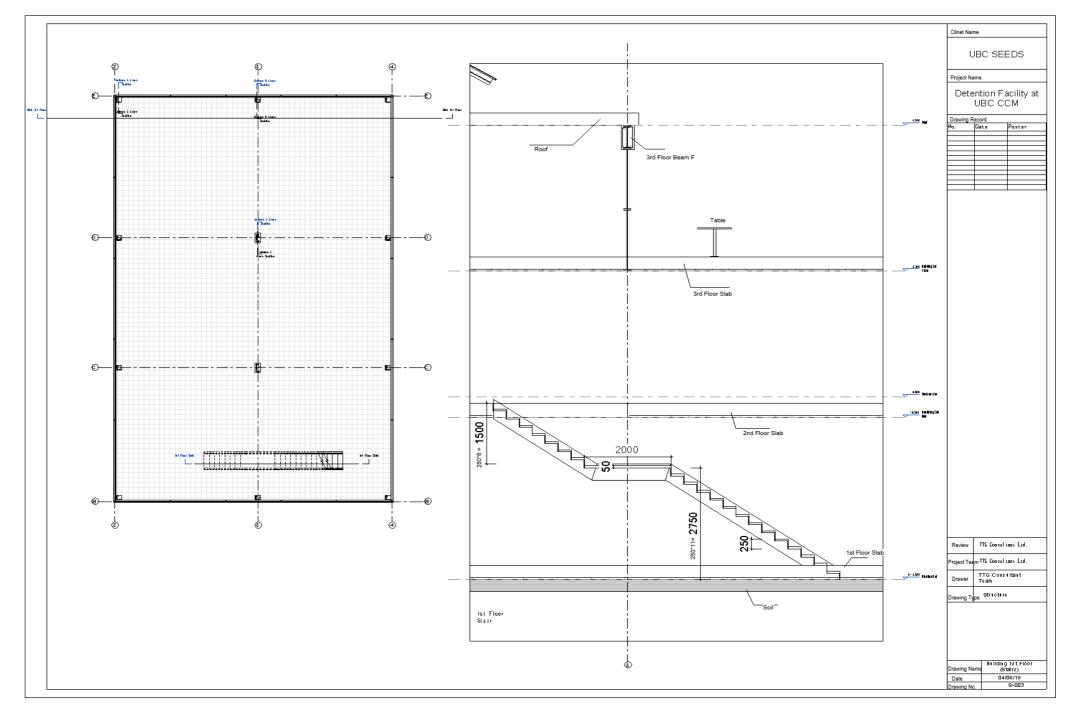




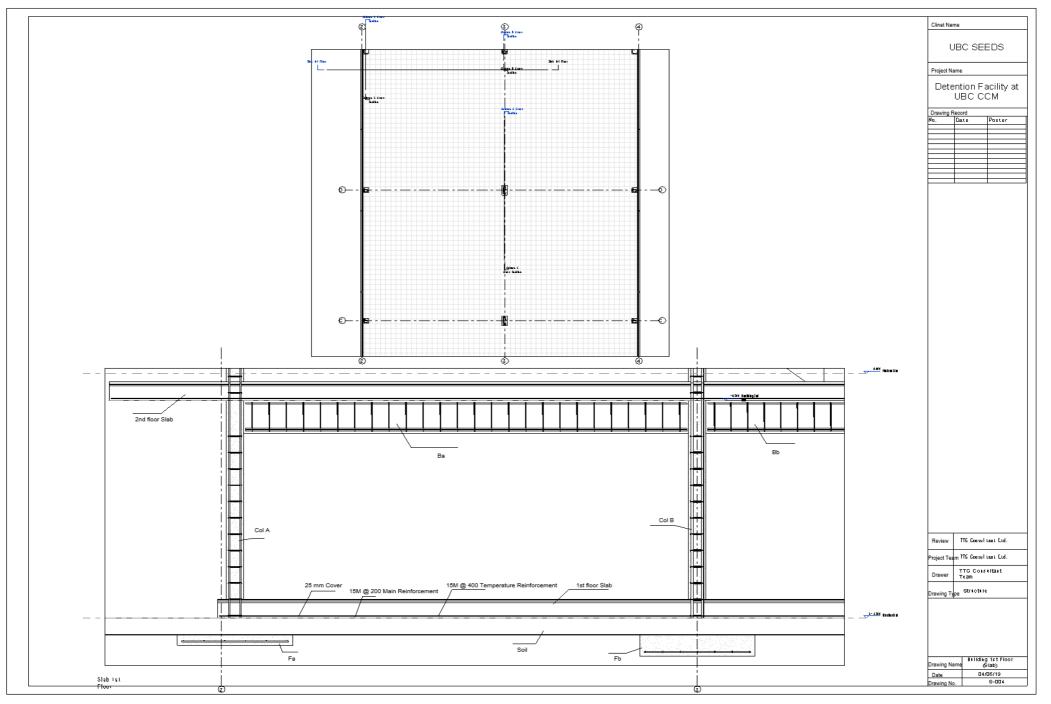


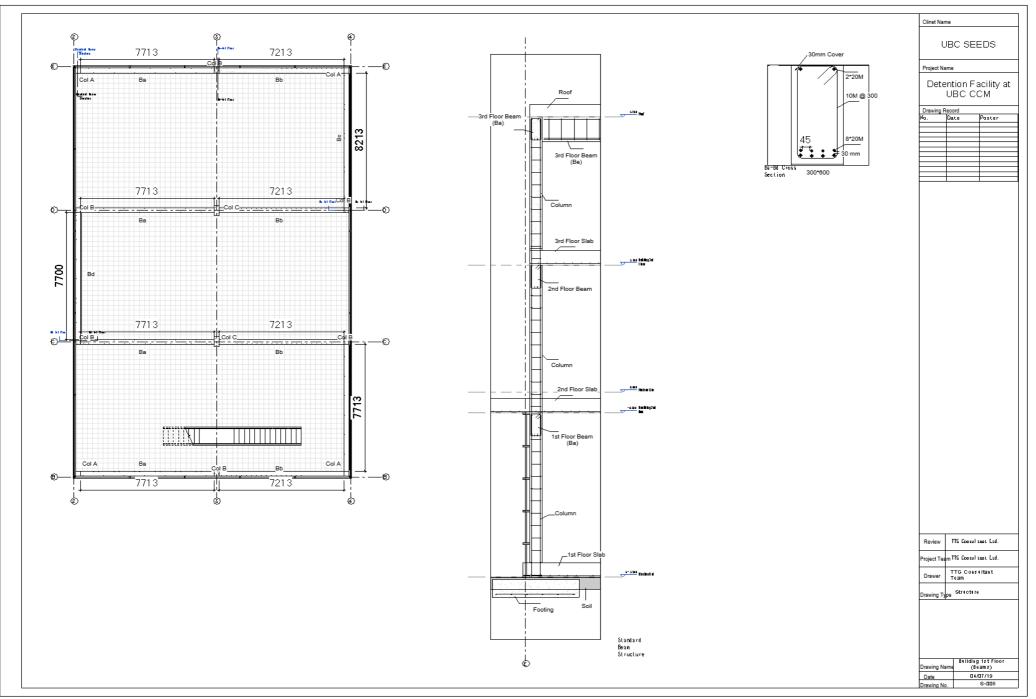


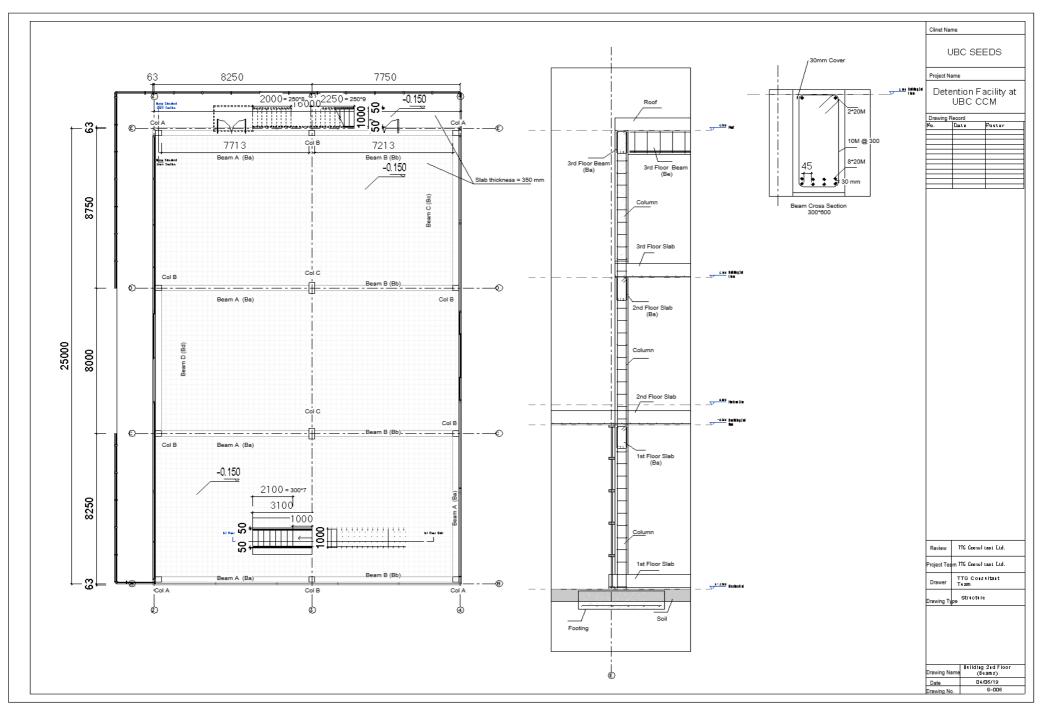


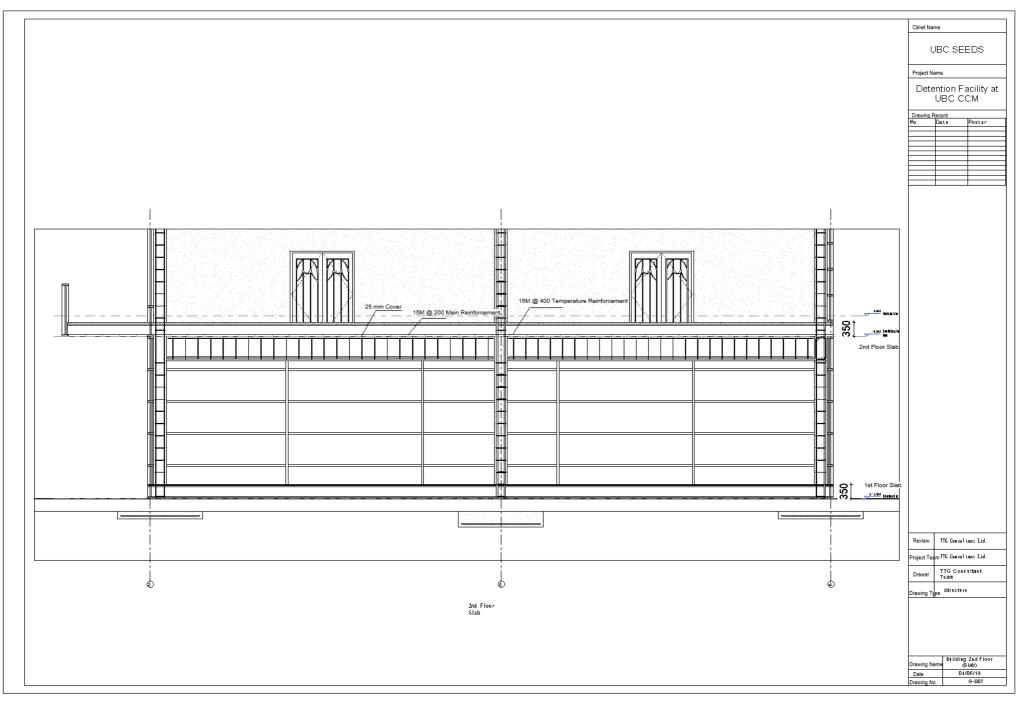


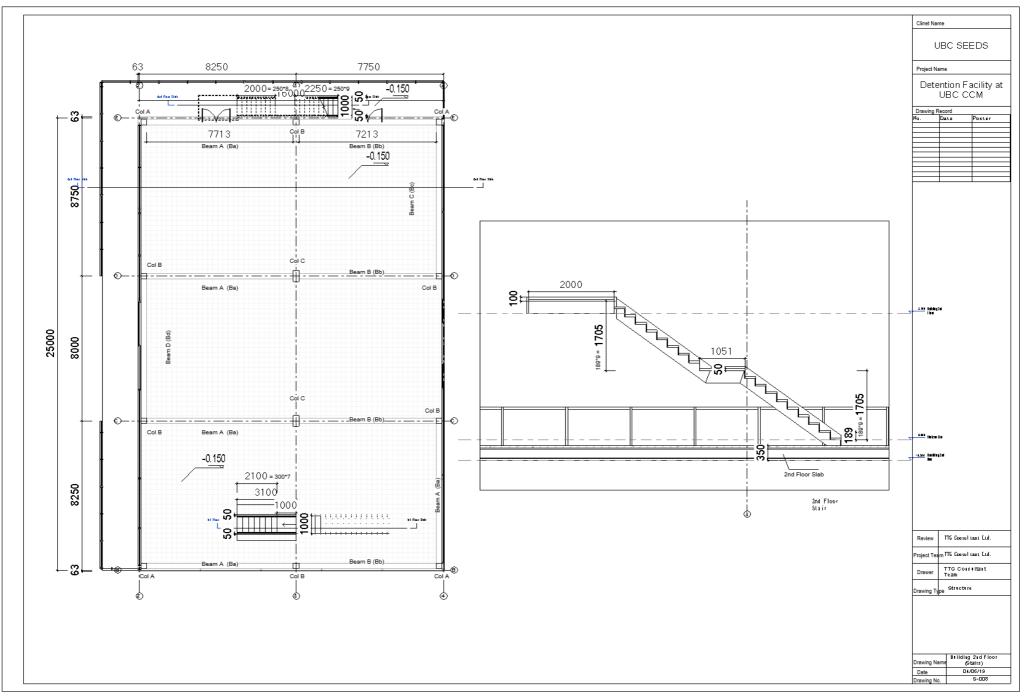
Appendix A-2 Structural Drawings

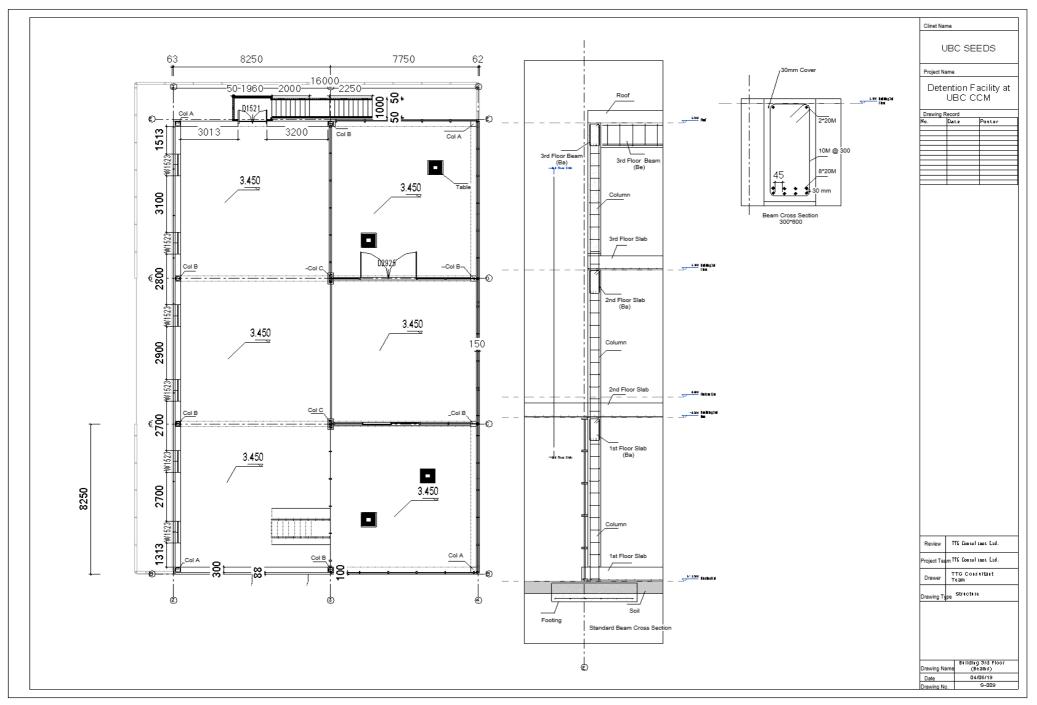


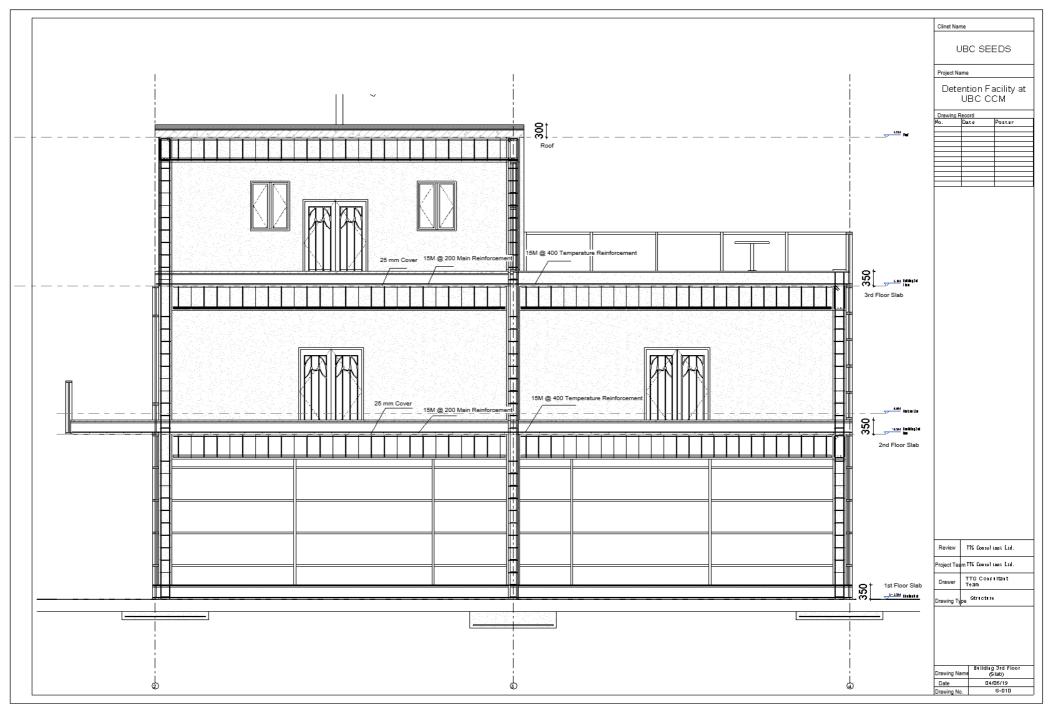


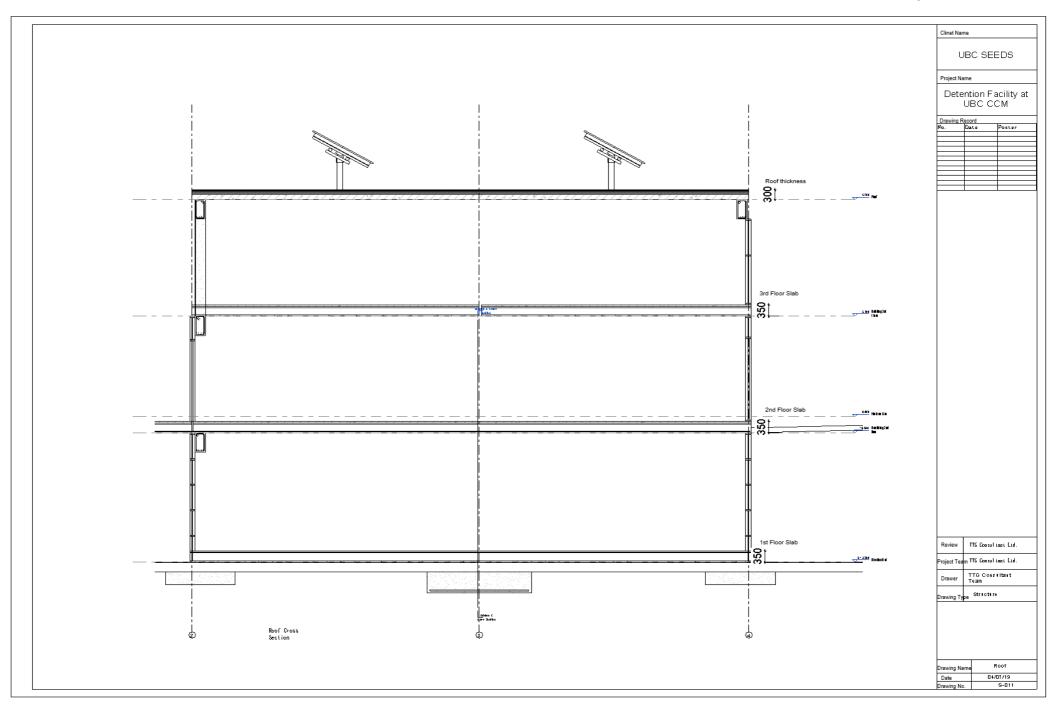


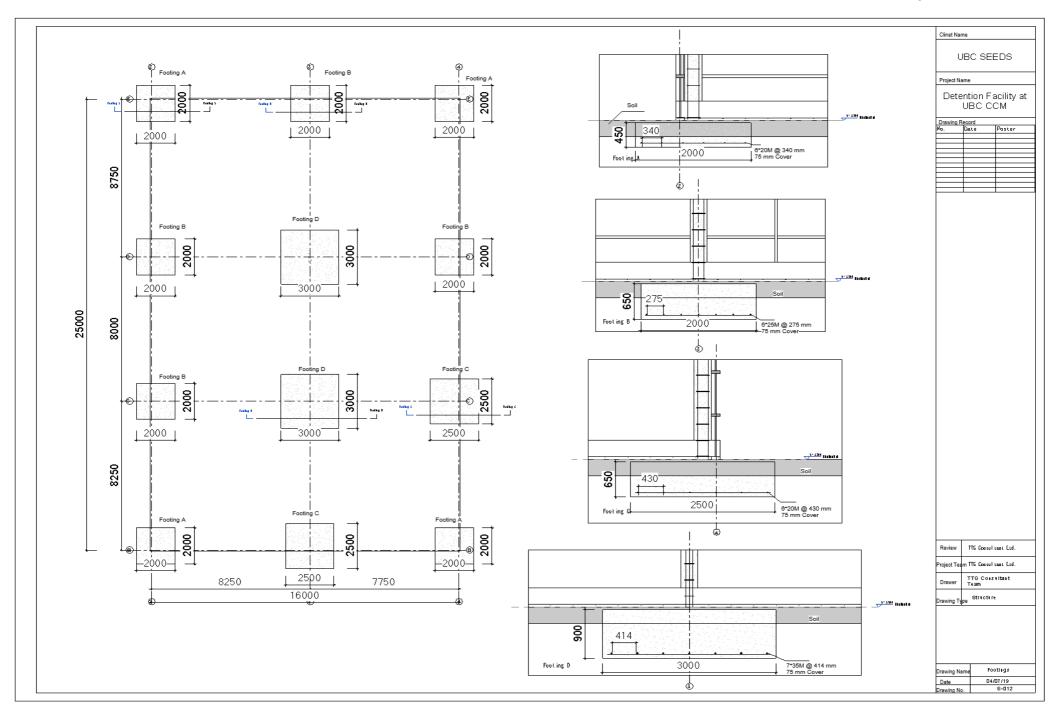

STTG


TTG









STTG

Appendix B Class B Cost Estimation

Detention Facility fo UBC CCM Class B Cost Estimation

Description	14.0.00	Lab	our		Materia				Equipm	ent		Sub	contra	act		Total
Description	Item	Man Hr	Rate(\$)	Qty	Unit	R	ate(\$)	Qty	Unit	_	ite(\$)	Qty	R	ate(\$)		Total
			De	tention P	ond	_							_			
01 General Requirement																
Surveying		12	145									1	\$	1,500	\$	3,240
Project Recod Documents												1	\$	2,000	\$	2,000
Material Testing	Soil Compaction&Concrete Testing	100	200									1	\$	3,000	\$	23,000
Project Manager		1142	60												\$	68,520
Project Coordinator		1142	35												\$	39,970
Safety Officer		1142	12												\$	13,704
Site Superintendent		1142	65												\$	74,230
Traffic Control												1	\$	8,000	\$	8,000
Temporary Power	Design Install and Consumption			15	month	\$	350					1	\$	8,000	\$	13,250
Temporary Facilities	Temporary Toliets, Offices, Drinking Water			15	month	\$	100	15	month	\$	1,550	1	\$	1,500	\$	26,250
Waste Management	Container Rental, Cleaning	21	40	15	month	\$	200								\$	3,840
First Aid				15	month	\$	1,000								\$	15,000
									-				S	ubtotal:	\$	291,004
02 Site Construction																
Sitework Demolition&Removal	Cut 200 trees	25	800	200	trees	\$	1,000	10	each	\$	1,500	1	\$	65,000	\$	300,000
Excavation, Trenching, and Backfilling	Machine excavation, common earth	2000	400					50	day	\$	690				\$	834,500
Floor Construction	Concrete puring and finishing														\$	-
Roof Construction	Roof constructing and covering														\$	-
Walls Construction	Exterior and interior walls														\$	-
Glass Walls															\$	-
Stair Construction	Stair flights and landings														\$	-
Interior Doors	Transporing and installing														\$	-
Exterior Doors	Transporing and installing														\$	-
													Su	btotal:	\$	1,134,500
03 Concrete																
Concrete Forming	Pouring Concrete	750	45	1782	m^3	\$	25								\$	78,300
Concrete Reinforcement	Placement of Rebar	18	24	2397	m	\$	1								\$	3,428
Cast-in-Place Concrete		21	21	643	m^3	\$	25								\$	16,516
Concrete Finishes	Exterior Protection	14	50	15	cans	\$	100								\$	2,200
Concrete Curing	for Foundations, walls and floors	120	25												\$	3,000
													Su	btotal:	\$	103,444
33 Utilities																
Pipe Placement		12	25	6	each	\$	23					1	\$	1,200	\$	1,637
Pump		4	32	2	each	\$	360					1	\$	1,800	\$	2,648
Disinfection															\$	-
Domestic Water Distribution															\$	-
Standpipes															\$	-
Plumbing Fixtures															\$	-
													Su	btotal:	\$	4,285
Maintenance													-			
Pump Maintenance									2	\$	2,000				\$	4,000
Pond Maintenance									1	\$	3,500				\$	3,500
												aintenanc			\$	7,500
										Life	cycle N	Naintenan	ce Su	btotal:	\$	562,500
									_			nd Life		0		005 700
									De	tenti	ion Po		ycie	Cost:	२ ८	2,095,733

Detention Facility fo UBC CCM Class B Cost Estimation

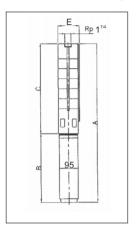
Description 01 General Requirement Surveying Project Recod Documents	Item	Man Hr	bour Rate(\$)	Qty	Materia Unit	Rate	e(\$)	Qty	Equipm Unit	Rate(\$)	Qty	contr Ra	te(\$)		Total
Surveying							-(+)						(+)		· · · · · · · · · · · · · · · · · · ·
		10													
		12	145			1								\$	1,740
														\$	-
Material Testing	Soil Compaction&Concrete Testing	65	200											\$	13,00
Project Manager		1714	60											\$	102,84
Project Coordinator		1714	35											\$	59,99
Safety Officer		1714	12											\$	20,56
Site Superintendent		1714	65											\$	111,41
Traffic Control														\$	
Temporary Power	Design Install and Consumption			15	month	\$	350							\$	5,25
Temporary Facilities	Temporary Toliets, Offices, Drinking Water			15	month	\$	100	15	month	\$ 1,550				\$	24,75
Waste Management	Container Rental, Cleaning	31	40	15	month	\$	200	10	monui	φ 1,000				\$	4,24
First Aid	Container Nentai, Cleaning	51	40	15	month	\$	1,000							\$	15,00
Flist Ald				15	monui	φ	1,000					S	ubtotal:	- i	358,788
2. Site Construction														<u> </u>	000,700
Sitework Demolition&Removal	Cut 200 trees			1	1	T					1	T		T	
Excavation, Trenching, and Backfilling	Machine excavation, common earth					+			1	+	+	+		+	
Floor Construction	Concrete puring and finishing	1550	27.3	1162.25	m^2	\$	1			+				\$	42,89
Roof Construction	Roof constructing and covering	1050	27.3	265.25	m^2	\$	6		-	+		-		\$ \$	42,89
		800	27.3	3891.92	m^2	\$	1			+		-		۰ ۶	23,78
Walls Construction	Exterior and interior walls					-	•			+			75		
Glass Walls		170	28.6	609.81	m^3	\$	20				55	\$	75		21,18
Stair Construction	Stair flights and landings	520	27.3	2	each	_	11,725		-			-	0.000	\$	37,64
Interior Doors	Transporing and installing	26	778.13	25	each	\$	1,001				1	\$	2,000	-	47,25
Exterior Doors	Transporing and installing	6	1411.5	9	each	\$	3,825				1	\$	2,500		45,394
												SI	ubtotal:	\$	248,418
03 Concrete			1						1	T	T				
Concrete Forming	Pouring Concrete	350		900	m^3	\$	25					_		\$	22,50
Concrete Reinforcement	Placement of Rebar	10	24	1331	m	\$	1					_		\$	1,904
Cast-in-Place Concrete		11	21	357	m^3	\$	25					_		\$	9,15
Concrete Finishes	Exterior Protection	10	50	10	cans	\$	100					_		\$	1,50
Concrete Curing	for Foundations, walls and floors	400	25											\$	10,000
												S	ubtotal:	\$	45,060
33 Utilities				1	1	1			1	1	1				
Pipe Placement			_									_		<u> </u>	
Pump										_		_		<u> </u>	
Disinfection		43	22.8	20700	m^3	\$	5				2	\$	2,000		115,10
Domestic Water Distribution		28	24.4	830	m^2	\$	8				2	\$	2,200		11,87
Sprinkler		34	22.3	1472	m^2	\$	31				2	\$	2,800		51,66
Standpipes		16	25	1054.3	m^2	\$	8				1	\$	3,500		11,95
Lights and branch wiring		40	21	1054.3	m^3	\$	131				1	\$	2,300		140,78
Plumbing Fixtures		46	22	34	each	\$	2,860				1	\$	2,300	-	100,55
Fittings		5	22	46	m^3	\$	2,000				1	\$	3,100		95,21
Other hvac system and equipment		38	23.4	12583	-	\$	2				1	\$	2,000		26,042
Maintenance												S	ubtotal:		553,192
					1	1						1			
Building maintenance									1	\$ 4,500			htetel	\$	4,50
													ubtotal:		4,500
										I life and a	Mainten		. Intertals	¢	227 504
											Maintena				337,500
											Maintena ling Life				337,500 1,542,95

Appendix C Project Schedule

D	Task Mode	Task Name	Duration	Start	Finish	May 4/225/65/	June /206/36/	July /177/17/1	August	Septem /269/99/2							May 205/45/	June 186/16/1	July 56/297/13	Augu:
1	*	START	0 days	Wed 19/5/1	Wed 19/5/1	5/1							 							
2	*	Site Preperation	8 days	Fri 19/5/3	Tue 19/5/14															
3	*	Site Survey	0.25 days	Thu 19/5/2	Thu 19/5/2	I														
4	*	Fencing Layout	0.5 days	Thu 19/5/2	Thu 19/5/2	I														
5	*	Demolition	7 days	Thu 19/5/2	Fri 19/5/10															
6	->																			
7	⇒	Phase 1 Foundation Excavation	114 days	Fri 19/5/10	Wed 19/10/16	-														
8	*	Footings Excavation	35 days	Fri 19/5/10	Thu 19/6/27															
9	*	etention Pond Excavation	35 days	Fri 19/5/10	Thu 19/6/27															
10	*	nstallation Soil Anchors	35 days	Fri 19/5/10	Thu 19/6/27															
11	*	Footing Formwork	24 days	Fri 19/6/28	Wed 19/7/31															
12	*	Footing Rebar	24 days	Wed 19/7/10	Mon 19/8/12															
13	*	Footing Pour	30 days	Tue 19/8/13	Mon 19/9/23															
14	*	etention Pond Formwo	30 days	Fri 19/6/28	Thu 19/8/8															
15	*	Detetnion Pond Pour	35 days	Thu 19/8/8	Wed 19/9/25															
16	*	Underground Piping	15 days	Fri 19/6/28	Thu 19/7/18															
17	*	Backfill and Compact	15 days	Thu 19/9/26	Wed 19/10/16															
18	⇒																			
19	÷	hase 2 Building conctructio	162 days	Thu 19/10/17	Fri 20/5/29						-							1		
20	*	3b on grades construction	50 days	Mon 19/10/21	Fri 19/12/27															
			Task	,		_			Manual Ta	sk				Deadline	<u> </u>			+		
			Split						Duration-c					Path Pre		or Milest	tone Tas	k 🔶		
				stone		٠			Manual Su		allun			Path Pre						_
Proiec	t. Pro	ject Schedule		imary		·			Manual Su		map		1	Path Pre						_
		19/4/8		ect Summary					Start-only	-		г	•	Critical			IGI TUSK			
				tive Task		U			Finish-only			3		Critical S	Solit					
				tive Mileston	0	•			External Ta											
														Progress						
			inac	tive Summar	у	U		U	External M	mestone		\diamond		Manual	riogres	5				
									Page	1										

D	Task Mode	Task Name	Duration	Start	Finish	May	June	July	August Se	otem Octobe								ugu 78/1
21		Columns Construction	50 days	Mon 19/10/21		#/ <u>22</u> 3/05/2	00/30/11	1/1//					517131721		<u>, 234, 08, 20</u>		0/10/130/	0/
22	*	Beam Construction	50 days	Mon 19/10/21	Fri 19/12/27	-												
23	*	oncrete Wall Construction	45 days	Mon 19/12/30	Fri 20/2/28													
24	*	Glass Wall Construction	20 days	Mon 19/12/30	Fri 20/1/24													
25	*	Roof Construction	50 days	Mon 20/3/2	Fri 20/5/8	-												
26	*	Stair Forming	15 days	Mon 20/5/11	Fri 20/5/29													
27	*	Entrance Connection Construction	40 days	Thu 19/10/17	Wed 19/12/11													
28						-												
29	⇒	Phase 3 Detention Pond Construction	40 days	Tue 19/10/22	Mon 19/12/16					F		-1						
30	*	Pump Installation	40 days	Tue 19/10/22	Mon 19/12/16													
31	*	Filtration Installation	35 days	Tue 19/10/22	Mon 19/12/9	-						1						
32	->																	
33	->	Phase 4 Finishing	63 days	Mon 20/5/11	Thu 20/8/6													
34	*	Dry wall construction + Mud and Taping	20 days	Mon 20/5/11	Fri 20/6/5													
35	*	Painting	40 days	Mon 20/5/11	Fri 20/7/3	-												
36	*	interior Decorations	3 days	Mon 20/5/11	Wed 20/5/13													
37	*	Mechanical and electrical utilities	30 days	Mon 20/5/11	Fri 20/6/19													
38	*	Plumbing	20 days	Mon 20/5/11	Fri 20/6/5	_												1
			Tasl	<					Manual Task					Deadline			↓	
			Spli	t					Duration-only				F	Path Predeces	sor Milesto	one Task		
			Mile	estone		•			Manual Summ	ary Rollup			F	Path Predeces	sor Summa	ary Task		1
Projec	t: Pro	ject Schedule	Sum	nmary					Manual Summ	ary	-		F F	Path Predeces	sor Norma	l Task		
Date:	Mon	19/4/8	Proj	ect Summary					Start-only		E		(Critical				
				tive Task					Finish-only		С		(Critical Split				
			Inac	tive Mileston	e	\diamond			External Tasks				F	Progress				-
			Inac	tive Summar	/			[External Milest	one	\diamond			Manual Progr	ess			-
									Page 2									 _

20	Mode	Fask Name	Duration	Start	Finish	May Ju	ne July	August Septem Octo /157/298/128/269/99/2310/7	ber Novemt De	ecemb January	Februar March	April May	June	July	Aug
39		Door/Windows Installations	10 days	Mon 20/5/11	Fri 20/5/22	+/223/00/200/	50/1/////	13/23/120/209/99/23/0/1	0/211/41/102/	42/112/31/131/	212/102/243/35/			13/23/13/	210/
40	*	Fence Installation	3 days	Mon 20/6/8	Wed 20/6/10										
41	*	Toilet, bar utility installation	3 days	Mon 20/6/8	Wed 20/6/10								11		
42	*	Landscaping/ Sidewalks	40 days	Thu 20/6/11	Wed 20/8/5										
43	*	END	0 days	Thu 20/8/6	Thu 20/8/6										•
			Task					Manual Task			Deadline		+		
			Task					Manual Task Duration-only				or Milestone Task			
			Split			•					Path Predecess	sor Milestone Task	< \		
		ect Schedule	Split Mile	t		•	1	Duration-only			Path Predecess Path Predecess		< \		
	ct: Proj Mon 1		Split Mile Sum	stone	,	•		Duration-only Manual Summary Rollup			Path Predecess Path Predecess	or Summary Task	< \		
			Split Mile Sum Proje	t estone nmary	, ,	¢		Duration-only Manual Summary Rollup Manual Summary			Path Predecess Path Predecess Path Predecess	or Summary Task	•		
			Split Mile Sum Proju Inac	t Istone Imary ect Summary		 ▲ ▲ ▲ ▲ ▲ 		Duration-only Manual Summary Rollup Manual Summary Start-only			Path Predecess Path Predecess Path Predecess Critical	or Summary Task	•		
			Split Mile Sum Proju Inac	t stone nmary ect Summary tive Task	e	¢ 		Duration-only Manual Summary Rollup Manual Summary Start-only Finish-only			Path Predecess Path Predecess Path Predecess Critical Critical Split	or Summary Task	•		



Appendix D Sample Calculations

Appendix C-1 Pump Design Calculation

Dimensions and Weights

	TECHNICAL DATA QF 2													
PUMP MOTOR		DIMENSIONS (mm)						NET WEIGHT (Kg)						
1.011				В		A				PUMP MO		TOR		
TYPE	TYPE 1	POWER		POWER (KW)	с	1X230V	3X220V	1X230V	3X220V	D	Е	WEIGHT	1 X 230	3X220V
11176		(KW)		172300	3X400V	172300	3X400V			(Kg)	1 × 230	3X400V		
QF2 - 6	RO 100	0.37	312	352	302	664	614	95	101	3	8	8		
QF2 - 9	RO 100	0.37	375	352	302	727	677	95	101	4	8	8		
QF2 - 13	RO 100	0.55	459	367	317	826	776	95	101	5	9	9		
QF2 -18	RO 100	0.75	564	382	352	946	916	95	101	6	10	9		
QF2 - 23	RO 100	1.1	669	422	382	1091	1051	95	101	7	12	10		
QF2 - 28	RO 100	1.5	774	478	422	1252	1196	95	101	9	13	12		
QF2 - 33	RO 100	1.5	879	478	422	1357	1301	95	101	10	13	12		
QF2 - 28	RO 101	1.5	839	517	414	1356	1253	95	101	9	13	12		
QF2 - 33	RO 101	1.5	944	585	414	1529	1358	95	101	10	13	12		
QF2 - 40	RO 101	2.2	1091	585	480	1676	1571	95	101	11	18	16		
QF2 - 48	RO 101	2.2	1259	585	480	1844	1739	95	101	13	18	16		
QF2 - 55	RO 101	3.0	1406	-	547	-	1953	95	101	15	-	19		
QF2 - 65	RO 101	3.0	1616	-	547	-	2163	95	101	17	-	19		
QF2 - 75	RO 101	4.0	1826		623	-	2449	95	101	20	-	22		
QF2 - 90	RO 101	4.0	2141	-	623	-	2764	95	101	23	-	22		

E = Max. Dia of Pump inclusive of cable guard & motor.

QF-2-75 and QF-2-90 are mounted in sleeve for R $1^{1}/_{4}$ "connection and with max. diameter 108 mm

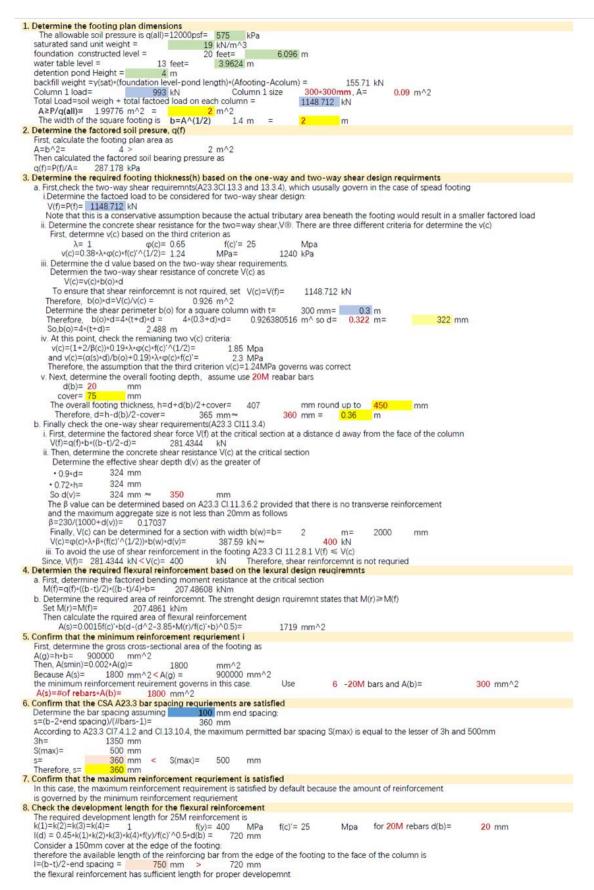
h=dh+hI									
dh = Hinlet - Houtlet	t =6m								
hi = kQ^2	max Q =		1.53 m3/s =	25.5 L3/min	but normally, Q =	0.51 m3/s =	8.5 L3	/min	
Liquid pipeline size:	$V = 0.012 \frac{Q_L}{Q_L}$	Vmin =	0.034 m	/s	0.034				
	$V = 0.012 \frac{d}{d}$	Vmax =	0.102 m	/s	0.102				
dmin =	0.1	8 m							
dmax =	0.5	4 m			Assuming d =	0.41 m =	410 mr	n, to minimize minor loss	
k = 8f(L+Leq)/(pi^2*g	*D^5)	f=	1.9		Area of x-section =	0.1320254 m2	Submersible Pu	mps - QF Series	
Leq = $\sum kD/f =$	0.44		Assume L = 15	m			Hmax =	660 m	
k (s2/m5) =	209.2	28			Pressrue Gradient	-48.673 km/s2	Flow =	440 m3/hr	
							Rating =	0.5 to	335 HP

Q (m3/s)	hl (m)		h (m)	V (m/s)	ws	НР
	0.000	0.000	-4.500	0.000	74.305	7.57
	0.015	0.047	-4.453	0.114	74.311	7.58
	0.030	0.188	-4.312	0.227	74.330	7.58
	0.045	0.424	-4.076	0.341	74.363	7.58
	0.060	0.753	-3.747	0.454	74.408	7.58
	0.075	1.177	-3.323	0.568	74.466	7.59
	0.090	1.695	-2.805	0.682	74.537	7.60
	0.105	2.307	-2.193	0.795	74.621	7.61
	0.120	3.014	-1.486	0.909	74.718	7.62
	0.135	3.814	-0.686	1.023	74.827	7.63
	0.150	4.709	0.209	1.136	74.950	7.64
	0.165	5.698	1.198	1.250	75.085	7.65
	0.180	6.781	2.281	1.363	75.234	7.67
	0.195	7.958	3.458	1.477	75.395	7.69
	0.210	9.229	4.729	1.591	75.570	7.70
	0.225	10.595	6.095	1.704	75.757	7.72
	0.240	12.055	7.555	1.818	75.957	7.74
	0.255	13.609	9.109	1.931	76.170	7.76
	0.270	15.257	10.757	2.045	76.396	7.79
	0.285	16.999	12.499	2.159	76.634	7.81
	0.300	18.835	14.335	2.272	76.886	7.84
	0.315	20.766	16.266	2.386	77.151	7.86
	0.330	22.791	18.291	2.500	77.428	7.89
	0.345	24.910	20.410	2.613	77.719	7.92
	0.360	27.123	22.623	2.727	78.022	7.95
	0.375	29.430	24.930	2.840	78.338	7.99
	0.390	31.832	27.332	2.954	78.668	8.02
	0.405	34.327	29.827	3.068	79.010	8.05
	0.420	36.917	32.417	3.181	79.365	8.09
	0.435	39.601	35.101	3.295	79.732	8.13
	0.450	42.379	37.879	3.408	80.113	8.17
	0.465	45.252	40.752	3.522	80.507	8.21
	0.480	48.218	43.718	3.636	80.914	8.25
	0.495	51.279	46.779	3.749	81.333	8.29
	0.510	54.434	49.934	3.863	81.765	8.33
					AVE	7.83

Appendix C-2 Sedimentation Pond Design

Stoke's Law

$$V_s = g x (S - 1) x d^2 / (18 x \ne)$$


.(Equation G.2)

Where:	$V_s =$	Settling velocity (cm/sec)
	g =	Acceleration of gravity (981 cm/sec ²)
	+ =	Kinematic viscosity of a fluid (cm ² /sec ²)
	S =	Specific gravity of a particle
	d =	Diameter of a particle (cm-assumed a sphere)

Q = 153 m³/s
Q = 153 m³/s
L = (100 + 1 + 6)2 + (50 + 1 + 6)2 = 328 m
L = (100 + 1 + 6)2 + (50 + 1 + 6)2 = 328 m
Settling Velocity: Vs =
$$\frac{g \times (5-1) d^2}{18 \mu f}$$
, From table, medium silt settles
at 0.018 cm/s in 20°c water
Vs = 0.078 cm/s, h = 120 mm cm
 $t_s = \frac{120}{0.018} = 1538 \cdot 5$ sec
1538.5 = $t_s < t_f = 1543.5$ okay
Parameters: Q = discharge rate = 1.53 m³/s
h = water height in ga basin = 1.2 m
 $t_f = Time$ for inflow particle to reach exit = 1543.5 seconds
L = Length of sedimentation basin = 328 m
Vs = Settling velocity = 0.078 cm/s @ 20°c water
 $t_s = Settling time = 1538.5$ secq

Appendix C-3 Foundation Design

Appendix C-4 Load Analysis

Sample Calculation : Load Analysis 1. Vertical Dead Land: The concrete density is between >400 kg/m3~ 3000 kg/m3 : Take the average : concrete density = 2700 kg/m3 ca) Slab self-weight estimation : -> Assume 350 mm depth slab: : let flor DL of slab = 2.7 × 0.35m × 9.8 = 9.261 KPA . The area of 1st Floor is yours? = The Dead weight of slab in 1st floor = 9.26/ KPax 400m= 3704.4 KN 2nd floor: DL of slab = 2.7×03 fm × 9.8= 9.261 Kig -: The area of 2nd floor = 18mx27m = 486m2 The Dead weight of slab in 2nd floor = 9.261 KPa x486m2=4500.85KW 3rd floor: UL of slab= 2.7×0.35×9.8= 9.26/ KPa .: The area of 3rd floor: 7.5m x 8.5+25 x 8.5= 276. 25m² .: The Dead weight of slab in 3rd floor= 9.261 kga x 278.25m²=2558.35 km : The Total Dead weight of slab = 3704.4 km +4500.85km + 255 8.35 km = 10763.6 km to column self-neight estimation: Assume soorsoo an cross-section columns 2.7×9.8× (0.5×0.5×1,2m)= 74.09ky - The stated we final some cci Beam self-weight estimation : Assume 400x700mm cross-section beams The DL for a beam= 2.7×9.8×0.7= 18:52 KPa The Total Dead weight for beams = (18:52x 0.4x66m)+(18:52x0.4x68m) = 488.93KN+ 503.74 KN = 992.67KN - The Total Dead weight = 10763.6KN+ 992.67KN+74.09KN = 11830.36KN

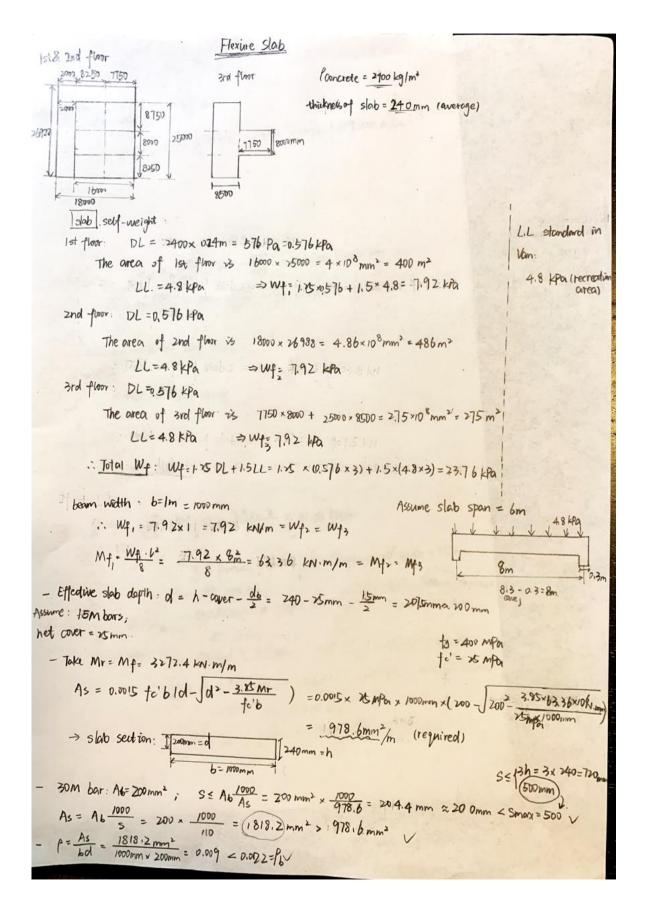
STTG

2. Vertical Live Lord. According to NBCC, the Live land for Museums is 4.8 kPa . The fotal Live weight for the Sub Migu: 4.8 × Pax 400m2 + 4.8 × 486m2 + 4.8 × 276.25m2 = 5578.8 KN Snow Load Estimation: 3 S=Is [Sollbluls (a) +Sr] - NBCC 2010 4.1.6.2 · Importance factor = Is=1.0 - NBCC 2010 Table 4.1.6.2 Assuming normal importance · Assume all "c" factors = 1.0 · Ss=1.1kPa, Sr= 0.2 kPa - NBCC 2010 Table (-2 - check: Sr < Sel (blacsla) = 20.2 ×1.1 [1.07 =) 0.2 (1.1 V 0K : S=(1.0)[(1.1)(1.0)+0.2]=1.3kPa = Total such load at roof = 1.3 kia × (16x25)= 520 kar - Governed Load Combinition: 1.25D+1.5L+0.55 = 1.25×11830.36+1.5×5578.8+0.5×520 = 23416.15 KM 4. Wind Load Estimation: P= Inglelg 6 - NBCC 2010 4.1.7.1 Assume P= 2.69 9=0.57 for 1/50 year - NBU 2010 Table (-2 P= 2.6(0.57) = 1.482 KPA

Appendix C-5 Beam Design

ln: 8000mm #10600 7500 mm 7000 mm 300000 1900 f'c = 25MPa Mf Flexure design: DL: 9.261KPa LL= 4.8KPa ln= 8000 mm Area = \$\$\$15m2 F10 = 1.25 DL + 1.5LL $F = \frac{1.25 \text{ DL} + 1.5 \text{ CL}}{1.25 \text{ OL} + 1.5 \text{ CL}}$ = 1.25 (9.261)(15) + 1.5 (4.8)(15) $= 261.64 \text{ KM} \qquad \qquad W = F/8.75 = 32.2\text{ Km}$ $Mt = \frac{WL^{2}}{8} = \frac{(322.27)(8.75)^{2}}{8} - \frac{2698.47 \text{ FM}}{8} 308.2 \text{ KN} \cdot m$ d = h - 110 = 490 mm $As = 0.0015 (f'c)(b)(d - 1/d^{2} - 3.85 \text{ Mf})$ $= 10035.5 \text{ mm}^{2}$ $= 10035.5 \text{ mm}^{2}$ $Use 8-20M = 8 \times 300 = 2400 \text{ mm}^{2}$ $dactual = h - cover - ds - db - \frac{Smin}{2}, Smin = Max \begin{bmatrix} 1.4db \\ 1.4d \\ 1.4d \\ 1.4d \\ 1.30me \end{bmatrix}$ 30mm = 600-30-10-20-15= 525mm As $\geq A_{smin} = \frac{0 \cdot 2 \sqrt{f'c}}{fy} bh = 450 \text{ mm}^2 \sqrt{f'y}$ $a = \frac{\phi_s A_s f_y}{N \cdot d \cdot f' \cdot 1} = 209 \cdot 23 \text{ mm}$ $Mr = \phi_s A_s f_y \left(d - \frac{\alpha}{2} \right) = 343 \text{ kN·m} > M_f \sqrt{2}$ Spacing: 300 - 2xcover - 2ds - 4db = 46.67 mm > 5min v 600 + 8-20M

ln = 7500 mm F= 281.64 kN W= 34.14 kN/m L= 8250 mm Mf= 290.441 kN·m Use similar design to In=8000mm. As= 2400 mm² > Asmin= 450 mm² Mr= 343 kN·m > 290.4 kN·m / 600 > 8-20M 300 ln = 7000 mm W= F/L= 281.64/1.75 = 36.34 KN/m $M_{f} = \frac{WL^{2}}{8} = 272.8 \text{ kN·m}$ use same design: As=2400 > 450mm² 8-20M Mr=343>272.8 kN. m 000



Detention Facility for UBC CCM

Shear Design: VF = WLn = 32.2×8 = 128.8 KN ln=8000mm Ve = de NB IF'e budu, du = Max [0.9d] = (472.5) -1 $\beta = 0.18$ Vc=184 82.9 KN Vs = Vf - Vc= 45.9 KN $V_s = \frac{\phi_s A_v f_y d_v \cot \theta}{S}$, $S = \frac{\phi_s A_v f_y d_v \cot \theta}{V_s} = \frac{q q q.7 mm}{v M c \theta}$ 10 13 $S_{max} = Min \begin{bmatrix} 600 \\ 0.7 dv = (330.75 mm) \end{bmatrix} = \frac{1000}{0.06 JFc} = 889 mm$ S= 330.75 mm, USE 300 mm Vs= 152,954 EN Vr= 235.9 KN, Vrmax = 0.25 def'ebudy = 575.9 KN Vr < Vrmax , use 2-legged 10-M rebar at 300 mm spacing. -> 10-M@ 300mm 0000 - 8-20M tension rebar Use similar design for 7500 mm and 7000 mm 2- 6- 00 +

Appendix C-6 Slab Design

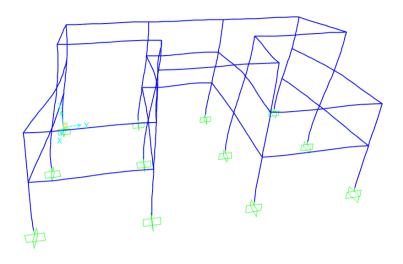
- gress cross-sectional area for unit strip: Ag = 6 x h = 1000 mm x 240 mm = 240,000 mm Asmin = 0.002 Ag= 0.002 × 240000 = 480 mm²/m < As V $-\alpha = \frac{\Phi_{s}f_{3}A_{s}}{\alpha_{1}\phi_{c}f_{c}b} = \frac{0.85 \times 400 MPa \times 1818.2}{0.85 \times 25 MPa \times 1000 mm} = 47.55 mm$ Mr= \$\$fy As(a - 2) = 0.95 × 400 × 1818.2 × (200 - 41.55) = 1.09×108 N·mm/m=109 KN·m/m Mr = Mf = 63.30 KN/m. V - Temperature di shrimkage: · Asmin = 480 mm /m · Smoot (5h) => Smox= 500mm SEA 6 1000 = 200 x 1000 = 416.7mm = 400 mm · 15 m bars: Ab = 200 mm² As = Ab 1000 = 200 × 1000 = 500 mm²/m. > Asmin V 15m@ 400 temp. reint 15m@ 200 main temf. Shear slab Ln = 8m Wy = Wf = = Wf = 7.92 KN/m -> Vy = Wf = In = 7.92 × 8 = 31.68 KN/m (bu= Im) 15M florural rebar: db= 15mm; net cover = 25mm $h = 240 \text{ mm}; d \cong 200 \text{ mm}$ $4 (kn/m) - effective shear depth <math>dv = 10.9 \text{ d} = 0.9 \times 200 = (180 \text{ mm}) \text{ governs}$ 8m 31.68 ow=180mm $31.68 \text{ km/m} - h = 240 \text{ mm} < 350 \text{ mm} = \beta = 0.21 (A233 Cl. 11.3.6.2)$ - UC= dc A PJFc' bw dv= 0.65×1 × 0.21 × JS × 1000mm/80mm = 1.2 3×10⁵ N = 123 KN/m - Vf < Vc : shear remforcement is not required.

Appendix C-7 Column Design

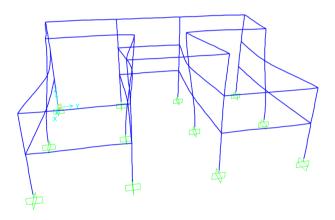
	All the columns are short columns, so they are not susceptible
	to buckling. failure
	(mm) 4375 8375 8125 4125 3875 0 0 0 0 2 3875
topical	8000 0 0 00 00 8000
	4125 3 9 9 41254375 8375 $8(25$ 4125
	The graph shows the tributary area of each column.
www.cf=	The total factored load is 23416, 15, EN 50 the body
	distributed to each column are:
	0993kN 2936kN 31057kN 9996kN
	3 1900 kN @ 1843kN (7) 2049 kN @ 1932 kN
	@ 2032 kN (1) 1962 kN (1) 3923 kN (12) 3805 kN
Line Lune	and the mail of the for the line of the
or (swing	60000,
2.0	We take (3) to calculate the capacity.
	300 x 300 Column will be used with 4 bars
	For Rectangular section; Ag should > 17
	For Rectangular section: Ag should > PF fr'= 25 MPa fy=400MPa PF=1057kN
	$\frac{1}{1 + 1} = \frac{1}{1 + 1} = $
	Ag= b × b , so b > 293mm.
	We use b=h=300mm, dear cover=30mm, e=/00mm
	$\frac{P_r}{A_g} = \frac{1057\chi_10^3N}{300m\chi_300mm} = 11.74 \qquad \frac{M_r}{A_gh} = \frac{P_r\chi_e}{A_gh} = 3.91$

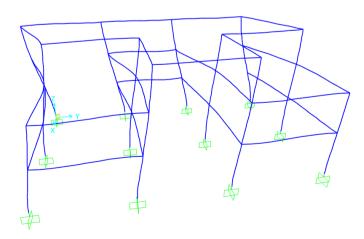
 $\delta = \frac{h - 2 \times cover}{h} = \frac{300 - 2 \times 30}{300} = 0.8$ According to Glumn interaction diagram, Pt = 0,04 Ast = 300mm × 300mm × 0,01 = 900mm2 Therefore, 4-20M steel har will be wed Til size is 10 m because this is the typical value in reisforced concrete column. Til Spacing is the minimum of Slox D of smallest bar = 320 mm (48 x til dianeter = 48 mm Least lateral dimension = 300 mm So, the spacing = 300 mm For columns B B O B D B We take column 3 to calculate capacity We will also use 300×300 Blanny, but with 6 hars Pr= 2049kN $\frac{P}{A_{9}} = 22.8 \qquad \frac{M}{A_{9}h} = 7.6 \qquad \gamma = \frac{300 - 2\times 30}{300} = 0.8$ According to Interaction Diagram, P=0.06 Ast = 0,06 × 300 × 300 = \$400 mm2 Therefore, 6-35M will be chosen with 10 M tie and 300mm tie spacing

For columns () and () We use @ to calculate the capacity, and he will use 320×600 $P_r = 3923 kN$ $\frac{P_r}{Ag} = 21.8$ $\frac{M_r}{Agh} = 3.63$ $\gamma = \frac{600-2\times60}{600} = 0.8$ in this case, clear over = 60mm According Interaction Diagram, ft = 0,043 Act = 0,043 × 300 × 600 = 7740 mm2 Therefore, 8-35M will be used with low the and 300mm tie spacing



Detention Facility for UBC CCM


2 5 1 6 8 12 4 3 10 9 0993kN 0936kN 3 1057kN 0996kN 4-20M steel bar 300 clear cover 30mm 10 M Tie Tie spacing 30° mm 300 For Mumn 0239 3 1900kN 3 1843 kN 3 2049 kN 3 1932 kN 9 2023 km 19 1962 kN 6-35M steel bar clear & cover 30mm 10M Tie 300 Tie spacing 300mm 300 For ohun 000000 @ 3923 kN @ 3805 kN 8-35M steel bar 300 clear cover bomm IOM Tie Tie spacing 300mm 600 For column (1) (?


Appendix C-8 Dynamic Analysis

Mode 1 (T=0.42955; f=2.32746)

Mode 2 (T=0.33543; f=2.98103)

