Employee Transit Pass Program

Team 4
Anvesha Dwivedi
Sarah Cooper
Marcus Bockhold
Matthew Araneta
Would a Subsidized Employee Transit Pass help UBC achieve its transportation targets?

Target 1
Sustainable Travel
by 2040 at least two-thirds of all trips to and from UBC will be made by walking, cycling or transit.
maintain at least 50% of all trips to and from the campus on public transit.

Target 2
Single Occupant Vehicles
reduce SOV travel to and from UBC by 20% from 1996 levels
maintain at least 30% reduction from 1997 levels in daily SOV trips per person to and from UBC

Target 3
Daily Private Automobile Traffic
maintain daily private automobile traffic at or less than 1997 levels.
POLICY QUESTION:

- Should UBC Vancouver subsidize an Employee Transit Pass program? What would the optimal subsidy amount be?

Further Research on:
- The effect on UBC employee ridership to campus
- The financial impact on UBC of a subsidized employee transit pass
ECONOMIC FRAMEWORK

- We conducted a cost-benefit analysis:
 - Benefits:
 - Consumer surplus (benefit to faculty & staff)
 - Costs:
 - Tax Implications (cost to faculty & staff)
 - Direct subsidy cost (cost to UBC)
 - Implementation costs (cost to UBC)

- Results are summarized as a table of costs and benefits
ASSUMPTIONS AND LIMITATIONS

- Assume those listed as using public transit use a monthly transit pass
- Could not isolate faculty and staff responses in the data
- Conducting analysis as a single three-zone pass
- Conduct analysis for each individual zone; using the same relationship between quantity and price from single three-zone pass
- Currently given excess demand for parking, we are uncertain how parking revenue would be affected
Estimating elasticity of demand for transit passes:

- Previous Employee Pass Program (EPP) introduced by TransLink, discontinued in 2014, offered a 15% discount
- Elasticity = (% change in Quantity) / (% change Price)
- Elasticity of demand is approximately –0.39
METHODOLOGY (3 ZONE PASS OPT IN MODEL)

Estimating the change consumer surplus (ΔCS):
- Example: at a 50% subsidy price = $87
- Benefits to Faculty & Staff
 - $\Delta CS = $775,800.00$ (benefits per month)
 - $\Delta CS = $9,310,000$ (benefits per year)
NET BENEFIT TO FACULTY & STAFF

At 50% discount: Price = $87, Quantity = 10,105

CONSUMER SURPLUS
$9,310,000

TAX IMPLICATIONS
$3,713,000

NET BENEFIT TO FACULTY & STAFF
$5,596,000
METHODOLOGY (3 ZONE PASS OPT IN MODEL)

Total cost to UBC
- At 50% discount: Price = $87, Quantity = 10,105

DIRECT SUBSIDY COST TO UBC
$10,549,000

IMPLEMENTATION COST
$274,000

TOTAL COST TO UBC
$10,824,000
METHODOLOGY (3 ZONE PASS OPT IN MODEL)

Net benefit of 50% subsidy

\[
\begin{align*}
\text{NET BENEFIT TO FACULTY} & \quad - \quad \text{TOTAL COST TO UBC} \\
$5,596,000 & \quad - \quad $10,824,000 \\
\text{NET BENEFIT OF SUBSIDY} & \\
- $5,228,000
\end{align*}
\]
<table>
<thead>
<tr>
<th>Discount Factor</th>
<th>Price of Transit Pass (per month)</th>
<th>Quantity sold</th>
<th>Net Benefit to Faculty and Staff</th>
<th>Total Cost to UBC</th>
<th>Net Benefit of Subsidy Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>$174</td>
<td>7730</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>10%</td>
<td>$157</td>
<td>8051</td>
<td>$1,056,000</td>
<td>$1,955,000</td>
<td>-$899,000</td>
</tr>
<tr>
<td>20%</td>
<td>$139</td>
<td>8426</td>
<td>$2,135,000</td>
<td>$3,793,000</td>
<td>-$1,658,000</td>
</tr>
<tr>
<td>30%</td>
<td>$122</td>
<td>8873</td>
<td>$3,244,000</td>
<td>$5,832,000</td>
<td>-$2,588,000</td>
</tr>
<tr>
<td>40%</td>
<td>$104</td>
<td>9417</td>
<td>$4,392,000</td>
<td>$8,140,000</td>
<td>-$3,748,000</td>
</tr>
<tr>
<td>50%</td>
<td>$87</td>
<td>10105</td>
<td>$5,596,000</td>
<td>$10,824,000</td>
<td>-$5,228,000</td>
</tr>
<tr>
<td>60%</td>
<td>$70</td>
<td>11015</td>
<td>$6,884,000</td>
<td>$14,074,000</td>
<td>-$7,190,000</td>
</tr>
<tr>
<td>70%</td>
<td>$52</td>
<td>12310</td>
<td>$8,312,000</td>
<td>$18,267,000</td>
<td>-$9,955,000</td>
</tr>
<tr>
<td>80%</td>
<td>$35</td>
<td>14399</td>
<td>$10,016,000</td>
<td>$24,326,000</td>
<td>-$14,310,000</td>
</tr>
</tbody>
</table>
INDIVIDUAL ZONE OPT IN MODEL

- Total Cost for providing individual zone subsidy at 30% discount: -$1,695,798
- Total Cost for providing only a three zone pass at 30% discount: -$2,588,443
- On average 35% less expensive to provide individual zone subsidy passes
 - Most 27% less expensive (10% subsidy)
 - Least 38% less expensive (80% subsidy)
ANNUAL MANDATORY MODEL

- More expensive for UBC
- Expect similar change in ridership as in opt-in model
- Added intangible costs
SHADOW PRICING

- Intangible Goals Considerations:
 - Reputational Value
 - Environmental Goals
- We estimate the average value of reduced emissions per rider to be about $40
- If UBC values intangible benefits at size of negative monetary value, then project could still be worthwhile
<table>
<thead>
<tr>
<th>Current Revenue from Faculty & Staff</th>
<th># of Passes Guaranteed by UBC</th>
<th>Price to keep TransLink Revenue Neutral</th>
<th>Subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,345,020.00</td>
<td>8000</td>
<td>$168.13</td>
<td>3.38%</td>
</tr>
<tr>
<td>9000</td>
<td></td>
<td>$149.45</td>
<td>14.11%</td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td>$134.50</td>
<td>22.70%</td>
</tr>
<tr>
<td>11000</td>
<td></td>
<td>$122.27</td>
<td>29.73%</td>
</tr>
<tr>
<td>12000</td>
<td></td>
<td>$112.09</td>
<td>35.58%</td>
</tr>
<tr>
<td>13000</td>
<td></td>
<td>$103.46</td>
<td>40.54%</td>
</tr>
<tr>
<td>14000</td>
<td></td>
<td>$96.07</td>
<td>44.79%</td>
</tr>
<tr>
<td>15000</td>
<td></td>
<td>$89.67</td>
<td>48.47%</td>
</tr>
</tbody>
</table>
Subsidy cost to UBC

Cost to keep TransLink revenue neutral

$122,27
AREAS FOR FURTHER RESEARCH

- Having an accurate elasticity for all three transit zones individually, which would require data collection
- Looking into accuracy of parking revenue changes as there might be a waitlist
RECOMMENDATION

- UBC would incur a net financial loss under all subsidy programs analyzed
- Most cost effective strategy: Negotiate with TransLink
 - If unable to negotiate, Individual Zone Model is more cost effective than Single Three-Zone Model
 - Produces about the same quantity of passes purchased